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Preface

The de Bruijn graph is credited to the Dutch mathematician Nicolaas Govert de
Bruijn who defined this graph in 1946 with the motivation to count the number
of binary cyclic sequences of length 2" in which each binary n-tuple is contained
exactly once in a window of length n. These sequences were also called by the
name of de Bruijn. Although it was defined for mathematical purposes, the graph
has been used throughout the years for many applications. It was first heavily
used to develop the theory of shift-register sequences used for many practical
applications, particularly for the NASA space program. These sequences were
also used in other unrelated areas such as cryptology, VLSI testing, and wire-
less communication. The graph itself was also used for new applications. When
parallel computation began, the graph was an inspiration for networks such as
the shuffle-exchange network, the omega network, and other related networks.
The de Bruijn sequences and shift-register sequences were generalized for two-
dimensional arrays and these arrays were applied for pattern recognition and
computer vision, and related arrays were used also as self-locating patterns.
In the late 1980s the human genome project attracted much research and the
de Bruijn graph was also used in this project for the DNA sequencing of the
genome assembly. The method used, called the de Bruijn graph method, is based
on paths along the edges of the graph. Finally, at the beginning of the 21st cen-
tury DNA storage was developed and some of the related theories also made use
of the de Bruijn graph and its sequences.

In parallel with the research on the graph, the theory of sequences was de-
veloped rapidly, starting with the theory of shift-register sequences. This theory
is well documented in a book by Solomon W. Golomb who developed the the-
ory of shift-register sequences. His book on these sequences, “Shift-Register
Sequences”, is the “bible” of this area. Other types of sequences were devel-
oped to supply the demands for sequences with special properties to areas like
cryptography, sequence design for radar and sonar, constrained sequences, DNA
storage sequences, etc. This book’s focus and scope are the de Bruijn graph and
its sequences, their generalizations, and their applications. However, it will also
cover some of the topics associated with the graph and its sequences, and their
generalizations that were suggested. Although the book is quite thick, it will be
impossible to cover everything. On the other hand, we tried to be as comprehen-
sive as possible.

Xi



xii Preface

The de Bruijn graph and digital sequences were used in many disciplines
as noted above and, in many cases, the different disciplines have not inter-
acted. These disciplines include combinatorics, graph theory, communication,
data storage, computer science, pattern recognition, computer vision, bioinfor-
matics, biology, and more. One of the main goals of this book is to make these
interactions and to bring to each discipline the knowledge, the methods, and the
applications that were discovered and used in the other disciplines. We will not
be able to cover everything, but we intend to present a few different angles and
directions. The book can be categorized as an algebraic and combinatorial work
on sequences and the de Bruijn graph, although there are also some algorithmic
sections in the book. Moreover, this book is the first attempt to put together dig-
ital sequences, the de Bruijn graph, and their combination in the center of the
exposition, spreading over the various disciplines. These disciplines made use of
these concepts and also various mathematical concepts that arise from the graph
and its sequences. We will also try to bring to the attention of all researchers,
the diverse amount of literature on the de Bruijn graph, its sequences, properties,
applications, and the generalizations of both the graph and its sequences.

The book is a monograph that can be used by researchers in various research
fields, but it can be also used as a textbook for a combined course for gradu-
ate and undergraduate students. The book contains many open problems that
can motivate research and inspire the theses of graduate students. Most of the
claims in the book are proved in the text and as such the book is self-contained,
but the reader must have certain basic knowledge in algebra and combinatorics
to understand the book. Similarly, from time to time throughout the book, we
will use also well-known concepts that need no introduction or definition. Ref-
erences for each chapter are presented only in the last section, which is always
titled “Notes”. In this section, the credit of the results in the section are given
to the appropriate references. The section also contains additional results, some
of which are proved in the section and some of which are presented with no
proof. The number of references on de Bruijn sequences, the de Bruijn graph,
sequences, and related topics is enormous and many such references were left
out. We apologize to those authors whose important manuscripts were left out.
Although most of the book is based on existing research work done over the
years, some parts are novel. Some of the results do not appear elsewhere and for
some results, new original proofs are provided.

Each chapter of the book can be used in a course as a basis for two to four
hours of a lecture or two, respectively. While writing the book, I have used the
book for a course that I developed in parallel and some parts of the book are
a consequence of my experience from this course. To teach the whole material
of each chapter at least four hours are required and some chapters require at
least six hours. The course title can be the same as the title of the book “Se-
quences and the de Bruijn Graph: Properties, Constructions, and Applications”.
The course can be more oriented towards sequences and it can be titled “Digital
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Sequences and the de Bruijn Graph” or more oriented toward graph theory and
it can be titled “The de Bruijn Graph and its Applications”.

The material in this book can be partitioned in a few different ways and
I will describe one of these ways. The first part in Chapter 1 is an introduction
to some of the main topics covered in the book including some basic concepts
in algebra, number theory, and combinatorics on the one hand, and a brief out-
line of the various chapters on the other hand. The second part, which starts in
Chapter 2 and ends in Chapter 8, is devoted to the one-dimensional theory of
sequences, including their properties, enumeration, constructions, complexity
measures, classifications, and applications. The third part of the book, given in
Chapters 9 and 10, is devoted to the generalization of the one-dimensional se-
quences into multi-dimensional arrays and in particular two-dimensional arrays.
The fourth part of the book, which starts in Chapter 11 and ends in Chapter 12,
considers generalizations of de Bruijn graph from the point of view of graph
theory and especially interconnection networks.

The tools that will be used in the book are mainly from algebra and combi-
natorics as mentioned, but there will be also material based on number theory,
some basic graph theory, and some algorithms. Also, coding theory, cryptogra-
phy, and games will be used, applied, and developed in the process. Out of all
the topics in the book, there is comprehensive coverage of the following topics:

1. The linear and nonlinear theory of shift registers and their sequences.

2. Constructions and properties of de Bruijn sequences.

3. Linear complexity of sequences whose length and alphabet size are powers
of the same prime.

4. Two-dimensional de Bruijn sequences and arrays with distinct differences.

. Generalizations and applications for the de Bruijn graph and its sequences.

6. de Bruijn graph type of interconnection networks — constructions, routing,
and layouts.

7. Graphs with a unique path property and their associated networks.

1

Some large parts of this book are based on my own research work and re-
search done by my colleagues. My Ph.D. advisor, Abraham Lempel, at the
Technion, introduced me to the de Bruijn graph and its sequences. This led
to my Ph.D. titled “Sequences with special properties” that was devoted to de
Bruijn sequences and the shuffle-exchange network. I am grateful to him for his
guidance and support throughout the years. My post-doc advisor, Solomon W.
Golomb, at the University of Southern California (USC), broadened my knowl-
edge and my interest in all the related topics. [ have learned so much from him on
these topics and how to make use of every mathematical “gem” either for a prac-
tical use or just to develop an interesting theory. My work on two-dimensional
de Bruijn arrays and arrays with distinct differences started during my time at
USC. At USC, I was also introduced to graphs with a unique path property and
their connections to interconnection networks. Finally, I spent a considerable
time from 1994 at Royal Holloway University of London, where I worked on
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linear complexity of sequences, single-track Gray codes, and applications of
two-dimensional arrays with distinct differences.

Some of my colleagues and students worked with me on some of the topics
mentioned in this book. I should thank all of them and they are listed alphabeti-
cally as follows: Israel Bar-David, Simon R. Blackburn, Alfred M. Bruckstein,
Yeow Meng Chee, Johan Christnata, Raja Giryes, David Goldfeld, Han Mao
Kiah, Sagi Marcovich, Keith M. Martin, Chris J. Mitchell, Kenneth G. Pater-
son, Maura B. Paterson, Moshe Schwartz, Herbert Taylor, Alexander Vardy, and
Eitan Yaakobi.

I should give special thanks to Moshe Schwartz and Eitan Yaakobi who have
given important criticism on some chapters of the first draft that helped me to
improve the draft considerably. Last, but not least, I am indebted to my Ph.D.
student Daniella Bar-Lev who read almost the whole text and her endless re-
marks, comments, and suggestions helped me to improve all the chapters of this
book and to remove many hidden errors.

Tuvi Etzion

September, 2023



Chapter 1

Introduction

Preliminaries, de Bruijn graph, shift registers

The de Bruijn graph G, was defined in 1946 by Nicolaas Govert de Bruijn.
His purpose in defining the graph was to find the number of binary cyclic se-
quences of length 2" in which each binary n-tuple is contained exactly once
as a window of length n in the sequence. The graph was defined in parallel by
Irving John Good to generate the same sequences and hence it is sometimes
called the de Bruijn—Good graph. It was also discovered later by de Bruijn that
Flye-Sainte Marie found the number of these sequences 50 years earlier before
his discovery. Later, de Bruijn and Aardenne-Ehrenfest generalized these results
and defined the de Bruijn graph G, over an alphabet ¥ whose size is o. It was
also mentioned by Good that his definition of the graph can be generalized for
any alphabet.

During the years since their introduction, both the graph and its sequences
were subject to extensive research. In the beginning, the graph and its sequences,
which include many families of sequences and not only de Bruijn sequences,
were mainly used for their combinatorial analysis and applications based on
feedback shift-registers theory. These shift registers and their associated se-
quences were used in the space program of NASA. Later, more applications
for the graph and its sequences were found. Starting in the 1970s, the graph
was used and also inspired research on parallel computing with interconnection
networks. This research also motivated researchers to find the embedding of the
graph for different purposes. The human genome project, which was started to-
wards the end of the 1980s, also used paths of the de Bruijn graph for DNA
sequencing, which is part of the genome assembly. At the beginning of the 21st
century, research on nonvolatile memories and in particular flash memories and
DNA storage has inspired some new research associated with the graph and its
sequences. Moreover, the sequences of the de Bruijn graph have found appli-
cations in coding theory, VLSI testing, cryptography, pattern recognition, and
also in other disciplines. As the disciplines that used the de Bruijn graph and its
sequences are not always contained in the same research field, the results and
the requirements used in one research area were not always known in the other
research areas. One of the main goals of this book is to bridge this gap.

The goal of this chapter is to provide a short introduction to the main topics
of the book and to present some preliminaries from other mathematical areas

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00007-X 1
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that will be frequently used to obtain the results for the main subject of this
book. The rest of this chapter is organized as follows.

Concepts in number theory such as primes, congruences, the Euler function,
the Mobius function, quadratic residues, and more, play an important role in the
exposition of various chapters. In Section 1.1 we present a short introduction to
basic number theory. Although we mainly concentrate on binary sequences, the
theory is applied also to non-binary sequences and mainly sequences over finite
fields. Moreover, the binary case is not always a special case of the more general
case. For this, basic concepts of finite fields must be supplied and these will be
also presented at the beginning of Section 1.1.

In Section 1.2 we will give a brief introduction to a few other concepts that
appear throughout the book. Graphs will appear in many chapters, e.g., the de
Bruijn graph and its generalization, UPP graphs, the shuffle-exchange network,
etc. Sequences will appear throughout the book and their basic definitions will
be provided in Section 1.2. Finally, although this is not a book on coding theory,
there are some connections between codes and sequences, and hence the basics
for the theory of error-correcting codes will be given in this section.

In Section 1.3 the major connection between the de Bruijn graph and its
sequences will be discussed. This connection is through shift registers and their
sequences. These concepts will be presented and in particular, some theory of
nonsingular feedback shift registers will be given.

A comprehensive overview of the specific chapters of this book will be given
in Section 1.4.

1.1 Some concepts in finite fields and number theory

This section introduces basic concepts used in the definitions and the techniques
used throughout the book, namely groups, finite fields, and number theory.
Finite fields play a major role in part of the exposition. We will assume the
knowledge only of very basic concepts in finite fields, linear algebra, and num-
ber theory, such as prime numbers, divisibility, functions, equivalence relations,
polynomials, etc., although some will appear in the rather extensive introduction
to number theory. Two concepts, groups and rings, will lead to the definition of
a finite field.

Definition 1.1. A pair (G, o) is called a group if G is a nonempty set, o is a
binary operation defined on G, and the following three properties are satisfied:

1. (aob)oc=ao(boc)foralla,b,ceg.

2. There is an identity element e € G such thataoe =¢oa=a foralla € G.
3. For each a € G there exists an element a~! € G called the inverse such that
-1_ -1

aoa a "oa=e.

For an additive group, the identity element will be denoted by 0.
The group (G, o) is called an Abelian group (or a commutative group) if
aob=boaforalla,beg.
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The group (G, o) is a cyclic group if there exists an element a € G, such that
i times
eachbeGisequaltoa’ G oao---oa for some integer i. The element a is
called a generator of the group. For b € G, the smallest i > 0 such that b =eis
called the order of b. It is easy to verify that a is a generator of the group G if
and only if the order of a is the size of the group, i.e., |G|.

A subgroup H of a group G is a subset H of G that is also a group. If
xe€G\ H,thenxoH = {xoh : he H}is called a coset of H in G. This coset
is a left coset and similarly, we have a right coset H ox for eachx € G\ H. Also,
eo H = H oe= H, where e is the identity element of G is a coset of H in G.
For an Abelian group, the left cosets and the right cosets coincide. Henceforth,
we assume that all our groups are Abelian. The cosets of H in G define a group
called the quotient group and denoted by G/H. The index of the subgroup H
in a finite group G, denoted by [G : H] is the number of cosets of H in G. It
is easy to verify that if H is a subgroup of G then the relation R defined on the
elements of G by (a,b) e Rifao bl e H,isan equivalence relation.

The following theorem is called Lagrange’s theorem.

Theorem 1.1. If H is a subgroup of a finite group G, then
IGl=IG : H]-|H]|.

Proof. The cosets of H in G are the equivalent classes of the equivalence rela-
tion. Therefore the cosets form a partition of G. Each coset has the same size
and the number of cosets is [G : H]. Therefore

|G|=I[G : H]-|H]|. O

When a finite group G of operators are acting on a finite set U, an equiva-
lence relation is defined on U by these operators, where x, y € U are related if
there exists an operator g € G such that y = g(x). The next theorem is known
as Burnside’s lemma.

Theorem 1.2. The number of equivalence classes to which a set U is partitioned
by a finite group G of operators acting on U is

1 .
G Y Fix(e),
geG
where Fix(g) is the number of points of U that remain fixed by g.

Proof. Let x be an element in the space U and let G, be the subgroup (called
the stabilizer group) of G defined by the elements of the group that fix the
element x, i.e.,

Gy ={g:g€G, gx)=x}
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and let G (x) be the coset of x, i.e.,

Gx) 2 {gx) : g€G}.

By Lagrange’s theorem, we have that

|G|
G|’

IG)I =[G : Gi]=

Clearly, by these definitions

. |G
Y Fix(e)=1{(g.x) : g€G.xel, gx)=x}[=Y |Gx|=)_ G
geG xeU xeU *
It is also easy to verify that
Yismi= X Y= Y 1=0/G1.
|G (x)] |A]
xeU AcU/G xeA AeU/G
where U/ G is the quotient set defined by the relation on U, and hence
Fix(g) = Gl =|G|-U/G].
Z IG( )I Z IG( )]
geG
Thus
U/Gl= ZFw(g)
geG
which completes the proof. O

Definition 1.2. A triple (R, +, -) is called a ring if R is a nonempty set, + and -
are two binary operations defined on R, and the following four properties are
satisfied:

1.

(R, +) is an Abelian group.

2. (a-b)y-c=a-(b-c)foralla,b,ceR.
3.
4. a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-cforalla,b,c eR.

There is a unique element 1 € R suchthata-1=1.a=a foralla € R.

The identity element of the group (R, +) is denoted by 0. The ring (R, +, -)

is called a commutative ring ifa-b=>b-a foralla,b e R.

Note that (R \ {0}, -) might not have an inverse for each element of R \ {0},

and hence it is not necessarily a group.

Definition 1.3. A ring (F, +, -) is called a field if the pair (F \ {0}, ) is an
Abelian group. The element O is the identity element of the Abelian group (F, +)
and 1 is the identity element of the Abelian group (I \ {0}, -).
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We denote the set G \ {0}, where G is a group (also for a ring or a field) and
0 is the additive identity element, by G*. The group (I, +) is called the additive
group of the field and the group (F*, -) is called the multiplicative group of the
field.

Our main interest is in finite fields, i.e., fields with a finite number of ele-
ments. All such fields with the same number of elements are isomorphic and
they are called Galois fields. The number of elements in such a field is ¢, where
q is a power of a prime and it is denoted by GF(q) or IF,. The Abelian group
(F*, -) is a cyclic group.

The ring of integers modulo m will be denoted by Z,,. Addition and mul-
tiplication in the ring are performed modulo m. This ring, Z, is a field if p is
a prime integer. It contains the set of integers {0, 1, ..., p — 1} (or equivalently
the set of p distinct residues modulo p) where addition and multiplication are
performed modulo p.

The finite field ]Fqk, where g is a power of a prime, has qk elements. The
multiplicative group of Fgx is a cyclic group with a generator «. The generator o
is a root of some irreducible polynomial

k
c(x) =xk— Zc,-xkii, ciel,
i=1

called a primitive polynomial and each one of its roots « is called a prim-
itive element. The elements of F « can be represented as the g* vectors of

length k over Fy, ie., IF]q‘. For two elements o, o/, represented by the vectors
x=(x1,Xx2,...,Xk) € IF’; and y = (y1,¥2,...,Yk) € X, respectively, we have
that o’ -/ = o' T/, where superscripts are taken modulo g — 1, and

d fal =x+y=+yLx2+y .0+ =at,

where the addition x; + y; is performed in F; and o' is represented by the vector
(x1+ Y1, X2 4 Y2, ..., Xk + yi) €L
Since « is a root of ¢(x), it follows that

k
0=c(ax)= ok — Z c,-ozk_"
i=1

and of = Zleciak_i. The element o® = 1 is represented by the vector
(00---001), the element « by the vector (00---010), and so on, where okl
is represented by the vector (10- - -000).

The element o is represented by the vector (cy, ca, ..., cx). Similarly, if
ol = (ay,ay, ..., ar), then

ot =(az,...,ar,0) if a; =0
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and

ot = (az,...,ak,0)~|—a1ak =(asz,...,ar,0)+ (ajc1, ...,aicy) if a1 #0.

Recall that an irreducible polynomial c(x) is a primitive polynomial if each
of its roots (which are primitive elements) generates the field, i.e., the qk -1
powers of any root «, of c(x), are distinct elements as g-ary vectors in this
computation. Since usually, there is a large number of primitive polynomials
(see Theorem 3.4), it follows that the vector representation of the finite field is
not unique. The representation of a finite field and its connection to the main
topic of the book will be discussed in Chapter 2. An example of F¢4 is given in
Example 2.3.

The representation of the elements of I « by the g-ary vectors of length &,
over Iy, induces a bijection between F_ « and IF’; This bijection is used to sim-
plify the representation of some structures.

Groups, finite fields, and other concepts associated with graphs and se-
quences make use of many concepts in number theory. In the rest of this section,
we will present some of the basic theory of numbers that is used in this book.

A prime number is a positive integer greater than 1 that is divisible only by
itself and by 1. In other words, p is a prime number if it does not have any
divisord such that 1 <d < p.

Two integers x and y are said to be congruent modulo a positive integer
m > 1if y =x 4 jm for some integer j. This relation between y and x is an
equivalence relation and it will be denoted by y = x (mod m).

Going back to groups, there is a special interest in the group Z,, m > 2
(same notation as the ring Z,,), which contains the set {0, 1, ..., m — 1} of inte-
gers, where the binary operation is addition modulo m. The elements of Z,, can
also be considered as the m distinct residues modulo m; Z,, will be also used to
denote an alphabet with m elements.

Prime numbers and divisibility of numbers are two of the most basic con-
cepts in number theory. A positive integer d > 1 that divides a positive integer n
is called a factor of n. One of the most basic questions is to factor an integer n
into its prime factors. We start with a basic discussion on prime numbers.

Theorem 1.3. There are infinitely many primes.

Proof. Assume, on the contrary, that there are only ¢ primes, pi, p2,..., p:.
Consider the integer

1
m:l_[pi+1.

i=1
Clearly, m is greater than 1 and not divisible by any of the primes p1, p2, ..., ps,

and hence by definition m is a prime, a contradiction. Thus there are infinitely
many primes. O
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Finding primes is an important problem since primes have many applica-
tions in diverse areas, some theoretical and some practical. It is also important
for these applications to know how sparse, or dense, is the set of primes. Such
applications will appear later in the book.

Divisors of integers and common divisors have an important role in ob-
taining various results. The greatest common divisor of two positive integers
a and b is the largest integer k, such that k divides a and k divides b. The great-
est common divisor of a and b is denoted by g.c.d.(a,b). Two positive integers a
and b are said to be relatively primes if g.c.d.(a, b) = 1. For s positive integers
mi,my, ..., mg the greatest common divisor denoted by g.c.d.(m, mo, ..., my)
is the largest integer k that divides each m;, 1 <i < s. The least common multi-
ple of the positive integers m 1, mo, ..., my is the smallest possible integer k such
that m; divides k for each i, 1 <i <s. The least common multiple is denoted
by [m1,ms, ..., mg]. The following lemma is a straightforward claim inferred
from the definitions.

Lemma 1.1. Ifa and b are positive integers, then [a, b] = gxg%(bab)‘

There is a simple algorithm for computing the greatest common divisor k of
two distinct integers a and b.

Euclid’s algorithm:

The inputs to the algorithm are two distinct positive integers a and b and
w.l.o.g. (without loss of generality) assume that b < a.

(E1) Setci:=b,cr:=a,andi:=1.

(E2) If ¢y =mcy, for some m > 1, then k := ¢1 and stop.

(E3) Letcoy =cym; +ri,wherem; >1and 1 <r; <cj.

(E4) Setcy:=cy,c1:=ri,andi:=i+ 1; go to (E2). [ |

Theorem 1.4. If a and b are two positive integers, then, when Euclid’s algo-
rithm terminates, the value k obtained in the algorithm is the greatest common
divisor of a and b.

Proof. 1t is readily verified that throughout the algorithm we have that ¢ > ¢
and the values of ¢, and ¢ are always positive and reduced in (E4). Hence, the
algorithm will stop at (E2).

First, note that if in (E2) we have that ¢ = mc;, for some m > 1, then
g.c.d.(c1, c2) = c1, which is the value for k assigned in (E2). Moreover, since
throughout the algorithm c¢; < 3, it follows that step (E3) is valid.

Now, it is clear that to prove the claim of the theorem it is sufficient to show
that the greatest common divisor of a and b is the same as the greatest common
divisor of c¢; and ¢y throughout the algorithm. The claim will be proved by
induction on i. The basis is done in (E1), where i = 1, ¢ and ¢; are assigned
with the values of b and a, respectively. Assume that the claim is true at some
value of i before (E3) is performed. If an integer « divides c¢; and ¢y, then
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since ¢p = cym; + r;, it follows that « also divides r; and hence we have that
k divides c; and r;. Assume now that an integer T divides ¢y and r;. Again,
since ¢ = cym; + r;, it follows that t also divides c;. Therefore the greatest
common divisor of ¢; and ¢; is also the greatest common divisor of ¢; and ;.
Since in (E4), ¢ and c; are replaced by ¢ and r;, respectively, it follows that
the induction step is proved and hence k in (E2) is the greatest common divisor
of a and b.

Thus when the algorithm terminates we have that the obtained k is the great-
est common divisor of a and b. [l

Theorem 1.5. Ifk = g.c.d.(a, b), then there exist two integers x and y such that
k =ax + by.

Proof. The proof of this claim is based again on Euclid’s algorithm. If a = b,
then the claim is trivial and hence we will continue to assume w.l.o.g. thatb < a.
Moreover, the claim is also true if b divides a.

We will prove that each r; computed in (E3) can be always written as
ri = z1a + z2b for some integers z; and z. The claim will be proved again by
induction on i. After the assignments of b to ¢ and a to ¢y, if ¢ is not a divisor
of ¢y, then in (E3) we have that r| = ¢, — cym| = a — bm and the claim is
proved. At (E4) ¢ is assigned to ¢ and hence the value of ¢; is b; ry is assigned
to c; and hence the value of c| is @ — bm; i now equals 2 and we are back
at (E2).

We continue with two cases depending on whether the algorithm stops
at (E2) or not.

Case 1: If the algorithm stops at (E2), then k = ¢ is the greatest common di-
visor, and since ¢; = r; = a — bmy, it follows that x = 1 and y = —m are the
values such that k = ax + by.

Case 2: The algorithm does not stop at (E2). We continue at (E3), where the
assignment implies that

m=cy—cmy=b—rimy=b—(a—bm;)my=—amy+ (1 +mimy)b

and the claim regarding r is proved.

Assume now for the general step i + 1, i > 1, we have that r; = z1a + z2b
and r;_1 = z3a + z4b for some i > 2. If r; divides cy, then after the assignments
at (E4), i.e., cp :=c1 =r;—1 and ¢ := r; the algorithm will stop at (E2), x will
be z; and y will be z;. If the algorithm does not stop at (E2) and continues
to (E3), then we have

Tigl =C2 — C1Mj4] =Fi—| — FiMjt]

=z3a+z24b — (z1a + 22b)m; 1| = (z3 — zimiy1)a + (24 — z2m;11)b

and the induction step is proved.
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Thus the claim regarding r;, i.e., r; = z1a + z2b for some integers z; and z2,
is correct and hence when the algorithm stops at (E2) we have that x will be z;
and y will be z;. O

Corollary 1.1. If k = g.c.d.(a, b), then there do not exist two integers x and y
such that y = ax + by, where 0 < |y| < k.

The greatest common divisor is naively generalized for polynomials. Let
g(x) and h(x) be two distinct polynomials over a field F. The greatest common
divisor of g(x) and h(x) is a polynomial f(x) of the largest degree in I such
that f(x) divides g(x) and f(x) divides A(x). Similarly, we define the least
common multiple for polynomials. Euclid’s algorithm is derived in a naive way
to find the greatest common divisor of two polynomials over the same field F.
W.Lo.g. we will assume that all polynomials that will be discussed are monic,
i.e., the leading coefficient of their highest degree is 1. The reason for taking
monic polynomials is to have a unique solution to the greatest common divisor.
When Euclid’s algorithm is applied to polynomials, we can obtain the following
result that generalizes Theorem 1.5.

Theorem 1.6. Let g(x) and h(x) be two monic polynomials over F, and
let f(x)=g.c.d.(g(x),h(x)). Then, there exist two polynomials o(x) and
B(x) over F,, where dega(x) < degh(x) and deg B(x) < degg(x), such that
F@) = a()g®) + B)hX).

Next, the following results are required to prove the Chinese remainder the-
orem that will be stated later.

Lemma 1.2. Ift is a common multiple of my, ma, ..., mg, then [mi,mo, ..., mg]
divide t.
Proof. If t is a common multiple of m, ma, ..., mgand m = [m,ma, ..., mg],

thenz > m. If m does not divide 7, then we can write t = jm +r, where j is some
positive integer and 0 < r < m. Since m; divides both m and f foreach 1 <i <s
and t = jm +r, it follows that m; divides r, and hence r is a common multiple of

mi, my, ..., mg,acontradiction since r < m and m is the least common multiple
of mi,mo, ..., my.
Thus [m1,my, ..., mg] divides t. O

Lemma 1.3. If y = x (mod m) and the positive integer d divides m, then
y =x (mod d).

Proof. The congruence y = x (mod m) implies that y = x + jm for some inte-
ger j. Furthermore, d divides m implies that y = x 4 j¢d for nonzero integer £.
However, this also implies that y = x (mod d). O
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Theorem 1.7.
1) g.c.d.(a,m) = limplies that ay = ax (mod m) if and only if y = x (mod m).

(2) For s distinct integers, my,ma, ..., ms, we have that y = x (mod m;) for
each 1 <i <s, ifand only if y = x (mod [m, m3, ..., m)).
Proof.

(1) Letg.c.d.(a,m) =1 and assume that ay = ax (mod m).
Assume, on the contrary, that y % x (mod m). This implies that

y=x+4jm+r, wherel <r <m—1and jeZ.
Since ay = ax (mod m), it follows that
ax +ajm+ar =a(x+ jm+r)=ay=ax (mod m)

and hence
ar =4tm,

for some ¢ € Z. However, since g.c.d.(a,m) =1and 1 <r <m — 1, it
follows that ar # ¢m, a contradiction. Thus y = x (mod m).

Now, let g.c.d.(a, m) = 1 and assume that y = x (mod m).

By definition, y = x (mod m) implies that y = x + jm for some j € Z and
hence

ay=ax +ajm.

Therefore ay = ax (mod m), as required.

(2) Letmy,ma, ..., ms be s distinct integers. If y =x (mod m;) for 1 <i <,
then m; divides y — x. This implies that y — x is a common multiple of
mi,mo, ..., ms and therefore by Lemma 1.2 we have that [m, ma, ..., mg]
divides y — x. It follows that y = x (mod [m, ma, ..., m]).

If we assume that y = x (mod [m,ma, ..., ms]), then by Lemma 1.3
we have that y = x (mod m;) for each i, 1 <i <, since m; divides
[my,moy, ..., mgl. O

Theorem 1.8. If g.c.d.(a, m) = 1, then the equation ax = b (mod m) has a
solution x = x1. All the solutions for the equation are given by x = x1 + jm,
where j € Z.

Proof. Since g.c.d.(a, m) = 1, it follows by Theorem 1.5 that there exist two
integers z and y such that

az+my=1
and therefore

abz +mby =b.
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This implies that abz = b — bym, i.e., the equation ax = b (mod m) has a solu-
tion x = x| = bz.

Assume now that x = x; is also a solution to the equation ax = b (mod m),
where x> # x1 (mod m). We can write

ax;=b+ jym and axy =b+ jom,
which implies that

a(xy —x1) = (jo — j1)m. (1.D

Since g.c.d.(a, m) = 1, it follows from Eq. (1.1) that m divides x» — x1 and
hence x» = x1 + jm, where j is an integer.

If x, = x1 + jm, where j € Z, then axy = ax; + ajm = b (mod m), and
hence each x; of this form is a solution for the equation. O

The next theorem is the Chinese remainder theorem.

Theorem 1.9. Letm1,ma, ..., mg denote s positive integers greater than I that
are pairwise relatively prime and let a1, as, . .., as denote any s integers. Then,
the s congruences

x=aj (mod my)

x = ap (mod my)
(1.2)

X = ay (mod my)
have common solutions and for any two such solutions x| and x we have that
xo=x1 (modmy-mp- --- -my).

Proof. Since my,my, ..., my are pairwise relatively prime, it follows that

N
m= ]_[mi =[my,my, ..., mg].
i=1
Therefore mﬂ} is an integer and g.c.d.(mﬂj, m;)=1foreach j, 1 < j <s. There-
fore by Theorem 1.8, there exists an integer b; such that ;=b; =1 (mod m).
J
Clearly, %bj =0 (mod m;) for each 1 <i <s, where i # j. Now, if we de-
J
fine xq as

N

mb
x0:E —0bjaj,
m; 7

="
then for each 1 <i < s we have that

N
m m
Xo = Z —bja; = —b;a; = a; (mod m;),
— m; mj
]=
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where the second equality is due to =b; =0 (mod m;), for each i # j, and the
J
third equality is due to Theorem 1.7(1) since %bi = 1 (mod m;). Hence, xq is
a common solution of the congruences in Eq. (1.2).
If x; and x;, are both solutions for x in x = @; (mod m;) forall 1 <i <y,
then x, = x1 (mod m;) for all 1 <i <s, and hence by Theorem 1.7(2) we have

that xo = x; (mod m) and the proof is completed. O

Corollary 1.2. Let my, ma, ..., mg be s pairwise relatively prime positive inte-
gers greater than 1. Let

s
m:l_[mi.
i=1

If 0 <x < m, then the system of equations

x=i; (mod mp)
x =ip (mod m»)

(1.3)
x =iy (mod my)
has a unique solution, where 0 <i; <mj.
Proof. Let ji, j2, ..., js be s integers such that 0 < jz <my for 1 <k <s, and

consider the set of equations

y = ji1 (mod my)
y = j2 (mod m3)

y = Js (mod my)

By Theorem 1.9 this set of equations has a unique solution when y is taken
modulo mp - my --- mg. Assume that y is also a solution for

y=4¥1 (mod m)
y = 4£, (mod m>)

y={; (mod my)

where 0 < £y < my for 1 <k <s. This implies that y = ji (mod my) and
y =€) (mod my), where 0 < ji, £x < my, for each 1 <k <s and hence j; = ¢
foreach 1 <k <s.

There are Hi:l my, distinct substitutions for the variables iy, i, ..., s in
Eq. (1.3) and [];_, mi possible values of y, where 0 <y < [];_, mk, which
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implies that the system of equations in Eq. (1.3) has a unique solution for x,
where O < iy <myp, 1 <k <s. O

The concepts in number theory are useful in the construction of sequences
that satisfy certain properties. For example, Corollary 1.2 will be used in one of
our constructions of some two-dimensional arrays.

There are a few interesting functions associated with number theory. The
two that will be required for our exposition are the Euler’s totient function and
the Mobius function, which are presented now.

Euler’s function ¢ (n), known also as Euler’s totient function, where n is
a positive integer, is the number of integers between 1 to n that are relatively
prime to n. In other words

dm)E|{i : 1<i<n, ged.(i,n)=1}|.

We also define the set ny of ¢ (n) residues modulo n that are relatively prime
to n as follows:

ng=1{i : 1<i<nandgcd.(@,n)=1}. (1.4)

These definitions imply that ¢ (n) = |n¢| The following lemma can be easily
verified (for the proof of the third claim, the Chinese remainder theorem is ap-
plied).

Lemma 1.4.

(1) If p is a prime number, then ¢(p) =p — 1.
(2) If p is a prime and e > 1 is an integer, then ¢ (p¢) = (p — 1) p¢~ L.
) Ifn; > 1 and ny > 1 are two integers such that g.c.d.(n1,ny) =1, then

¢ (nin2) = ¢(n1)¢ (n2).

Corollary 1.3. Let py, p2, ..., pr be r distinct primes and let ey, ey, ..., e, be

r positive integers. If n = p{' p5* ... py’, then

. 1
¢(n)=n (1 — —)
l.l:! Di

and

e (e —
PiDj pip2---Pr

</>(n)—n—Z iy

O<i<j<r

Proof. By applying Lemma 1.4(3) several times and then applying Lemma 1.4(2)
we have that

o =o' ps ..o =TT =TT (s i = 1)

i=1 i=1
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and therefore,

N O (I )) roo r
. AYCATE) I P T

Now, by developing the right side of the equation we have that

¢(n)-n“(l——>-n—2—

Di

— e ()
PiPj pip2---pr

O

O<i<j<r

We continue with a second function of number theory. The Mobius function
w(n) is defined by

1 ifn=1
um) =10 if a?|n for some a > 1
(=" ifn=pip2--- pr, forr distinct primes

Lemma 1.5. Ifn is a positive integer; then

_Joifn=1
Zu(d)—io no1’

dln
where d|n stands for d divides n.

Proof. If n = 1, then the only divisor of n is d = 1 and since (1) = 1 the claim
of the lemma for n = 1 follows.

If n > 1, then n can be written as n = p{' p5*... p/", where the r p;s are
distinct primes and e¢; > 1 for | <i <r. A divisor d of n has the form

d=pi'p3...p"

where 0 <¢; <e; foreach 1 <i <r.If g > 1 for some i, then by definition we
have that u(d) = 0. Hence, we have to consider in the sum Zd‘n w(d) only the
divisors for which g; <1 foreach 1 <i <r.Foreachk, 0 <k <r, there are (2)
such divisors, each one is a product of k distinct primes. By the definition of the
Mébius function we have that each such divisor contributes (—1)¥ to the sum
Zd|n u(d). This implies that for n > 1

oo =1- () () e () - 2o ()
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By Newton’s binomial theorem we have that (1 — 1)" = Y"/_(—=1D'(}) and
hence we have that

Y ud) = Z( 1>k<>=<1—1>r=0,
din

which completes the proof of the lemma. O

The next theorem is well known as the Mobius inversion formula or the
Moébius inversion theorem.

Theorem 1.10. If for each positive integer n and two arithmetic functions f
and g we have that

g =Y f(d),

d|n

then

fy =" n-g(5).

d|n

Proof. I g(n) =Y o S (d) for every positive integer n, then for each positive
integer d that divides n, we have

¢(5) =2 r@)

d/ n

and hence

You@-g(5) =2 n@ fd).

dln dln d’| ”

This double summation ranges over all positive integers d and d’ such that
d -d’ divides n. If we choose d’ first, then d ranges over all divisors of n/d’.

Thus
You@-g(5)= Zf(d)Zu(d)
din d'|n
By Lemma 1.5 we have that Zd|l, u(d)=0unlessd =1,i.e.,n =d’, in which
case ¢
D oud=1.
%

This implies the claim of the theorem. O
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Theorem 1.10 will be used several times in our enumerations that will be
given mainly in Chapter 3. However, first, we will state a simple lemma that
will present the strength of this formula.

Lemma 1.6. Ifn is a positive integer; then
p(d)
¢(n)=n —.

d|n

Proof. We partition the set of integers in {1, 2, ..., n} into £ subsets, a subset for
each divisor of n. For a divisor d of n, the subset Sy of this partition is defined
by S4 £ {i : gcd.(i,n)=d, 1 <i <n}. The integer i is contained in Sy if and
only if i is of the form jd, where 1 < j < % and g.c.d.(j, %) = 1. Hence, there

are exactly ¢ (%) elements in S;. Since there are n elements in {1, 2, ..., n}, it
follows that
n
n=20(5)=2s@.
d|n d|n

Now, we apply the Mdbius inversion formula (Theorem 1.10), where g(n) =n
and f(n) = ¢ (n). The outcome is

d
)= u(d)- 5 =n —“;). K
d|n d|n

Corollary 1.4. For each positive integer n

o) _ - ()

n

d|n

Theorem 1.10 for the Mobius inversion formula is one direction of a more
general result. Although there is no use for the general result in our exposition,
it is given for completeness.

Theorem 1.11. For each positive integer n and two arithmetic functions f
and g we have that

g =Y f(d),
d|n
if and only if
n
fn = de:u(d) 5(5)-

Proof. One direction of the proof was proved in Theorem 1.10. In the other
direction, assume that

fo =Y n@-g(3).

d|n
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This implies that

Dof@y=) Y ud)g (di) =Y n)g@H=y Y nd)gd",

dn din d'\d d'd"|n d"|n d/\ﬁ

where d” = %. Changing some order in the equation implies that

df@=) Z p(d)-gd) =y gd" Z pu(d").

dln d"|\nd'|Z; 77 d"|n d”

By Lemma 1.5 the only value for which Zd, L8 wu(d’) #0is when 2 7 =1l ie,
d"” =n. Thus

Y f@=)"gm) u@d)=gm),

d|n nln d'
which completes the proof. O

The next result is known as Euler’s generalization for Fermat’s theorem
(which will be given as a consequence of this generalization).

Theorem 1.12. If a and m are positive integers such that g.c.d.(a, m) = 1, then
a®™ =1 (mod m).

Proof. Let ry,r2,...,rpun) be the ¢(m) distinct integers of the set my. If
g.cd.(ri,m) =1 and g.c.d.(a,m) = 1, then also g.c.d(ar;, m) = 1. Moreover,
by Theorem 1.7(1) ar; = ar; (mod m) if and only if r; = r; (mod m) and hence
the set {ary,ara, ..., argu)} contains the same ¢ (m) distinct residues mod-
ulo m, namely, 7,2, ..., Fy@m). Therefore we have

¢ (m) ¢ (m) ¢ (m)

a¢(m) 1_[ r= 1_[ (ar;) = 1_[ T (mod m).
i=1 i=1

j=1

Now, since g.c.d.(r;,m) = 1 foreach i, 1 <i < ¢(m), it follows again by The-
orem 1.7(1) that a®"™ = 1 (mod m). O

As an immediate corollary from Theorem .12, we have what is known as
Fermat’s theorem.

Corollary 1.5. Let p by a prime and a be a positive integer such that p does
not divide a, then aP~' =1 (mod p) and a? = a (mod p).

The next consequence is known as Euler’s criterion.
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Lemma 1.7. If p is an odd prime and a # 0 (mod p), then x* = a (mod p) has
two solutions or no solutions modulo p according to whether a??~V/2 = 1 or
—1 (mod p). In particular, x> = —1 (mod p) has two solutions if p = 4k + 1,
but no solutions if p =4k + 3.

Proof. Assume that for a = 0 (mod p) we have two distinct integers modulo p,
x and y, such that

y?=x?>=a (mod p).

This implies that (y — x)(y + x) = 0 (mod p). Therefore y + x =0 (mod p),
i.e., y = —x (mod p) and hence the equation x2=a (mod p) has two solutions
or no solutions modulo p.

By Corollary 1.5 we have that

@P D2 _1@? V2 4 1)=a?"' —1=0 (mod p) (1.5)

and hence a?~1/2 = +1 (mod p).
Now, if x?> = a (mod p), then

a?P=V2 = (x2)(P=D/2 = xP=1 =1 (mod p). (1.6)

Hence, for each such a we have that a(?~1/2 — 1 equals 0 modulo p in Eq. (1.5).

Since x2 = (—x)? (mod p), the set {x% (mod p) : 1 <x < p — 1} contains
pT_l residues modulo p and hence by the first part of the proof we have that if
a2 =1 (mod p), then x> = a (mod p) has two solutions.

Thus x2 = a (mod p) has two solutions or no solutions modulo p accord-
ing to whether a?=V/2 = 1 or —1 (mod p). Since (—1)?=D/2 =1 when
p=4k+1 and (=1)P~D/2 = _1 when p = 4k + 3, it follows by Eq. (1.6)
that x> = —1 (mod p) has two solutions if p = 4k + 1, but no solutions if
p =4k +3. O

The last two important concepts in number theory that will be introduced
are two of the most interesting ones, the quadratic residues and the Legendre
symbol. They will be used later to form some interesting sequences and also to
prove that some types of two-dimensional sequences (arrays) do not exist.

Let p be an odd prime. An integer r, r # 0 (mod p), is a quadratic residue
modulo p if there exists an integer x such that x> = (mod p). An integer n,
n # 0 (mod p), which is not a quadratic residue modulo p is a quadratic non-
residue modulo p. For the set of residues modulo p, we denote by R, the set of
quadratic residue modulo p and V), the set of quadratic non-residues modulo p.

The Legendre symbol (%) is defined as follows. ( %) = 1 if m is a quadratic
residue modulo p and <ﬂ> = —1 if m is a quadratic non-residue modulo p. If

m =0 (mod p), then (%Ij

0.



Introduction Chapter | 1 19

There are many interesting properties of the Legendre symbol. The most
basic ones will be introduced now in two lemmas. The claims in the first lemma
are easy to verify by the definition of the Legendre symbol.

Lemma 1.8. Let p be an odd prime and a, b two integers. Then,

o (3)()-(2)

@) Ifa=b (mod p), then (;) - (%)

The second lemma follows from Lemma 1.7.

Lemma 1.9. If p is an odd prime and a is relatively prime to p, then

<3> =aPD/2 (mod p).
p

Corollary 1.6.

(1) If p is a prime of the form 4k — 1, then —1 is a quadratic non-residue
residue modulo p.

(2) If p is a prime of the form 4k + 1, then —1 is a quadratic residue modulo p.

Proof. By Lemma 1.9 we have that

(__1) — (_1)([7—1)/2.
p

(1) If p =4k — 1, then PT‘I =2k — 1 and hence (—1)?~D/2 = _1, je., —11is
a quadratic non-residue modulo p.

() If p =4k + 1, then 251 = 2k and hence (—)?~D/2 =1, ie, 1 is a
quadratic residue modulo p. O

Corollary 1.7.

o If p is a prime of the form 4k — 1, then a is a quadratic residue modulo p if
and only if p — a is a quadratic non-residue modulo p.

o If p is a prime of the form 4k + 1, then a is a quadratic residue modulo p if
and only if p — a is a quadratic residue modulo p.

Corollary 1.8. If p =2k + 1 is a prime, then there are k quadratic residues
modulo p and k quadratic non-residues modulo p.

The following interesting properties of the set of quadratic residues and the
set of quadratic non-residues will be very useful.

Theorem 1.13. Let p be a prime of the form 4k — 1, r an arbitrary quadratic
residue modulo p, n an arbitrary quadratic non-residue modulo p. Each one of
the sets r + Np and n + RP consists of 0, k — 1 quadratic residues, and k — 1
quadratic non-residues.
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Proof. Let p =4k — 1 and consider the set of expressions H p (not the result
of the expression) of the form r; +n;, 1 <i, j < ”T_l, where r; is a quadratic
residue and n; is a quadratic non-residue. By Corollary 1.7(1), the value 0 is
represented pT_l times in #, since r € R, if and only if p — r € N, when
p =3 (mod4).

We show that all nonzero residues modulo p are represented equally often
in ‘H,. Every representation of 1, 1 =r +n,r € Rp, n € N, corresponds to
a unique representation of g, g =’ + n’, where r’ = gr, n’ = gn, when g is
a quadratic residue and r’ = gn, n’ = gr, when g is a quadratic non-residue.
Conversely, every representation of g, g =r + n, corresponds to a unique rep-
resentation of 1, 1 =7 +n’, where v’ = g~ 'r, n’ = g~ 'n, when g is a quadratic
residue, and ' = g~ 'n, ' = g~'r, when g is a quadratic non-residue. Thus
in H , there exists a one-to-one correspondence between the representation of 1
and the representations of any other nonzero residue modulo p. Hence, H,, con-
tains as many representations of quadratic residues and quadratic non-residues.

Suppose now that the set 1 + A/, contains more (fewer) quadratic residues
than quadratic non-residues. Let r € R, be any quadratic residue modulo p.
Then, the set r + N, =r(1 + r_l/\/p) =r(1 +N,) would also contain more
(fewer, respectively) quadratic residues than quadratic non-residues. Conse-
quently,

Hpy=J r+Np)
reR,

would contain more (fewer, respectively) quadratic residues than quadratic non-
residues, a contradiction. It follows that the set 1 + A/, p contains as many
quadratic residues as quadratic non-residues; the sets r + N, =r(1 +N,,) and
n+ R, =n(l+N,) also have this property, where r € R, and n € N/,. O

The proof of the next theorem is very similar to the proof of Theorem 1.13.

Theorem 1.14. Let p be a prime of the form 4k + 1, r an arbitrary quadratic
residue, n an arbitrary quadratic non-residue. The sets r + N, and n + R,
consist of k quadratic residues and k quadratic non-residues.

1.2 Codes, graphs, and sequences

This section is devoted to the two concepts that are the main goals of this book,
sequences and graphs, as suggested by the title of the book. We start with an-
other concept, codes that are associated with sequences in information theory.
Some concepts on codes will be used in the exposition of the book and others
are given for completeness. The same will apply also to concepts on graphs.

An [n, k], (linear) code is a linear subspace of dimension k over 7, i.e.,
a linear subspace, whose dimension is k, from the set of all words (vectors) of
length n over IF,.
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An [n, k], code C can be represented by some matrices. The first one is a
generator matrix G, which is a k x n matrix over IF,, whose rows form a basis
for the code, i.e., the linear span of the rows of G is C. The second matrix is
a parity-check matrix H, which is an (n — k) x n matrix over F,, whose rows
form a basis for the dual subspace C- of the code C. The dimension r =n — k
of this dual subspace is called the redundancy of the code.

A generator matrix of an [n, k], code is in standard form if its first k
columns form an identity matrix of order %, i.e.,

G=I[II|Al],
where I is the k x k identity matrix. The related parity-check matrix is given by
H=[ —A" | L ].
It is readily verified that for these two matrices, we have
G-H"=0

and
H-G"=0,

where 0 is an all-zeros matrix of the appropriate size and A" is the transpose of
the matrix A (and the same notation when 0 or A are vectors).
The following proposition is a simple observation.

Proposition 1. The parity-check matrix H of an [n, k], code C is a generator
matrix of an [n, n — k|, code.

If G is the generator matrix of an [, k], code C, then the [n, n — k], code ct
whose generator matrix is the parity-check matrix H of C is called the dual
code of C. A code C is called self-dual if C = C*. These definitions imply the
following.

Lemma 1.10. For an [n, k], self-dual code we have that n = 2k.

There is another representation of the parity-check matrix. Let o be a primi-
tive elementin IF;r and let H = [hy, h2, ..., h,] be anr x n parity check-matrix
for the code C, where all the £;s are nonzero column vectors. Assume that & ; is
the g-ary representation of the element '/, 1 < j <n, in F;r. The parity-check
matrix can be written as H = [¢'!, @'2, ..., a']. Finally, note that the word
x = (x1,%2, ..., %) € Fy is a codeword in C if and only if H - xT=0.

We call k coordinates in a code C, over I, systematic if, in the projection
on these k coordinates of C, each of the ¢ vectors of length k over I, appears
exactly once. Clearly, in an [n, k], code whose generator matrix is in standard
form, the first k coordinates are systematic. By definition, one can easily verify
the following lemma.
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Lemma 1.11. k coordinates in the generator matrix G of an [n, k], code C
are systematic coordinates if and only if the related k vector columns of G are
linearly independent.

Definition 1.4. Let C be a linear code over IF, with an r x n parity-check ma-
trix H. For any word x = (x1,x2,...,X,) € FZ, the syndrome of x, S(x), is
defined by

S(x)=H -x".

The syndromes are column vectors of length r, the redundancy of the code.
Hence, there are ¢" possible distinct syndromes. The first important property
related to the syndromes is associated with the syndromes of the codewords.
The value of these syndromes can be verified from the definition of the parity-
check matrix of a code C.

Lemma 1.12. The syndrome of a codeword in a linear code is equal to the
all-zeros vector.

Linear codes are used to transmit information on a noisy channel. The syn-
dromes are very useful in correcting errors that occurred during this transmis-
sion.

The Hamming distance (or distance in short) between two given words
x=(x1,%2,...,%,) and y = (y1, ¥2, ..., yn), over F,, d(x, y), is the number
of coordinates in which x and y differ. In other words

dxe,y) = i = xi # yill.

The minimum distance of a code C, is the smallest integer §, such that there
exist two distinct codewords x, y € C for which d(x, y) = .

Definition 1.5. An [n, k, d], code is an [n, k], code whose minimum Hamming
distance is at least d. When g = 2, we can write an [n, k, d] code.

The weight of a word x, denoted by wt(x), is the number of nonzero entries
in x. Since the codewords of an [n, k, d], code form a linear subspace we have
the following result.

Lemma 1.13. The minimum distance of an [n, k,d], code C is the minimum
weight of its nonzero codewords.

Corollary 1.9. The minimum distance d of an [n, k, d], code C is the minimum
number of linearly dependent columns of its parity-check matrix H.

Proof. The claim follows immediately from the fact that ¢ € C if and only if
H - ¢ = 0 and hence the minimum number of linearly dependent columns of H
is the minimum weight of a nonzero codeword in C. O



Introduction Chapter | 1 23

The [n, k, d], code C has a generator matrix G and a parity-check matrix H.
The code C is used to transmit information words of length k over IF;, via a
channel that accepts words of length n. An information word z = (z1, 22, - - -, k)
is transformed into a codeword ¢ = (¢, ¢2, ..., ¢,) of length n, where c =z - G.
Since c is generated as a linear combination of rows from G and the rows of H
span a subspace orthogonal to the linear span of the rows of G, it follows, as also
implied by Lemma 1.12, that S(¢) = H - ¢ = 0. Assume that in the channel, an
error € € ]FZ has occurred in the codeword ¢ and instead of the codeword c, the
word ¢ + ¢ was received. The syndrome of ¢ + ¢ is

Sc+e)=H -(c+e)"=H - "+ H -e"=H- .

This implies that if it is assumed that only an error from a set £ can occur and
each of the elements in the set £ has a different syndrome, then using the value
of the syndrome of the received word we have the syndrome of the error. This
syndrome should be unique to this error and hence we can find the exact error
and recover the codeword that was transmitted over the channel. This implies
the following observation.

Corollary 1.10. A linear code can correct e errors if and only if all the syn-
dromes of the distinct words with weight at most e are distinct.

The next basic concepts in the book are associated with graphs. Graph theory
is a major area in mathematics, computer science, and electrical engineering, as
well as other disciplines. Although most concepts should be well known to the
reader we define most of them, but we will assume throughout the book that
some other basic facts are well known to the reader. For this reason, we rarely
present theorems on graphs.

A graph G = (V, E) has a set of vertices V and a set of edges E. Our first
assumption is that all our graphs are finite, i.e., the number of vertices is finite
and the number of edges is finite. There are two types of graphs, undirected and
directed.

For an undirected graph G = (V, E), the set V contains the vertices of the
graph and the set E contains the edges of the graph, where an edge e = {u, v} is
an unordered pair of two vertices u, v € V. Such two vertices are called adjacent
unless # = v. We also say that u is incident to e¢ and v is incident to e. An
edge e = {u, u}, i.e., an edge from a vertex to itself is called a self-loop. It is
a self-loop edge e and also a self-loop vertex u. The degree of a vertex v is
the number of edges in which v participates, i.e., the number of edges to which
v is incident. A self-loop is considered twice for the degree of its vertex. Two
edges between the same two vertices are called parallel edges. A path in G
is a sequence of edges eje; - - - eg, where ¢; = {v;_1,v;}, 1 <i <, is an edge
in E. If the graph has no parallel edges, then such a path can be described by
the sequence of vertices vgvy - - - vg. The length ¢ of the path is the number of
edges in the path. If v; # v; for 0 <i < j < ¢, we say that the path is simple.
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The path can be described also by its set of consecutive vertices vovy --- vg.
If vy = vg, then the path is called a cycle. If the cycle contains k edges (not
necessarily distinct), then it will be also called a k-cycle. It should be noted that
a cycle can be described by starting with any vertex or edge on it. This implies
that there is no starting position and no ending position for the cycle. A simple
cycle is a cycle with no repeated vertices (when described as a path, the first and
the last vertex, which are the same, will not be considered as repeated vertices).
A self-loop is considered to be a simple cycle. A factor in an undirected graph is
a set of vertex-disjoint (simple) cycles that contain all the vertices of the graph.
A simple graph is a graph with no parallel edges. An undirected graph is called
a connected graph if there exists a path between any two distinct vertices of
the graph. The distance, dg (u, v) (d(u, v) if the graph is understood from the
context) between two vertices u, v € V is the length of the shortest path between
u and v.

A directed graph (digraph) G = (V, E) consists of a set V of vertices and a
set E of directed edges, i.e., e = (u, v) € E implies that there is a directed edge
from the vertex u € V to the vertex v € V. This edge is an out-edge (or outgoing
edge) for u and an in-edge (or incoming edge) for v. The edge e = (u, v) is also
denoted by u — v. The vertex u is called the start-point of the edge e and the
vertex v is the end-point of e. The two vertices u# and v that form the edge e are
called adjacent, unless u = v. The in-degree of a vertex v € V, is the number
of edges whose end-point is v. The out-degree of a vertex v € V, is the number
of edges whose starting-point is v. A directed path in G is a sequence of edges
ejer---ey, where e; = (v;_1, v;) is an edge in E. If the graph has no parallel
edges, then such a path can be described by the sequence of vertices vov - - - vg.
The length € of the path is the number of edges in the path. If v; # v; for
0 <i < j < £ we say that the path is simple. The path can be described also by
its set of consecutive vertices. If vy = v, then the path is called a directed cycle.
The first vertex in a cycle is not defined as the cycle can start in any vertex of
the cycle. The distance, dg(u, v) (d(u, v) if the graph is understood from the
context) from a vertex u to a vertex v, where u, v € V, in a directed graph, is
the length of the shortest directed path from u to v. A cycle with no repeated
vertices is called simple and a cycle with no repeated edges is called a tour.

A closed path is a cycle in which the first vertex is determined. If the cycle
is not simple and it is not several repetitions of the same simple cycle, then
there exists a vertex v € V (not necessarily unique) that can be chosen as the
first vertex in the associated closed path and defines a few different closed paths
from the same cycle.

Example 1.1. The cycle
Ul —> U —> U3 —> U4 —> U] —> UQ —> U3 —> U4 —> U],
where the u;s are distinct, is a double repetition of the simple cycle

Uy —> U) —> U3 —> Ugq4 —> U].
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The cycle
VUl — V) = V3 —> V4 —> V5 —> V) —> Vg —> V7 — V],

where the v;s are distinct, is a closed path that can start with the vertex v, in two
different ways as follows:

V) —> VU3 —> V4 —> V5 —> V) —> Vg —> V7] —> VU] —> VU2

and
V) —> Vg —> V7 —> VU] —> V) —> V3 —> V4 —> V5 —> V2.
]

The edge e = (u, u) is a self-loop edge e and a self-loop vertex u. Two edges
e and ey are called parallel edges if their start-points are the same and their
end-points, are the same. Two edges (u, v) and (v, u) are called anti-parallel
edges. The underline graph G' = (V, E’) of a directed graph G = (V, E) is an
undirected graph with the same vertices as in G, and the same edges, but with
no direction to the edges, i.e., if (u, v) € E, then {u, v} € E’. Two anti-parallel
edges (or parallel edges) in the directed graph will become two parallel edges in
the underline graph. A directed graph is connected if its underline graph is con-
nected. A directed graph is called strongly connected if there exists a directed
path from u to v for every two distinct vertices # and v of G. An independent
set in a graph is a set of vertices for which no two are adjacent (in the underline
graph if the graph is directed).

An undirected tree is an undirected connected graph with no simple cy-
cles. A directed tree is a directed graph with one vertex, called the root whose
in-degree is zero and there is a unique directed path from the root to each vertex
in the graph. A leaf in an undirected tree is a vertex whose degree is one. A leaf
in a directed tree is a vertex whose out-degree is zero. A binary directed tree is
a directed tree in which each vertex that is not a leaf has out-degree two. A bal-
anced binary directed tree is a binary directed tree in which all the paths from
the root to the leaves have the same length.

Given a graph G = (V, E), a subgraph G' = (V', E’) of G, is a graph
for which V/ C V and E’ C E. A spanning tree T = (V', E’) of a graph
G = (V, E) is a subgraph of G, for which V' =V and T is a tree.

An undirected bipartite graph G = (V, E) is a graph whose vertices can
be partitioned into two parts A and B, where V=AU B, AN B =g, and
for each edge {u,v} € E we have that either u € A and v € B or v € A and
u € B. A directed bipartite graph G = (V, E) is a graph whose vertices can be
partitioned into two parts A and B, where V=AU B, AN B = @, and for each
edge (u,v) € E we have thatu € A and v € B.

A matching in a graph G = (V, E) is a set of disjoint edges (with no com-
mon vertices and no self-loops). A perfect matching in a graph G = (V, E) isa
matching for which each vertex of V' is contained in one of the edges.
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An undirected complete graph on n vertices, denoted by K, is a graph
G = (V, E) with n vertices and (g) edges, where E = {{u, v} : u,veV, u#v}.
A directed complete graph on n vertices, K is a directed graph G = (V, E)
with n vertices and n(n — 1) edges, where E = {(u,v) : u,veV, u#v}.

A connected component in an undirected graph G = (V, E) is a connected
subgraph G’ = (V', E) of G such that if v € V, v ¢ V’, then there is no path
between v to some vertex of V.

Two graphs G| = (V1, E1) and G = (V,, E») are isomorphic if there exists
a bijective function f : Vi — V,, such that for an undirected graph, {u, v} € E;
if and only if {f(«), f(v)} € E> and for a directed graphs, (u,v) € E if and
only if (f (), f(v)) € Ex.

For a digraph G = (V, E), the line graph L(G) = (V', E’), is a digraph
defined as follows. The set of vertices V' is equal to the set of edges E of G,
i.e., V' = E. The set of edges E’ of L(G) is defined by

E' & {(e1,e2) : e1 = (v1,1) € E, e2 = (v2,v3) € E},

i.e., an edge in E’ is a directed path of length two in G. The concept of the line
graph is very important and it can be defined similarly to undirected graphs, but
it will be used only for directed graphs in the book.

There are several connections between graphs and matrices, some of which
will be discussed in our exposition. The adjacency matrix A of an undirected
graph G = (V, E) in a |V| x |V| symmetric matrix, whose rows and columns
are indexed by the vertices of V, and A(u, v) = k if and only there are exactly
k edges between u and v. For a directed graph G = (V, E) the adjacency matrix
A is a |V| x |V| binary matrix, whose rows and columns are indexed by the
vertices of V, and A(u, v) = k if and only there are exactly k directed edges
from u to v. The following important property can be easily verified by this
definition.

Lemma 1.14. If A is the adjacency matrix of a directed graph G = (V, E), then
A(u,v) =k if and only if there are exactly k distinct directed paths of length ¢
from u to v.

An example of an adjacency matrix will be given in Example 1.6. While the
adjacency matrix describes which vertices are adjacent, the second matrix, the
incidence matrix indicates which vertices are incident to each edge. In other
words, for an undirected graph G = (V, E), without self-loops the incidence
matrix is a binary |V| x | E| matrix whose rows are indexed by the vertices of V
and its columns are indexed by the edges of E. A(u,e) =1, where u € V and
e € E if and only if e = {u, v} for some v € V. In this case also A(v, ¢) = 1. For
a directed graph, we omit the definition as it will not be used in the book.

A factor in a directed graph G is a subgraph of G that contains a set of
vertex-disjoint simple cycles that contain all the vertices of the graph. The factor
can be described by its set of edges since each vertex in a cycle has in-degree
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one and out-degree one. Factors, Hamiltonian cycles, and Eulerian cycles, in a
graph will play an important role throughout the book.

A Hamiltonian path in a graph G is a path that visits each vertex of G
exactly once. A Hamiltonian cycle in a graph G is a cycle that visits each vertex
of G exactly once. An Eulerian path in a graph G is a path that visits each edge
of G exactly once. An Eulerian cycle in a graph G is a cycle that visits each
edge of G exactly once.

Theorem 1.15. A strongly connected directed graph G = (V, E) has an Eule-
rian cycle if and only if for each v € V, the in-degree of v equals the out-degree

of v.

Proof. Let G = (V, E) be a strongly connected directed graph.

Assume that at one vertex v € V, the in-degree is not equal to the out-degree.
In any tour C going through the vertices of V, the number of in-edges of v on the
tour equals the number of out-edges of v in the tour C. Thus C cannot contain
all the edges of G and hence it is not an Eulerian cycle.

Assume now that for each vertex of V, the in-degree equals the out-degree.
Let C be any tour of the largest length in G. If C is not an Eulerian cycle, then,
since G 1is strongly connected, there exists a vertex v € V that is also on the
tour C for which not all the out-edges of v are on C. Let C be written as

V> UL > UY > —> Uy —> V.

Since not all the out-edges of v are on C, it follows that we can enlarge the
path C from the last written appearance of v until it ends in v again (this is
because for each in-edge to a vertex u in V, which is not on C, there exists also
an out-edge from u, not on C). The outcome is a new tour C’ larger than C. This
contradicts our assumption that C is a tour of the largest length.

Therefore G has an Eulerian cycle if and only if for each v € V, the in-degree
of v equals the out-degree of v. O

Note that the proof of Theorem 1.15 can be used for an efficient algorithm
to find an Eulerian cycle in any strongly connected directed graph in which for
each vertex the in-degree equals the out-degree.

Finally, we are going to present some basic concepts for sequences that are
the second main topic of this book. Usually, the definitions are given in a general
way to fit into binary sequences and non-binary sequences, but some of them are
suitable only for binary sequences.

Definition 1.6. A sequence S over an alphabet ¥ of size o is an ordered list of
symbols from X.

There are many types of sequences and hence there are also various nota-
tions for sequences. There are finite sequences and there are infinite sequences.
There are cyclic sequences and there are acyclic sequences. An infinite sequence
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can be denoted by apajas - - -, or {apajaz - --} or just {ax}. A sequence with k
consecutive as, where « is an alphabet letter, will be denoted by X. The start-
ing point (index of the first element) of the sequence does not have to be zero.
We will not consider sequences that do not have a starting point. In a cyclic
sequence S = [sos] - --sy—1] the first symbol sg follows the last symbol s,
and hence each symbol can be taken as the starting point. Nevertheless, also
in cyclic sequences, there are cases when the starting point is important. This
is very similar to the distinction between cycles and closed paths. Two cyclic
sequences S7 and S for which §; is a cyclic shift of S, but do not have the
same starting point, are said to be equivalent and will be denoted by S >~ Sj.
The length of the sequence is the number of symbols written in the sequence.
Hence, the length of the sequence S = [sosy - - - s,—1] is n. The period 7 (S) of
the cyclic sequence S = [sos1 - --$,—1] or an infinite sequence S = sgps152 - -,
is the least positive integer 7 such that s; = s;;, for each i > 0 if the sequence
is infinite, and for each 0 <i <n — 1, where indices are taken modulo »n, when
the sequence is cyclic. For a cyclic sequence S = [sos; - - - S,—1] any integer m,
1 <m <n, such that 7 divides n and s; = s;4; for0 <i <n — 1 — 7 is a pe-
riod of S, but the period is the smallest such integer. The same applies to an
infinite sequence. To avoid confusion, sometimes we refer to the period as the
least period. If the least period of a cyclic sequence is equal to its length, then
we say that the sequence is not periodic (aperiodic). The weight of a sequence
(cyclic or acyclic, periodic or aperiodic) is the number of nonzero entries in the

sequence.

For two sequences (finite or infinite) of the same length A = ag, a1, az, a3, . ..
and B = by, b1, b>, b3, ..., over a group, aring, or a field, we define the addition
A+ B by

A+ B2ay+bo,a; +bi,a0+br,a3+b3,... ,

where a; + b; is the addition in the group, the ring, or the field, respectively.

Usually, when addition or subtraction is done, it would be understood from
the context if it is done in the finite group Zj,, the finite field F,, or in the ring
of integers Z. When binary addition and addition over the integers are mixed,
@ will be used for the binary addition.

Example 1.2. The infinite sequence S = sps1s2 - - - defined by sp = sx_¢ with
initial conditions sg = 52 = s3 = 55 = 0 and s; = s4 = 1 can be written as

010010010010 - - .

The period of S is 3, but it also has periods, 6, 9, and similarly each positive
multiple of 3.
The cyclic sequence

[010010010]
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is of length 9, but its period is 3. It also has periods 6 and 9.
The two sequences

[0011101111001] and [1011110010011]
are equivalent sequences as one is a cyclic shift of the other, i.e.,
[0011101111001] ~[1011110010011].
These two sequences can be added to obtain a new sequence, i.e.,
[0011101111001]+[1011110010011] = [1000011101010].

For an acyclic sequence A = (ay, as, ..., a,), there is always a starting sym-
bol and a last symbol. The period 7 (A) (or just 7) of the sequence A (will be
rarely used in our context) is the smallest positive integer 7 such that @; = a4+
foreach 1 <i <n — . If no such 7 exists, then the period is defined to be n.

A cyclic sequence is said to be of full-order if the period of the sequence
is equal to the length of the sequence. If it is not of a full-order, then it is a
degenerated sequence.

Example 1.3. For the acyclic sequence
S =(10010010010011)

of length 14, the period is 13.
The acyclic sequence

S = (1100101000100)

of length 13 has period 13.
For the acyclic sequence

S =(1001001001001)

of length 13, the period is 3. It also has periods 6, 9, and 12.
For the cyclic sequence

S =1[1001001001001]

of length 13, the period is 13, i.e., it is aperiodic.
The acyclic sequence

S = (100100100100)

of length 12 has period 3. It also has periods 6 and 9. ]
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Usually, words are considered to be acyclic sequences. Sequences that rep-
resent cycles in a graph, which will be considered in the next section, are
represented by cyclic sequences. However, while sequences are represented by
their consecutive digits, the cycles can be also represented by their consecutive
vertices. Note the difference in brackets between cyclic sequences and acyclic
sequences. Without brackets, the type of the sequence (cyclic or acyclic) should
be understood from the context. Note that also for acyclic sequences we can
define cyclic shifts. This will be used, for example, in enumerations performed
in Chapter 3.

The characteristic vector of a subset {s1, s>, ..., s} taken from an n-set,
say Z is a binary vector (word) of length n, where its jth entry is one if and
only if j € {s1, $2, ..., 8k}.

Example 1.4. Let S ={0,3,5,6,7,9, 12} be a set taken from Z3 that has the

characteristic vector (1001011101001). |
For a binary sequence S = s, 52, ..., s, the complement sequence S is de-
fined by
SE51,5, ..., 5,

where x is the binary complement of x, i.e., x = 1 — x. The reverse sequence S R
of a sequence S = s1, 52, ..., s, is defined by

R A
St =s,,...,8,5].

A cyclic binary sequence S is called a complement-reverse (or a CR sequence)
if § = SR, which is equivalent to S¥ = §.

Finally, a cyclic sequence S is called a self-dual sequence if S ~ S. It will be
proved later that a self-dual sequence S can be written as § = [X X]. Self-dual
sequences will have an important role throughout the book.

Now, we will define a few operators for sequences that will be used
throughout the book. The first important operator that will be used through-
out our discussion is the shift operator E. When applied on a cyclic sequence
[sos1 - - - sp—1] itis defined by Es; = s;41, where indices are taken modulo n, i.e.,

E[S(),S], '--:Sn—l] = [SI,SZ, e 7sn—1,50]-

The sequence remains the same but in another cyclic shift, i.e., an equivalent
sequence is obtained. If the operator is applied on an acyclic sequence (word)
(s1,82,...,8,), then

E(s13S27"'7sn):(SZ?"‘?anSI)'

A second operator is the derivative operator D. We distinguish now between
cyclic sequences and acyclic sequences. For a cyclic sequence [sosy - - -s,—1] it
is defined by

D[so, 51, ..., Sn—1]=[51 — 50,52 — S1, "+, Su—1 — Sp—2, 50 — Su—11,
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where indices are taken modulo n, i.e., D = E — 1, and 1 is the identity operator.
If the sequence is binary, then also D = E — 1 = E + 1. If the operator is applied
on an acyclic sequence (word) (s, 52, ..., ), then

D(s1,52,...,8:) = (52 — 51,83 — 52, ..., 8 — Su—1).

Two more related operators are the prefix and the suffix of a sequence. For a
sequence S = (51,52, ..., Sp—1, Sy ), the prefix of S, LS, is defined by

L(s1,52, -, 81—1,81) = (51,82, - .-, Sp—1)
and the suffix of S, RS, is defined by
R(s1, 82, .oy Sn—1,82) = (82, ..., Sp—1, Sn)-
Clearly, by the definitions, for an acyclic sequence S, we have that
DS=RS-LS=(R-L)S.

It is also important to note that the operators D, E, L, and R, are linear operators,
ie., D(S1 + $2) =DS; + DS, and the same applies to the other three operators.
Each operator can be applied several times, e.g., E'S = E(E'~'S), for i > 1.
Finally, the operator E can be used as a parameter in a polynomial as follows.

Example 1.5. If f(x) = x> + x + 1 is a polynomial and S = [0110110001],
then

fE)S=E+E+1DS=ES+ES+S

=[0110001011] + [1101100010] -+ [0110110001] = [1101011000].
]

1.3 The de Bruijn graph and feedback shift registers

The graph Gs., = (Von. Eo,n), is called the de Bruijn graph of order n
over an alphabet ¥ of size o, usually taken as {0,1,...,0 — 1}. It is a di-
rected graph with 0" vertices in Vj ,, associated by the 0" words of length n
over ¥. The graph has o”*! edges in E, ,, associated by the " ! words of

length n + 1 over X. From the vertex x = (xg, x1,...,X,—1), Where x; € X,
0 <i <n — 1, there is a directed edge to each one of the o vertices of the form
y=(x1,...,Xn—1,Xx,), Where x, € . The associated edge is represented by the

(n + 1)-tuple (xg, X1, ..., Xn—1,Xn)-

A path of length ¢ in G, , can be represented by its consecutive vertices
or consecutive edges as in a d