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Preface

The de Bruijn graph is credited to the Dutch mathematician Nicolaas Govert de
Bruijn who defined this graph in 1946 with the motivation to count the number
of binary cyclic sequences of length 2n in which each binary n-tuple is contained
exactly once in a window of length n. These sequences were also called by the
name of de Bruijn. Although it was defined for mathematical purposes, the graph
has been used throughout the years for many applications. It was first heavily
used to develop the theory of shift-register sequences used for many practical
applications, particularly for the NASA space program. These sequences were
also used in other unrelated areas such as cryptology, VLSI testing, and wire-
less communication. The graph itself was also used for new applications. When
parallel computation began, the graph was an inspiration for networks such as
the shuffle-exchange network, the omega network, and other related networks.
The de Bruijn sequences and shift-register sequences were generalized for two-
dimensional arrays and these arrays were applied for pattern recognition and
computer vision, and related arrays were used also as self-locating patterns.
In the late 1980s the human genome project attracted much research and the
de Bruijn graph was also used in this project for the DNA sequencing of the
genome assembly. The method used, called the de Bruijn graph method, is based
on paths along the edges of the graph. Finally, at the beginning of the 21st cen-
tury DNA storage was developed and some of the related theories also made use
of the de Bruijn graph and its sequences.

In parallel with the research on the graph, the theory of sequences was de-
veloped rapidly, starting with the theory of shift-register sequences. This theory
is well documented in a book by Solomon W. Golomb who developed the the-
ory of shift-register sequences. His book on these sequences, “Shift-Register
Sequences”, is the “bible” of this area. Other types of sequences were devel-
oped to supply the demands for sequences with special properties to areas like
cryptography, sequence design for radar and sonar, constrained sequences, DNA
storage sequences, etc. This book’s focus and scope are the de Bruijn graph and
its sequences, their generalizations, and their applications. However, it will also
cover some of the topics associated with the graph and its sequences, and their
generalizations that were suggested. Although the book is quite thick, it will be
impossible to cover everything. On the other hand, we tried to be as comprehen-
sive as possible.

xi



xii Preface

The de Bruijn graph and digital sequences were used in many disciplines
as noted above and, in many cases, the different disciplines have not inter-
acted. These disciplines include combinatorics, graph theory, communication,
data storage, computer science, pattern recognition, computer vision, bioinfor-
matics, biology, and more. One of the main goals of this book is to make these
interactions and to bring to each discipline the knowledge, the methods, and the
applications that were discovered and used in the other disciplines. We will not
be able to cover everything, but we intend to present a few different angles and
directions. The book can be categorized as an algebraic and combinatorial work
on sequences and the de Bruijn graph, although there are also some algorithmic
sections in the book. Moreover, this book is the first attempt to put together dig-
ital sequences, the de Bruijn graph, and their combination in the center of the
exposition, spreading over the various disciplines. These disciplines made use of
these concepts and also various mathematical concepts that arise from the graph
and its sequences. We will also try to bring to the attention of all researchers,
the diverse amount of literature on the de Bruijn graph, its sequences, properties,
applications, and the generalizations of both the graph and its sequences.

The book is a monograph that can be used by researchers in various research
fields, but it can be also used as a textbook for a combined course for gradu-
ate and undergraduate students. The book contains many open problems that
can motivate research and inspire the theses of graduate students. Most of the
claims in the book are proved in the text and as such the book is self-contained,
but the reader must have certain basic knowledge in algebra and combinatorics
to understand the book. Similarly, from time to time throughout the book, we
will use also well-known concepts that need no introduction or definition. Ref-
erences for each chapter are presented only in the last section, which is always
titled “Notes”. In this section, the credit of the results in the section are given
to the appropriate references. The section also contains additional results, some
of which are proved in the section and some of which are presented with no
proof. The number of references on de Bruijn sequences, the de Bruijn graph,
sequences, and related topics is enormous and many such references were left
out. We apologize to those authors whose important manuscripts were left out.
Although most of the book is based on existing research work done over the
years, some parts are novel. Some of the results do not appear elsewhere and for
some results, new original proofs are provided.

Each chapter of the book can be used in a course as a basis for two to four
hours of a lecture or two, respectively. While writing the book, I have used the
book for a course that I developed in parallel and some parts of the book are
a consequence of my experience from this course. To teach the whole material
of each chapter at least four hours are required and some chapters require at
least six hours. The course title can be the same as the title of the book “Se-
quences and the de Bruijn Graph: Properties, Constructions, and Applications”.
The course can be more oriented towards sequences and it can be titled “Digital
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Sequences and the de Bruijn Graph” or more oriented toward graph theory and
it can be titled “The de Bruijn Graph and its Applications”.

The material in this book can be partitioned in a few different ways and
I will describe one of these ways. The first part in Chapter 1 is an introduction
to some of the main topics covered in the book including some basic concepts
in algebra, number theory, and combinatorics on the one hand, and a brief out-
line of the various chapters on the other hand. The second part, which starts in
Chapter 2 and ends in Chapter 8, is devoted to the one-dimensional theory of
sequences, including their properties, enumeration, constructions, complexity
measures, classifications, and applications. The third part of the book, given in
Chapters 9 and 10, is devoted to the generalization of the one-dimensional se-
quences into multi-dimensional arrays and in particular two-dimensional arrays.
The fourth part of the book, which starts in Chapter 11 and ends in Chapter 12,
considers generalizations of de Bruijn graph from the point of view of graph
theory and especially interconnection networks.

The tools that will be used in the book are mainly from algebra and combi-
natorics as mentioned, but there will be also material based on number theory,
some basic graph theory, and some algorithms. Also, coding theory, cryptogra-
phy, and games will be used, applied, and developed in the process. Out of all
the topics in the book, there is comprehensive coverage of the following topics:

1. The linear and nonlinear theory of shift registers and their sequences.
2. Constructions and properties of de Bruijn sequences.
3. Linear complexity of sequences whose length and alphabet size are powers

of the same prime.
4. Two-dimensional de Bruijn sequences and arrays with distinct differences.
5. Generalizations and applications for the de Bruijn graph and its sequences.
6. de Bruijn graph type of interconnection networks – constructions, routing,

and layouts.
7. Graphs with a unique path property and their associated networks.

Some large parts of this book are based on my own research work and re-
search done by my colleagues. My Ph.D. advisor, Abraham Lempel, at the
Technion, introduced me to the de Bruijn graph and its sequences. This led
to my Ph.D. titled “Sequences with special properties” that was devoted to de
Bruijn sequences and the shuffle-exchange network. I am grateful to him for his
guidance and support throughout the years. My post-doc advisor, Solomon W.
Golomb, at the University of Southern California (USC), broadened my knowl-
edge and my interest in all the related topics. I have learned so much from him on
these topics and how to make use of every mathematical “gem” either for a prac-
tical use or just to develop an interesting theory. My work on two-dimensional
de Bruijn arrays and arrays with distinct differences started during my time at
USC. At USC, I was also introduced to graphs with a unique path property and
their connections to interconnection networks. Finally, I spent a considerable
time from 1994 at Royal Holloway University of London, where I worked on
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linear complexity of sequences, single-track Gray codes, and applications of
two-dimensional arrays with distinct differences.

Some of my colleagues and students worked with me on some of the topics
mentioned in this book. I should thank all of them and they are listed alphabeti-
cally as follows: Israel Bar-David, Simon R. Blackburn, Alfred M. Bruckstein,
Yeow Meng Chee, Johan Christnata, Raja Giryes, David Goldfeld, Han Mao
Kiah, Sagi Marcovich, Keith M. Martin, Chris J. Mitchell, Kenneth G. Pater-
son, Maura B. Paterson, Moshe Schwartz, Herbert Taylor, Alexander Vardy, and
Eitan Yaakobi.

I should give special thanks to Moshe Schwartz and Eitan Yaakobi who have
given important criticism on some chapters of the first draft that helped me to
improve the draft considerably. Last, but not least, I am indebted to my Ph.D.
student Daniella Bar-Lev who read almost the whole text and her endless re-
marks, comments, and suggestions helped me to improve all the chapters of this
book and to remove many hidden errors.

Tuvi Etzion

September, 2023



Chapter 1

Introduction
Preliminaries, de Bruijn graph, shift registers

The de Bruijn graph Gn was defined in 1946 by Nicolaas Govert de Bruijn.
His purpose in defining the graph was to find the number of binary cyclic se-
quences of length 2n in which each binary n-tuple is contained exactly once
as a window of length n in the sequence. The graph was defined in parallel by
Irving John Good to generate the same sequences and hence it is sometimes
called the de Bruijn–Good graph. It was also discovered later by de Bruijn that
Flye-Sainte Marie found the number of these sequences 50 years earlier before
his discovery. Later, de Bruijn and Aardenne-Ehrenfest generalized these results
and defined the de Bruijn graph Gσ,n over an alphabet � whose size is σ . It was
also mentioned by Good that his definition of the graph can be generalized for
any alphabet.

During the years since their introduction, both the graph and its sequences
were subject to extensive research. In the beginning, the graph and its sequences,
which include many families of sequences and not only de Bruijn sequences,
were mainly used for their combinatorial analysis and applications based on
feedback shift-registers theory. These shift registers and their associated se-
quences were used in the space program of NASA. Later, more applications
for the graph and its sequences were found. Starting in the 1970s, the graph
was used and also inspired research on parallel computing with interconnection
networks. This research also motivated researchers to find the embedding of the
graph for different purposes. The human genome project, which was started to-
wards the end of the 1980s, also used paths of the de Bruijn graph for DNA
sequencing, which is part of the genome assembly. At the beginning of the 21st
century, research on nonvolatile memories and in particular flash memories and
DNA storage has inspired some new research associated with the graph and its
sequences. Moreover, the sequences of the de Bruijn graph have found appli-
cations in coding theory, VLSI testing, cryptography, pattern recognition, and
also in other disciplines. As the disciplines that used the de Bruijn graph and its
sequences are not always contained in the same research field, the results and
the requirements used in one research area were not always known in the other
research areas. One of the main goals of this book is to bridge this gap.

The goal of this chapter is to provide a short introduction to the main topics
of the book and to present some preliminaries from other mathematical areas

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00007-X
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2 Sequences and the de Bruijn Graph

that will be frequently used to obtain the results for the main subject of this
book. The rest of this chapter is organized as follows.

Concepts in number theory such as primes, congruences, the Euler function,
the Möbius function, quadratic residues, and more, play an important role in the
exposition of various chapters. In Section 1.1 we present a short introduction to
basic number theory. Although we mainly concentrate on binary sequences, the
theory is applied also to non-binary sequences and mainly sequences over finite
fields. Moreover, the binary case is not always a special case of the more general
case. For this, basic concepts of finite fields must be supplied and these will be
also presented at the beginning of Section 1.1.

In Section 1.2 we will give a brief introduction to a few other concepts that
appear throughout the book. Graphs will appear in many chapters, e.g., the de
Bruijn graph and its generalization, UPP graphs, the shuffle-exchange network,
etc. Sequences will appear throughout the book and their basic definitions will
be provided in Section 1.2. Finally, although this is not a book on coding theory,
there are some connections between codes and sequences, and hence the basics
for the theory of error-correcting codes will be given in this section.

In Section 1.3 the major connection between the de Bruijn graph and its
sequences will be discussed. This connection is through shift registers and their
sequences. These concepts will be presented and in particular, some theory of
nonsingular feedback shift registers will be given.

A comprehensive overview of the specific chapters of this book will be given
in Section 1.4.

1.1 Some concepts in finite fields and number theory

This section introduces basic concepts used in the definitions and the techniques
used throughout the book, namely groups, finite fields, and number theory.
Finite fields play a major role in part of the exposition. We will assume the
knowledge only of very basic concepts in finite fields, linear algebra, and num-
ber theory, such as prime numbers, divisibility, functions, equivalence relations,
polynomials, etc., although some will appear in the rather extensive introduction
to number theory. Two concepts, groups and rings, will lead to the definition of
a finite field.

Definition 1.1. A pair (G,◦) is called a group if G is a nonempty set, ◦ is a
binary operation defined on G, and the following three properties are satisfied:

1. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G.
2. There is an identity element e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G.
3. For each a ∈ G there exists an element a−1 ∈ G called the inverse such that

a ◦ a−1 = a−1 ◦ a = e.

For an additive group, the identity element will be denoted by 0.
The group (G,◦) is called an Abelian group (or a commutative group) if

a ◦ b = b ◦ a for all a, b ∈ G.
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The group (G,◦) is a cyclic group if there exists an element a ∈ G, such that

each b ∈ G is equal to ai �
i times︷ ︸︸ ︷

a ◦ a ◦ · · · ◦ a for some integer i. The element a is
called a generator of the group. For b ∈ G, the smallest i > 0 such that bi = e is
called the order of b. It is easy to verify that a is a generator of the group G if
and only if the order of a is the size of the group, i.e., |G|.

A subgroup H of a group G is a subset H of G that is also a group. If
x ∈ G \H , then x ◦H � {x ◦h : h ∈ H } is called a coset of H in G. This coset
is a left coset and similarly, we have a right coset H ◦x for each x ∈ G\H . Also,
e ◦ H = H ◦ e = H , where e is the identity element of G is a coset of H in G.
For an Abelian group, the left cosets and the right cosets coincide. Henceforth,
we assume that all our groups are Abelian. The cosets of H in G define a group
called the quotient group and denoted by G/H . The index of the subgroup H

in a finite group G, denoted by [G : H ] is the number of cosets of H in G. It
is easy to verify that if H is a subgroup of G then the relation R defined on the
elements of G by (a, b) ∈ R if a ◦ b−1 ∈ H , is an equivalence relation.

The following theorem is called Lagrange’s theorem.

Theorem 1.1. If H is a subgroup of a finite group G, then

|G| = [G : H ] · |H | .
Proof. The cosets of H in G are the equivalent classes of the equivalence rela-
tion. Therefore the cosets form a partition of G. Each coset has the same size
and the number of cosets is [G : H ]. Therefore

|G| = [G : H ] · |H | .
When a finite group G of operators are acting on a finite set U , an equiva-

lence relation is defined on U by these operators, where x, y ∈ U are related if
there exists an operator g ∈ G such that y = g(x). The next theorem is known
as Burnside’s lemma.

Theorem 1.2. The number of equivalence classes to which a set U is partitioned
by a finite group G of operators acting on U is

1

|G|
∑
g∈G

Fix(g),

where Fix(g) is the number of points of U that remain fixed by g.

Proof. Let x be an element in the space U and let Gx be the subgroup (called
the stabilizer group) of G defined by the elements of the group that fix the
element x, i.e.,

Gx � {g : g ∈ G, g(x) = x}
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and let G(x) be the coset of x, i.e.,

G(x) � {g(x) : g ∈ G}.
By Lagrange’s theorem, we have that

|G(x)| = [G : Gx] = |G|
|Gx | .

Clearly, by these definitions

∑
g∈G

Fix(g) = |{(g, x) : g ∈ G,x ∈ U, g(x) = x}| =
∑
x∈U

|Gx | =
∑
x∈U

|G|
|G(x)| .

It is also easy to verify that

∑
x∈U

1

|G(x)| =
∑

A∈U/G

∑
x∈A

1

|A| =
∑

A∈U/G

1 = |U/G| ,

where U/G is the quotient set defined by the relation on U , and hence

∑
g∈G

Fix(g) =
∑
x∈U

|G|
|G(x)| = |G|

∑
x∈U

1

|G(x)| = |G| · |U/G| .

Thus

|U/G| = 1

|G|
∑
g∈G

Fix(g),

which completes the proof.

Definition 1.2. A triple (R,+, ·) is called a ring if R is a nonempty set, + and ·
are two binary operations defined on R, and the following four properties are
satisfied:

1. (R,+) is an Abelian group.
2. (a · b) · c = a · (b · c) for all a, b, c ∈R.
3. There is a unique element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈R.
4. a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈R.

The identity element of the group (R,+) is denoted by 0. The ring (R,+, ·)
is called a commutative ring if a · b = b · a for all a, b ∈ R.

Note that (R \ {0}, ·) might not have an inverse for each element of R \ {0},
and hence it is not necessarily a group.

Definition 1.3. A ring (F,+, ·) is called a field if the pair (F \ {0}, ·) is an
Abelian group. The element 0 is the identity element of the Abelian group (F,+)

and 1 is the identity element of the Abelian group (F \ {0}, ·).
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We denote the set G \ {0}, where G is a group (also for a ring or a field) and
0 is the additive identity element, by G∗. The group (F,+) is called the additive
group of the field and the group (F∗, ·) is called the multiplicative group of the
field.

Our main interest is in finite fields, i.e., fields with a finite number of ele-
ments. All such fields with the same number of elements are isomorphic and
they are called Galois fields. The number of elements in such a field is q, where
q is a power of a prime and it is denoted by GF(q) or Fq . The Abelian group
(F∗

q, ·) is a cyclic group.
The ring of integers modulo m will be denoted by Zm. Addition and mul-

tiplication in the ring are performed modulo m. This ring, Zp, is a field if p is
a prime integer. It contains the set of integers {0,1, . . . , p − 1} (or equivalently
the set of p distinct residues modulo p) where addition and multiplication are
performed modulo p.

The finite field Fqk , where q is a power of a prime, has qk elements. The
multiplicative group of Fqk

∗ is a cyclic group with a generator α. The generator α

is a root of some irreducible polynomial

c(x) = xk −
k∑

i=1

cix
k−i , ci ∈ Fq

called a primitive polynomial and each one of its roots α is called a prim-
itive element. The elements of Fqk can be represented as the qk vectors of
length k over Fq , i.e., Fk

q . For two elements αi , αj , represented by the vectors
x = (x1, x2, . . . , xk) ∈ F

k
q and y = (y1, y2, . . . , yk) ∈ F

k
q , respectively, we have

that αi · αj = αi+j , where superscripts are taken modulo qk − 1, and

αi + αj = x + y = (x1 + y1, x2 + y2, . . . , xk + yk) = α� ,

where the addition xi +yi is performed in Fq and α� is represented by the vector
(x1 + y1, x2 + y2, . . . , xk + yk) ∈ F

k
q .

Since α is a root of c(x), it follows that

0 = c(α) = αk −
k∑

i=1

ciα
k−i

and αk = ∑k
i=1 ciα

k−i . The element α0 = 1 is represented by the vector
(00 · · ·001), the element α by the vector (00 · · ·010), and so on, where αk−1

is represented by the vector (10 · · ·000).
The element αk is represented by the vector (c1, c2, . . . , ck). Similarly, if

αi = (a1, a2, . . . , ak), then

αi+1 = (a2, . . . , ak,0) if a1 = 0
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and

αi+1 = (a2, . . . , ak,0) + a1α
k = (a2, . . . , ak,0) + (a1c1, . . . , a1ck) if a1 �= 0.

Recall that an irreducible polynomial c(x) is a primitive polynomial if each
of its roots (which are primitive elements) generates the field, i.e., the qk − 1
powers of any root α, of c(x), are distinct elements as q-ary vectors in this
computation. Since usually, there is a large number of primitive polynomials
(see Theorem 3.4), it follows that the vector representation of the finite field is
not unique. The representation of a finite field and its connection to the main
topic of the book will be discussed in Chapter 2. An example of F16 is given in
Example 2.3.

The representation of the elements of Fqk by the q-ary vectors of length k,
over Fq , induces a bijection between Fqk and F

k
q . This bijection is used to sim-

plify the representation of some structures.
Groups, finite fields, and other concepts associated with graphs and se-

quences make use of many concepts in number theory. In the rest of this section,
we will present some of the basic theory of numbers that is used in this book.

A prime number is a positive integer greater than 1 that is divisible only by
itself and by 1. In other words, p is a prime number if it does not have any
divisor d such that 1 < d < p.

Two integers x and y are said to be congruent modulo a positive integer
m > 1 if y = x + jm for some integer j . This relation between y and x is an
equivalence relation and it will be denoted by y ≡ x (mod m).

Going back to groups, there is a special interest in the group Zm, m ≥ 2
(same notation as the ring Zm), which contains the set {0,1, . . . ,m − 1} of inte-
gers, where the binary operation is addition modulo m. The elements of Zm can
also be considered as the m distinct residues modulo m; Zm will be also used to
denote an alphabet with m elements.

Prime numbers and divisibility of numbers are two of the most basic con-
cepts in number theory. A positive integer d > 1 that divides a positive integer n

is called a factor of n. One of the most basic questions is to factor an integer n

into its prime factors. We start with a basic discussion on prime numbers.

Theorem 1.3. There are infinitely many primes.

Proof. Assume, on the contrary, that there are only t primes, p1,p2, . . . , pt .
Consider the integer

m =
t∏

i=1

pi + 1.

Clearly, m is greater than 1 and not divisible by any of the primes p1,p2, . . . , pt ,
and hence by definition m is a prime, a contradiction. Thus there are infinitely
many primes.
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Finding primes is an important problem since primes have many applica-
tions in diverse areas, some theoretical and some practical. It is also important
for these applications to know how sparse, or dense, is the set of primes. Such
applications will appear later in the book.

Divisors of integers and common divisors have an important role in ob-
taining various results. The greatest common divisor of two positive integers
a and b is the largest integer k, such that k divides a and k divides b. The great-
est common divisor of a and b is denoted by g.c.d.(a,b). Two positive integers a

and b are said to be relatively primes if g.c.d.(a, b) = 1. For s positive integers
m1,m2, . . . ,ms the greatest common divisor denoted by g.c.d.(m1,m2, . . . ,ms)

is the largest integer k that divides each mi , 1 ≤ i ≤ s. The least common multi-
ple of the positive integers m1,m2, . . . ,ms is the smallest possible integer k such
that mi divides k for each i, 1 ≤ i ≤ s. The least common multiple is denoted
by [m1,m2, . . . ,ms]. The following lemma is a straightforward claim inferred
from the definitions.

Lemma 1.1. If a and b are positive integers, then [a, b] = a·b
g.c.d.(a,b)

.

There is a simple algorithm for computing the greatest common divisor k of
two distinct integers a and b.

Euclid’s algorithm:

The inputs to the algorithm are two distinct positive integers a and b and
w.l.o.g. (without loss of generality) assume that b ≤ a.

(E1) Set c1 := b, c2 := a, and i := 1.
(E2) If c2 = mc1, for some m ≥ 1, then k := c1 and stop.
(E3) Let c2 = c1mi + ri , where mi ≥ 1 and 1 ≤ ri < c1.
(E4) Set c2 := c1, c1 := ri , and i := i + 1; go to (E2). �

Theorem 1.4. If a and b are two positive integers, then, when Euclid’s algo-
rithm terminates, the value k obtained in the algorithm is the greatest common
divisor of a and b.

Proof. It is readily verified that throughout the algorithm we have that c2 ≥ c1
and the values of c2 and c1 are always positive and reduced in (E4). Hence, the
algorithm will stop at (E2).

First, note that if in (E2) we have that c2 = mc1, for some m ≥ 1, then
g.c.d.(c1, c2) = c1, which is the value for k assigned in (E2). Moreover, since
throughout the algorithm c1 < c2, it follows that step (E3) is valid.

Now, it is clear that to prove the claim of the theorem it is sufficient to show
that the greatest common divisor of a and b is the same as the greatest common
divisor of c1 and c2 throughout the algorithm. The claim will be proved by
induction on i. The basis is done in (E1), where i = 1, c1 and c2 are assigned
with the values of b and a, respectively. Assume that the claim is true at some
value of i before (E3) is performed. If an integer κ divides c1 and c2, then
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since c2 = c1mi + ri , it follows that κ also divides ri and hence we have that
κ divides c1 and ri . Assume now that an integer τ divides c1 and ri . Again,
since c2 = c1mi + ri , it follows that τ also divides c2. Therefore the greatest
common divisor of c1 and c2 is also the greatest common divisor of c1 and ri .
Since in (E4), c2 and c1 are replaced by c1 and ri , respectively, it follows that
the induction step is proved and hence k in (E2) is the greatest common divisor
of a and b.

Thus when the algorithm terminates we have that the obtained k is the great-
est common divisor of a and b.

Theorem 1.5. If k = g.c.d.(a, b), then there exist two integers x and y such that
k = ax + by.

Proof. The proof of this claim is based again on Euclid’s algorithm. If a = b,
then the claim is trivial and hence we will continue to assume w.l.o.g. that b < a.
Moreover, the claim is also true if b divides a.

We will prove that each ri computed in (E3) can be always written as
ri = z1a + z2b for some integers z1 and z2. The claim will be proved again by
induction on i. After the assignments of b to c1 and a to c2, if c1 is not a divisor
of c2, then in (E3) we have that r1 = c2 − c1m1 = a − bm1 and the claim is
proved. At (E4) c1 is assigned to c2 and hence the value of c2 is b; r1 is assigned
to c1 and hence the value of c1 is a − bm1; i now equals 2 and we are back
at (E2).

We continue with two cases depending on whether the algorithm stops
at (E2) or not.
Case 1: If the algorithm stops at (E2), then k = c1 is the greatest common di-
visor, and since c1 = r1 = a − bm1, it follows that x = 1 and y = −m1 are the
values such that k = ax + by.
Case 2: The algorithm does not stop at (E2). We continue at (E3), where the
assignment implies that

r2 = c2 − c1m2 = b − r1m2 = b − (a − bm1)m2 = −am2 + (1 + m1m2)b

and the claim regarding r2 is proved.
Assume now for the general step i + 1, i > 1, we have that ri = z1a + z2b

and ri−1 = z3a + z4b for some i ≥ 2. If ri divides c1, then after the assignments
at (E4), i.e., c2 := c1 = ri−1 and c1 := ri the algorithm will stop at (E2), x will
be z1 and y will be z2. If the algorithm does not stop at (E2) and continues
to (E3), then we have

ri+1 = c2 − c1mi+1 = ri−1 − rimi+1

= z3a + z4b − (z1a + z2b)mi+1 = (z3 − z1mi+1)a + (z4 − z2mi+1)b

and the induction step is proved.
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Thus the claim regarding ri , i.e., ri = z1a + z2b for some integers z1 and z2,
is correct and hence when the algorithm stops at (E2) we have that x will be z1

and y will be z2.

Corollary 1.1. If k = g.c.d.(a, b), then there do not exist two integers x and y

such that γ = ax + by, where 0 < |γ | < k.

The greatest common divisor is naively generalized for polynomials. Let
g(x) and h(x) be two distinct polynomials over a field F. The greatest common
divisor of g(x) and h(x) is a polynomial f (x) of the largest degree in F such
that f (x) divides g(x) and f (x) divides h(x). Similarly, we define the least
common multiple for polynomials. Euclid’s algorithm is derived in a naive way
to find the greatest common divisor of two polynomials over the same field F.
W.l.o.g. we will assume that all polynomials that will be discussed are monic,
i.e., the leading coefficient of their highest degree is 1. The reason for taking
monic polynomials is to have a unique solution to the greatest common divisor.
When Euclid’s algorithm is applied to polynomials, we can obtain the following
result that generalizes Theorem 1.5.

Theorem 1.6. Let g(x) and h(x) be two monic polynomials over Fq and
let f (x) = g.c.d.(g(x),h(x)). Then, there exist two polynomials α(x) and
β(x) over Fq , where degα(x) < degh(x) and degβ(x) < degg(x), such that
f (x) = α(x)g(x) + β(x)h(x).

Next, the following results are required to prove the Chinese remainder the-
orem that will be stated later.

Lemma 1.2. If t is a common multiple of m1,m2, . . . ,ms , then [m1,m2, . . . ,ms]
divide t .

Proof. If t is a common multiple of m1,m2, . . . ,ms and m = [m1,m2, . . . ,ms],
then t ≥ m. If m does not divide t , then we can write t = jm+r , where j is some
positive integer and 0 < r < m. Since mi divides both m and t for each 1 ≤ i ≤ s

and t = jm+r , it follows that mi divides r , and hence r is a common multiple of
m1,m2, . . . ,ms , a contradiction since r < m and m is the least common multiple
of m1,m2, . . . ,ms .

Thus [m1,m2, . . . ,ms] divides t .

Lemma 1.3. If y ≡ x (mod m) and the positive integer d divides m, then
y ≡ x (mod d).

Proof. The congruence y ≡ x (mod m) implies that y = x + jm for some inte-
ger j . Furthermore, d divides m implies that y = x + j�d for nonzero integer �.
However, this also implies that y ≡ x (mod d).
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Theorem 1.7.

(1) g.c.d.(a,m) = 1 implies that ay ≡ ax (mod m) if and only if y ≡ x (mod m).
(2) For s distinct integers, m1,m2, . . . ,ms , we have that y ≡ x (mod mi) for

each 1 ≤ i ≤ s, if and only if y ≡ x (mod [m1,m2, . . . ,ms]).
Proof.

(1) Let g.c.d.(a,m) = 1 and assume that ay ≡ ax (mod m).
Assume, on the contrary, that y �≡ x (mod m). This implies that

y = x + jm + r, where 1 ≤ r ≤ m − 1 and j ∈ Z.

Since ay ≡ ax (mod m), it follows that

ax + ajm + ar = a(x + jm + r) = ay ≡ ax (mod m)

and hence

ar = �m,

for some � ∈ Z. However, since g.c.d.(a,m) = 1 and 1 ≤ r ≤ m − 1, it
follows that ar �= �m, a contradiction. Thus y ≡ x (mod m).
Now, let g.c.d.(a,m) = 1 and assume that y ≡ x (mod m).
By definition, y ≡ x (mod m) implies that y = x + jm for some j ∈ Z and
hence

ay = ax + ajm.

Therefore ay ≡ ax (mod m), as required.
(2) Let m1,m2, . . . ,ms be s distinct integers. If y ≡ x (mod mi) for 1 ≤ i ≤ s,

then mi divides y − x. This implies that y − x is a common multiple of
m1,m2, . . . ,ms and therefore by Lemma 1.2 we have that [m1,m2, . . . ,ms]
divides y − x. It follows that y ≡ x (mod [m1,m2, . . . ,ms]).
If we assume that y ≡ x (mod [m1,m2, . . . ,ms]), then by Lemma 1.3
we have that y ≡ x (mod mi) for each i, 1 ≤ i ≤ s, since mi divides
[m1,m2, . . . ,ms].

Theorem 1.8. If g.c.d.(a,m) = 1, then the equation ax ≡ b (mod m) has a
solution x = x1. All the solutions for the equation are given by x = x1 + jm,
where j ∈ Z.

Proof. Since g.c.d.(a,m) = 1, it follows by Theorem 1.5 that there exist two
integers z and y such that

az + my = 1

and therefore

abz + mby = b.
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This implies that abz = b − bym, i.e., the equation ax ≡ b (mod m) has a solu-
tion x = x1 = bz.

Assume now that x = x2 is also a solution to the equation ax ≡ b (mod m),
where x2 �≡ x1 (mod m). We can write

ax1 = b + j1m and ax2 = b + j2m,

which implies that

a(x2 − x1) = (j2 − j1)m. (1.1)

Since g.c.d.(a,m) = 1, it follows from Eq. (1.1) that m divides x2 − x1 and
hence x2 = x1 + jm, where j is an integer.

If x2 = x1 + jm, where j ∈ Z, then ax2 = ax1 + ajm ≡ b (mod m), and
hence each x2 of this form is a solution for the equation.

The next theorem is the Chinese remainder theorem.

Theorem 1.9. Let m1,m2, . . . ,ms denote s positive integers greater than 1 that
are pairwise relatively prime and let a1, a2, . . . , as denote any s integers. Then,
the s congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ as (mod ms)

(1.2)

have common solutions and for any two such solutions x1 and x2 we have that
x2 ≡ x1 (mod m1 · m2 · · · · · ms).

Proof. Since m1,m2, . . . ,ms are pairwise relatively prime, it follows that

m =
s∏

i=1

mi = [m1,m2, . . . ,ms].

Therefore m
mj

is an integer and g.c.d.( m
mj

,mj ) = 1 for each j , 1 ≤ j ≤ s. There-

fore by Theorem 1.8, there exists an integer bj such that m
mj

bj ≡ 1 (mod mj).

Clearly, m
mj

bj ≡ 0 (mod mi) for each 1 ≤ i ≤ s, where i �= j . Now, if we de-
fine x0 as

x0 =
s∑

j=1

m

mj

bjaj ,

then for each 1 ≤ i ≤ s we have that

x0 ≡
s∑

j=1

m

mj

bjaj ≡ m

mi

biai ≡ ai (mod mi),
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where the second equality is due to m
mj

bj ≡ 0 (mod mi), for each i �= j , and the

third equality is due to Theorem 1.7(1) since m
mi

bi ≡ 1 (mod mi). Hence, x0 is
a common solution of the congruences in Eq. (1.2).

If x1 and x2 are both solutions for x in x ≡ ai (mod mi) for all 1 ≤ i ≤ s,
then x2 ≡ x1 (mod mi) for all 1 ≤ i ≤ s, and hence by Theorem 1.7(2) we have
that x2 ≡ x1 (mod m) and the proof is completed.

Corollary 1.2. Let m1,m2, . . . ,ms be s pairwise relatively prime positive inte-
gers greater than 1. Let

m =
s∏

i=1

mi.

If 0 ≤ x < m, then the system of equations

x ≡ i1 (mod m1)

x ≡ i2 (mod m2)

...

x ≡ is (mod ms)

(1.3)

has a unique solution, where 0 ≤ ij < mj .

Proof. Let j1, j2, . . . , js be s integers such that 0 ≤ jk < mk for 1 ≤ k ≤ s, and
consider the set of equations

y ≡ j1 (mod m1)

y ≡ j2 (mod m2)

...

y ≡ js (mod ms)

.

By Theorem 1.9 this set of equations has a unique solution when y is taken
modulo m1 · m2 · · · ms . Assume that y is also a solution for

y ≡ �1 (mod m1)

y ≡ �2 (mod m2)

...

y ≡ �s (mod ms)

,

where 0 ≤ �k < mk for 1 ≤ k ≤ s. This implies that y ≡ jk (mod mk) and
y ≡ �k (mod mk), where 0 ≤ jk, �k < mk , for each 1 ≤ k ≤ s and hence jk = �k

for each 1 ≤ k ≤ s.
There are

∏s
k=1 mk distinct substitutions for the variables i1, i2, . . . , is in

Eq. (1.3) and
∏s

k=1 mk possible values of y, where 0 ≤ y <
∏s

k=1 mk , which
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implies that the system of equations in Eq. (1.3) has a unique solution for x,
where 0 ≤ ik < mk , 1 ≤ k ≤ s.

The concepts in number theory are useful in the construction of sequences
that satisfy certain properties. For example, Corollary 1.2 will be used in one of
our constructions of some two-dimensional arrays.

There are a few interesting functions associated with number theory. The
two that will be required for our exposition are the Euler’s totient function and
the Möbius function, which are presented now.

Euler’s function φ(n), known also as Euler’s totient function, where n is
a positive integer, is the number of integers between 1 to n that are relatively
prime to n. In other words

φ(n) � |{i : 1 ≤ i ≤ n, g.c.d.(i, n) = 1}| .
We also define the set nφ of φ(n) residues modulo n that are relatively prime
to n as follows:

nφ � {i : 1 ≤ i < n and g.c.d.(i, n) = 1}. (1.4)

These definitions imply that φ(n) = ∣∣nφ

∣∣. The following lemma can be easily
verified (for the proof of the third claim, the Chinese remainder theorem is ap-
plied).

Lemma 1.4.

(1) If p is a prime number, then φ(p) = p − 1.
(2) If p is a prime and e > 1 is an integer, then φ(pe) = (p − 1)pe−1.
(3) If n1 > 1 and n2 > 1 are two integers such that g.c.d.(n1, n2) = 1, then

φ(n1n2) = φ(n1)φ(n2).

Corollary 1.3. Let p1,p2, . . . , pr be r distinct primes and let e1, e2, . . . , er be
r positive integers. If n = p

e1
1 p

e2
2 . . . p

er
r , then

φ(n) = n

r∏
i=1

(
1 − 1

pi

)

and

φ(n) = n −
r∑

i=1

n

pi

+
∑

0<i<j≤r

n

pipj

− · · · + (−1)r
n

p1p2 · · ·pr

.

Proof. By applying Lemma 1.4(3) several times and then applying Lemma 1.4(2)
we have that

φ(n) = φ(p
e1
1 p

e2
2 . . . per

r ) =
r∏

i=1

φ(p
ei

i ) =
r∏

i=1

(
p

ei−1
i (pi − 1)

)
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and therefore,

φ(n) = n

∏r
i=1

(
p

ei−1
i (pi − 1)

)
n

= n

r∏
i=1

pi − 1

pi

= n

r∏
i=1

(
1 − 1

pi

)
.

Now, by developing the right side of the equation we have that

φ(n) = n

r∏
i=1

(
1 − 1

pi

)
= n−

r∑
i=1

n

pi

+
∑

0<i<j≤r

n

pipj

−· · ·+(−1)r
n

p1p2 · · ·pr

.

We continue with a second function of number theory. The Möbius function
μ(n) is defined by

μ(n) =

⎧⎪⎨
⎪⎩

1 if n = 1

0 if a2|n for some a > 1

(−1)r if n = p1p2 · · ·pr, for r distinct primes

.

Lemma 1.5. If n is a positive integer, then

∑
d|n

μ(d) =
{

1 if n = 1

0 if n > 1
,

where d|n stands for d divides n.

Proof. If n = 1, then the only divisor of n is d = 1 and since μ(1) = 1 the claim
of the lemma for n = 1 follows.

If n > 1, then n can be written as n = p
e1
1 p

e2
2 . . . p

er
r , where the r pis are

distinct primes and ei ≥ 1 for 1 ≤ i ≤ r . A divisor d of n has the form

d = p
ε1
1 p

ε2
2 . . . pεr

r ,

where 0 ≤ εi ≤ ei for each 1 ≤ i ≤ r . If εi > 1 for some i, then by definition we
have that μ(d) = 0. Hence, we have to consider in the sum

∑
d|n μ(d) only the

divisors for which εi ≤ 1 for each 1 ≤ i ≤ r . For each k, 0 ≤ k ≤ r , there are
(
r
k

)
such divisors, each one is a product of k distinct primes. By the definition of the
Möbius function we have that each such divisor contributes (−1)k to the sum∑

d|n μ(d). This implies that for n > 1

∑
d|n

μ(d) = 1 −
(

r

1

)
+

(
r

2

)
− · · · + (−1)r

(
r

r

)
=

r∑
k=0

(−1)k
(

r

k

)
.
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By Newton’s binomial theorem we have that (1 − 1)r = ∑r
i=0(−1)i

(
r
i

)
and

hence we have that

∑
d|n

μ(d) =
r∑

k=0

(−1)k
(

r

k

)
= (1 − 1)r = 0,

which completes the proof of the lemma.

The next theorem is well known as the Möbius inversion formula or the
Möbius inversion theorem.

Theorem 1.10. If for each positive integer n and two arithmetic functions f

and g we have that

g(n) =
∑
d|n

f (d),

then

f (n) =
∑
d|n

μ(d) · g
(n

d

)
.

Proof. If g(n) = ∑
d|n f (d) for every positive integer n, then for each positive

integer d that divides n, we have

g
(n

d

)
=

∑
d ′| n

d

f (d ′)

and hence ∑
d|n

μ(d) · g
(n

d

)
=

∑
d|n

μ(d)
∑
d ′| n

d

f (d ′).

This double summation ranges over all positive integers d and d ′ such that
d · d ′ divides n. If we choose d ′ first, then d ranges over all divisors of n/d ′.
Thus ∑

d|n
μ(d) · g

(n

d

)
=

∑
d ′|n

f (d ′)
∑
d| n

d′

μ(d).

By Lemma 1.5 we have that
∑

d| n
d′ μ(d) = 0 unless d = 1, i.e., n = d ′, in which

case ∑
d| n

d′

μ(d) = 1.

This implies the claim of the theorem.
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Theorem 1.10 will be used several times in our enumerations that will be
given mainly in Chapter 3. However, first, we will state a simple lemma that
will present the strength of this formula.

Lemma 1.6. If n is a positive integer, then

φ(n) = n
∑
d|n

μ(d)

d
.

Proof. We partition the set of integers in {1,2, . . . , n} into � subsets, a subset for
each divisor of n. For a divisor d of n, the subset Sd of this partition is defined
by Sd � {i : g.c.d.(i, n) = d, 1 ≤ i ≤ n}. The integer i is contained in Sd if and
only if i is of the form jd , where 1 ≤ j ≤ n

d
and g.c.d.(j, n

d
) = 1. Hence, there

are exactly φ
(

n
d

)
elements in Sd . Since there are n elements in {1,2, . . . , n}, it

follows that

n =
∑
d|n

φ
(n

d

)
=

∑
d|n

φ(d).

Now, we apply the Möbius inversion formula (Theorem 1.10), where g(n) = n

and f (n) = φ(n). The outcome is

φ(n) =
∑
d|n

μ(d) · n

d
= n

∑
d|n

μ(d)

d
.

Corollary 1.4. For each positive integer n

φ(n)

n
=

∑
d|n

μ(d)

d
.

Theorem 1.10 for the Möbius inversion formula is one direction of a more
general result. Although there is no use for the general result in our exposition,
it is given for completeness.

Theorem 1.11. For each positive integer n and two arithmetic functions f

and g we have that

g(n) =
∑
d|n

f (d),

if and only if

f (n) =
∑
d|n

μ(d) · g
(n

d

)
.

Proof. One direction of the proof was proved in Theorem 1.10. In the other
direction, assume that

f (n) =
∑
d|n

μ(d) · g
(n

d

)
.
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This implies that

∑
d|n

f (d) =
∑
d|n

∑
d ′|d

μ(d ′)·g
(

d

d ′

)
=

∑
d ′d ′′|n

μ(d ′)·g(d ′′) =
∑
d ′′|n

∑
d ′| n

d′′

μ(d ′)·g(d ′′),

where d ′′ = d
d ′ . Changing some order in the equation implies that

∑
d|n

f (d) =
∑
d ′′|n

∑
d ′| n

d′′

μ(d ′) · g(d ′′) =
∑
d ′′|n

g(d ′′)
∑
d ′| n

d′′

μ(d ′).

By Lemma 1.5 the only value for which
∑

d ′| n
d′′ μ(d ′) �= 0 is when n

d ′′ = 1, i.e.,

d ′′ = n. Thus ∑
d|n

f (d) =
∑
n|n

g(n)
∑
d ′|1

μ(d ′) = g(n),

which completes the proof.

The next result is known as Euler’s generalization for Fermat’s theorem
(which will be given as a consequence of this generalization).

Theorem 1.12. If a and m are positive integers such that g.c.d.(a,m) = 1, then

aφ(m) ≡ 1 (mod m).

Proof. Let r1, r2, . . . , rφ(m) be the φ(m) distinct integers of the set mφ . If
g.c.d.(ri ,m) = 1 and g.c.d.(a,m) = 1, then also g.c.d(ari,m) = 1. Moreover,
by Theorem 1.7(1) ari ≡ arj (mod m) if and only if ri ≡ rj (mod m) and hence
the set {ar1, ar2, . . . , arφ(m)} contains the same φ(m) distinct residues mod-
ulo m, namely, r1, r2, . . . , rφ(m). Therefore we have

aφ(m)

φ(m)∏
i=1

ri =
φ(m)∏
i=1

(ari) ≡
φ(m)∏
j=1

rj (mod m).

Now, since g.c.d.(ri ,m) = 1 for each i, 1 ≤ i ≤ φ(m), it follows again by The-
orem 1.7(1) that aφ(m) ≡ 1 (mod m).

As an immediate corollary from Theorem 1.12, we have what is known as
Fermat’s theorem.

Corollary 1.5. Let p by a prime and a be a positive integer such that p does
not divide a, then ap−1 ≡ 1 (mod p) and ap ≡ a (mod p).

The next consequence is known as Euler’s criterion.
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Lemma 1.7. If p is an odd prime and a �≡ 0 (mod p), then x2 ≡ a (mod p) has
two solutions or no solutions modulo p according to whether a(p−1)/2 ≡ 1 or
−1 (mod p). In particular, x2 ≡ −1 (mod p) has two solutions if p = 4k + 1,
but no solutions if p = 4k + 3.

Proof. Assume that for a �≡ 0 (mod p) we have two distinct integers modulo p,
x and y, such that

y2 ≡ x2 ≡ a (mod p).

This implies that (y − x)(y + x) ≡ 0 (mod p). Therefore y + x ≡ 0 (mod p),
i.e., y ≡ −x (mod p) and hence the equation x2 ≡ a (mod p) has two solutions
or no solutions modulo p.

By Corollary 1.5 we have that

(a(p−1)/2 − 1)(a(p−1)/2 + 1) = ap−1 − 1 ≡ 0 (mod p) (1.5)

and hence a(p−1)/2 ≡ ±1 (mod p).
Now, if x2 ≡ a (mod p), then

a(p−1)/2 ≡ (x2)(p−1)/2 ≡ xp−1 ≡ 1 (mod p). (1.6)

Hence, for each such a we have that a(p−1)/2 −1 equals 0 modulo p in Eq. (1.5).
Since x2 ≡ (−x)2 (mod p), the set {x2 (mod p) : 1 ≤ x ≤ p − 1} contains

p−1
2 residues modulo p and hence by the first part of the proof we have that if

a(p−1)/2 ≡ 1 (mod p), then x2 ≡ a (mod p) has two solutions.
Thus x2 ≡ a (mod p) has two solutions or no solutions modulo p accord-

ing to whether a(p−1)/2 ≡ 1 or −1 (mod p). Since (−1)(p−1)/2 = 1 when
p = 4k + 1 and (−1)(p−1)/2 = −1 when p = 4k + 3, it follows by Eq. (1.6)
that x2 ≡ −1 (mod p) has two solutions if p = 4k + 1, but no solutions if
p = 4k + 3.

The last two important concepts in number theory that will be introduced
are two of the most interesting ones, the quadratic residues and the Legendre
symbol. They will be used later to form some interesting sequences and also to
prove that some types of two-dimensional sequences (arrays) do not exist.

Let p be an odd prime. An integer r , r �≡ 0 (mod p), is a quadratic residue
modulo p if there exists an integer x such that x2 ≡ r (mod p). An integer n,
n �≡ 0 (mod p), which is not a quadratic residue modulo p is a quadratic non-
residue modulo p. For the set of residues modulo p, we denote by Rp the set of
quadratic residue modulo p and Np the set of quadratic non-residues modulo p.

The Legendre symbol
(

m
p

)
is defined as follows.

(
m
p

)
= 1 if m is a quadratic

residue modulo p and
(

m
p

)
= −1 if m is a quadratic non-residue modulo p. If

m ≡ 0 (mod p), then
(

m
p

)
= 0.
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There are many interesting properties of the Legendre symbol. The most
basic ones will be introduced now in two lemmas. The claims in the first lemma
are easy to verify by the definition of the Legendre symbol.

Lemma 1.8. Let p be an odd prime and a, b two integers. Then,

(1)
(

a
p

)(
b
p

)
=

(
ab
p

)
.

(2) If a ≡ b (mod p), then
(

a
p

)
=

(
b
p

)
.

The second lemma follows from Lemma 1.7.

Lemma 1.9. If p is an odd prime and a is relatively prime to p, then(
a

p

)
≡ a(p−1)/2 (mod p).

Corollary 1.6.

(1) If p is a prime of the form 4k − 1, then −1 is a quadratic non-residue
residue modulo p.

(2) If p is a prime of the form 4k +1, then −1 is a quadratic residue modulo p.

Proof. By Lemma 1.9 we have that(−1

p

)
= (−1)(p−1)/2.

(1) If p = 4k − 1, then p−1
2 = 2k − 1 and hence (−1)(p−1)/2 = −1, i.e., −1 is

a quadratic non-residue modulo p.
(2) If p = 4k + 1, then p−1

2 = 2k and hence (−1)(p−1)/2 = 1, i.e., 1 is a
quadratic residue modulo p.

Corollary 1.7.

• If p is a prime of the form 4k − 1, then a is a quadratic residue modulo p if
and only if p − a is a quadratic non-residue modulo p.

• If p is a prime of the form 4k + 1, then a is a quadratic residue modulo p if
and only if p − a is a quadratic residue modulo p.

Corollary 1.8. If p = 2k + 1 is a prime, then there are k quadratic residues
modulo p and k quadratic non-residues modulo p.

The following interesting properties of the set of quadratic residues and the
set of quadratic non-residues will be very useful.

Theorem 1.13. Let p be a prime of the form 4k − 1, r an arbitrary quadratic
residue modulo p, n an arbitrary quadratic non-residue modulo p. Each one of
the sets r + Np and n + Rp consists of 0, k − 1 quadratic residues, and k − 1
quadratic non-residues.
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Proof. Let p = 4k − 1 and consider the set of expressions Hp (not the result
of the expression) of the form ri + nj , 1 ≤ i, j ≤ p−1

2 , where ri is a quadratic
residue and nj is a quadratic non-residue. By Corollary 1.7(1), the value 0 is
represented p−1

2 times in Hp since r ∈ Rp if and only if p − r ∈ Np when
p ≡ 3 (mod 4).

We show that all nonzero residues modulo p are represented equally often
in Hp. Every representation of 1, 1 = r + n, r ∈ Rp, n ∈ Np, corresponds to
a unique representation of g, g = r ′ + n′, where r ′ = gr , n′ = gn, when g is
a quadratic residue and r ′ = gn, n′ = gr , when g is a quadratic non-residue.
Conversely, every representation of g, g = r + n, corresponds to a unique rep-
resentation of 1, 1 = r ′ + n′, where r ′ = g−1r , n′ = g−1n, when g is a quadratic
residue, and r ′ = g−1n, n′ = g−1r , when g is a quadratic non-residue. Thus
in Hp there exists a one-to-one correspondence between the representation of 1
and the representations of any other nonzero residue modulo p. Hence, Hp con-
tains as many representations of quadratic residues and quadratic non-residues.

Suppose now that the set 1 + Np contains more (fewer) quadratic residues
than quadratic non-residues. Let r ∈ Rp be any quadratic residue modulo p.
Then, the set r + Np = r(1 + r−1Np) = r(1 + Np) would also contain more
(fewer, respectively) quadratic residues than quadratic non-residues. Conse-
quently,

Hp =
⋃

r∈Rp

(r +Np)

would contain more (fewer, respectively) quadratic residues than quadratic non-
residues, a contradiction. It follows that the set 1 + Np contains as many
quadratic residues as quadratic non-residues; the sets r +Np = r(1 +Np) and
n +Rp = n(1 +Np) also have this property, where r ∈Rp and n ∈Np.

The proof of the next theorem is very similar to the proof of Theorem 1.13.

Theorem 1.14. Let p be a prime of the form 4k + 1, r an arbitrary quadratic
residue, n an arbitrary quadratic non-residue. The sets r + Np and n + Rp

consist of k quadratic residues and k quadratic non-residues.

1.2 Codes, graphs, and sequences

This section is devoted to the two concepts that are the main goals of this book,
sequences and graphs, as suggested by the title of the book. We start with an-
other concept, codes that are associated with sequences in information theory.
Some concepts on codes will be used in the exposition of the book and others
are given for completeness. The same will apply also to concepts on graphs.

An [n, k]q (linear) code is a linear subspace of dimension k over Fn
q , i.e.,

a linear subspace, whose dimension is k, from the set of all words (vectors) of
length n over Fq .
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An [n, k]q code C can be represented by some matrices. The first one is a
generator matrix G, which is a k × n matrix over Fq , whose rows form a basis
for the code, i.e., the linear span of the rows of G is C. The second matrix is
a parity-check matrix H , which is an (n − k) × n matrix over Fq , whose rows
form a basis for the dual subspace C⊥ of the code C. The dimension r = n − k

of this dual subspace is called the redundancy of the code.
A generator matrix of an [n, k]q code is in standard form if its first k

columns form an identity matrix of order k, i.e.,

G = [ Ik | A ] ,

where Ik is the k ×k identity matrix. The related parity-check matrix is given by

H = [ − Atr | In−k

]
.

It is readily verified that for these two matrices, we have

G · H tr = 0

and

H · Gtr = 0,

where 0 is an all-zeros matrix of the appropriate size and Atr is the transpose of
the matrix A (and the same notation when 0 or A are vectors).

The following proposition is a simple observation.

Proposition 1. The parity-check matrix H of an [n, k]q code C is a generator
matrix of an [n,n − k]q code.

If G is the generator matrix of an [n, k]q code C, then the [n,n−k]q code C⊥
whose generator matrix is the parity-check matrix H of C is called the dual
code of C. A code C is called self-dual if C = C⊥. These definitions imply the
following.

Lemma 1.10. For an [n, k]q self-dual code we have that n = 2k.

There is another representation of the parity-check matrix. Let α be a primi-
tive element in Fqr and let H = [h1, h2, . . . , hn] be an r ×n parity check-matrix
for the code C, where all the his are nonzero column vectors. Assume that hj is
the q-ary representation of the element αij , 1 ≤ j ≤ n, in Fqr . The parity-check
matrix can be written as H = [αi1 , αi2, . . . , αin]. Finally, note that the word
x = (x1, x2, . . . , xn) ∈ F

n
q is a codeword in C if and only if H · xtr = 0.

We call k coordinates in a code C, over Fq , systematic if, in the projection
on these k coordinates of C, each of the qk vectors of length k over Fq appears
exactly once. Clearly, in an [n, k]q code whose generator matrix is in standard
form, the first k coordinates are systematic. By definition, one can easily verify
the following lemma.
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Lemma 1.11. k coordinates in the generator matrix G of an [n, k]q code C
are systematic coordinates if and only if the related k vector columns of G are
linearly independent.

Definition 1.4. Let C be a linear code over Fq with an r × n parity-check ma-
trix H . For any word x = (x1, x2, . . . , xn) ∈ F

n
q , the syndrome of x, S(x), is

defined by

S(x) = H · xtr .

The syndromes are column vectors of length r , the redundancy of the code.
Hence, there are qr possible distinct syndromes. The first important property
related to the syndromes is associated with the syndromes of the codewords.
The value of these syndromes can be verified from the definition of the parity-
check matrix of a code C.

Lemma 1.12. The syndrome of a codeword in a linear code is equal to the
all-zeros vector.

Linear codes are used to transmit information on a noisy channel. The syn-
dromes are very useful in correcting errors that occurred during this transmis-
sion.

The Hamming distance (or distance in short) between two given words
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), over Fq , d(x, y), is the number
of coordinates in which x and y differ. In other words

d(x, y) � |{i : xi �= yi}| .
The minimum distance of a code C, is the smallest integer δ, such that there

exist two distinct codewords x, y ∈ C for which d(x, y) = δ.

Definition 1.5. An [n, k, d]q code is an [n, k]q code whose minimum Hamming
distance is at least d . When q = 2, we can write an [n, k, d] code.

The weight of a word x, denoted by wt(x), is the number of nonzero entries
in x. Since the codewords of an [n, k, d]q code form a linear subspace we have
the following result.

Lemma 1.13. The minimum distance of an [n, k, d]q code C is the minimum
weight of its nonzero codewords.

Corollary 1.9. The minimum distance d of an [n, k, d]q code C is the minimum
number of linearly dependent columns of its parity-check matrix H .

Proof. The claim follows immediately from the fact that c ∈ C if and only if
H · ctr = 0 and hence the minimum number of linearly dependent columns of H

is the minimum weight of a nonzero codeword in C.
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The [n, k, d]q code C has a generator matrix G and a parity-check matrix H .
The code C is used to transmit information words of length k over Fq , via a
channel that accepts words of length n. An information word z = (z1, z2, . . . , zk)

is transformed into a codeword c = (c1, c2, . . . , cn) of length n, where c = z ·G.
Since c is generated as a linear combination of rows from G and the rows of H

span a subspace orthogonal to the linear span of the rows of G, it follows, as also
implied by Lemma 1.12, that S(c) = H · ctr = 0. Assume that in the channel, an
error ε ∈ F

n
q has occurred in the codeword c and instead of the codeword c, the

word c + ε was received. The syndrome of c + ε is

S(c + ε) = H · (c + ε)tr = H · ctr + H · εtr = H · εtr .

This implies that if it is assumed that only an error from a set E can occur and
each of the elements in the set E has a different syndrome, then using the value
of the syndrome of the received word we have the syndrome of the error. This
syndrome should be unique to this error and hence we can find the exact error
and recover the codeword that was transmitted over the channel. This implies
the following observation.

Corollary 1.10. A linear code can correct e errors if and only if all the syn-
dromes of the distinct words with weight at most e are distinct.

The next basic concepts in the book are associated with graphs. Graph theory
is a major area in mathematics, computer science, and electrical engineering, as
well as other disciplines. Although most concepts should be well known to the
reader we define most of them, but we will assume throughout the book that
some other basic facts are well known to the reader. For this reason, we rarely
present theorems on graphs.

A graph G = (V ,E) has a set of vertices V and a set of edges E. Our first
assumption is that all our graphs are finite, i.e., the number of vertices is finite
and the number of edges is finite. There are two types of graphs, undirected and
directed.

For an undirected graph G = (V ,E), the set V contains the vertices of the
graph and the set E contains the edges of the graph, where an edge e = {u,v} is
an unordered pair of two vertices u,v ∈ V . Such two vertices are called adjacent
unless u = v. We also say that u is incident to e and v is incident to e. An
edge e = {u,u}, i.e., an edge from a vertex to itself is called a self-loop. It is
a self-loop edge e and also a self-loop vertex u. The degree of a vertex v is
the number of edges in which v participates, i.e., the number of edges to which
v is incident. A self-loop is considered twice for the degree of its vertex. Two
edges between the same two vertices are called parallel edges. A path in G

is a sequence of edges e1e2 · · · e�, where ei = {vi−1, vi}, 1 ≤ i ≤ �, is an edge
in E. If the graph has no parallel edges, then such a path can be described by
the sequence of vertices v0v1 · · ·v�. The length � of the path is the number of
edges in the path. If vi �= vj for 0 ≤ i < j ≤ �, we say that the path is simple.
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The path can be described also by its set of consecutive vertices v0v1 · · · v�.
If v� = v0, then the path is called a cycle. If the cycle contains k edges (not
necessarily distinct), then it will be also called a k-cycle. It should be noted that
a cycle can be described by starting with any vertex or edge on it. This implies
that there is no starting position and no ending position for the cycle. A simple
cycle is a cycle with no repeated vertices (when described as a path, the first and
the last vertex, which are the same, will not be considered as repeated vertices).
A self-loop is considered to be a simple cycle. A factor in an undirected graph is
a set of vertex-disjoint (simple) cycles that contain all the vertices of the graph.
A simple graph is a graph with no parallel edges. An undirected graph is called
a connected graph if there exists a path between any two distinct vertices of
the graph. The distance, dG(u, v) (d(u, v) if the graph is understood from the
context) between two vertices u,v ∈ V is the length of the shortest path between
u and v.

A directed graph (digraph) G = (V ,E) consists of a set V of vertices and a
set E of directed edges, i.e., e = (u, v) ∈ E implies that there is a directed edge
from the vertex u ∈ V to the vertex v ∈ V . This edge is an out-edge (or outgoing
edge) for u and an in-edge (or incoming edge) for v. The edge e = (u, v) is also
denoted by u → v. The vertex u is called the start-point of the edge e and the
vertex v is the end-point of e. The two vertices u and v that form the edge e are
called adjacent, unless u = v. The in-degree of a vertex v ∈ V , is the number
of edges whose end-point is v. The out-degree of a vertex v ∈ V , is the number
of edges whose starting-point is v. A directed path in G is a sequence of edges
e1e2 · · · e�, where ei = (vi−1, vi) is an edge in E. If the graph has no parallel
edges, then such a path can be described by the sequence of vertices v0v1 · · ·v�.
The length � of the path is the number of edges in the path. If vi �= vj for
0 ≤ i < j ≤ � we say that the path is simple. The path can be described also by
its set of consecutive vertices. If v� = v0, then the path is called a directed cycle.
The first vertex in a cycle is not defined as the cycle can start in any vertex of
the cycle. The distance, dG(u, v) (d(u, v) if the graph is understood from the
context) from a vertex u to a vertex v, where u,v ∈ V , in a directed graph, is
the length of the shortest directed path from u to v. A cycle with no repeated
vertices is called simple and a cycle with no repeated edges is called a tour.

A closed path is a cycle in which the first vertex is determined. If the cycle
is not simple and it is not several repetitions of the same simple cycle, then
there exists a vertex v ∈ V (not necessarily unique) that can be chosen as the
first vertex in the associated closed path and defines a few different closed paths
from the same cycle.

Example 1.1. The cycle

u1 → u2 → u3 → u4 → u1 → u2 → u3 → u4 → u1,

where the uis are distinct, is a double repetition of the simple cycle

u1 → u2 → u3 → u4 → u1.
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The cycle

v1 → v2 → v3 → v4 → v5 → v2 → v6 → v7 → v1,

where the vis are distinct, is a closed path that can start with the vertex v2 in two
different ways as follows:

v2 → v3 → v4 → v5 → v2 → v6 → v7 → v1 → v2

and

v2 → v6 → v7 → v1 → v2 → v3 → v4 → v5 → v2.

�
The edge e = (u,u) is a self-loop edge e and a self-loop vertex u. Two edges

e1 and e2 are called parallel edges if their start-points are the same and their
end-points, are the same. Two edges (u, v) and (v,u) are called anti-parallel
edges. The underline graph G′ = (V ,E′) of a directed graph G = (V ,E) is an
undirected graph with the same vertices as in G, and the same edges, but with
no direction to the edges, i.e., if (u, v) ∈ E, then {u,v} ∈ E′. Two anti-parallel
edges (or parallel edges) in the directed graph will become two parallel edges in
the underline graph. A directed graph is connected if its underline graph is con-
nected. A directed graph is called strongly connected if there exists a directed
path from u to v for every two distinct vertices u and v of G. An independent
set in a graph is a set of vertices for which no two are adjacent (in the underline
graph if the graph is directed).

An undirected tree is an undirected connected graph with no simple cy-
cles. A directed tree is a directed graph with one vertex, called the root whose
in-degree is zero and there is a unique directed path from the root to each vertex
in the graph. A leaf in an undirected tree is a vertex whose degree is one. A leaf
in a directed tree is a vertex whose out-degree is zero. A binary directed tree is
a directed tree in which each vertex that is not a leaf has out-degree two. A bal-
anced binary directed tree is a binary directed tree in which all the paths from
the root to the leaves have the same length.

Given a graph G = (V ,E), a subgraph G′ = (V ′,E′) of G, is a graph
for which V ′ ⊆ V and E′ ⊆ E. A spanning tree T = (V ′,E′) of a graph
G = (V ,E) is a subgraph of G, for which V ′ = V and T is a tree.

An undirected bipartite graph G = (V ,E) is a graph whose vertices can
be partitioned into two parts A and B, where V = A ∪ B, A ∩ B = ∅, and
for each edge {u,v} ∈ E we have that either u ∈ A and v ∈ B or v ∈ A and
u ∈ B. A directed bipartite graph G = (V ,E) is a graph whose vertices can be
partitioned into two parts A and B, where V = A ∪ B, A ∩ B = ∅, and for each
edge (u, v) ∈ E we have that u ∈ A and v ∈ B.

A matching in a graph G = (V ,E) is a set of disjoint edges (with no com-
mon vertices and no self-loops). A perfect matching in a graph G = (V ,E) is a
matching for which each vertex of V is contained in one of the edges.
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An undirected complete graph on n vertices, denoted by Kn, is a graph
G = (V ,E) with n vertices and

(
n
2

)
edges, where E = {{u,v} : u,v ∈ V, u �= v}.

A directed complete graph on n vertices, K∗
n is a directed graph G = (V ,E)

with n vertices and n(n − 1) edges, where E = {(u, v) : u,v ∈ V, u �= v}.
A connected component in an undirected graph G = (V ,E) is a connected

subgraph G′ = (V ′,E′) of G such that if v ∈ V , v /∈ V ′, then there is no path
between v to some vertex of V ′.

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists
a bijective function f : V1 → V2, such that for an undirected graph, {u,v} ∈ E1
if and only if {f (u), f (v)} ∈ E2 and for a directed graphs, (u, v) ∈ E1 if and
only if (f (u), f (v)) ∈ E2.

For a digraph G = (V ,E), the line graph L(G) = (V ′,E′), is a digraph
defined as follows. The set of vertices V ′ is equal to the set of edges E of G,
i.e., V ′ = E. The set of edges E′ of L(G) is defined by

E′ � {(e1, e2) : e1 = (v1, v2) ∈ E, e2 = (v2, v3) ∈ E},
i.e., an edge in E′ is a directed path of length two in G. The concept of the line
graph is very important and it can be defined similarly to undirected graphs, but
it will be used only for directed graphs in the book.

There are several connections between graphs and matrices, some of which
will be discussed in our exposition. The adjacency matrix A of an undirected
graph G = (V ,E) in a |V | × |V | symmetric matrix, whose rows and columns
are indexed by the vertices of V , and A(u,v) = k if and only there are exactly
k edges between u and v. For a directed graph G = (V ,E) the adjacency matrix
A is a |V | × |V | binary matrix, whose rows and columns are indexed by the
vertices of V , and A(u,v) = k if and only there are exactly k directed edges
from u to v. The following important property can be easily verified by this
definition.

Lemma 1.14. If A is the adjacency matrix of a directed graph G = (V ,E), then
A�(u, v) = k if and only if there are exactly k distinct directed paths of length �

from u to v.

An example of an adjacency matrix will be given in Example 1.6. While the
adjacency matrix describes which vertices are adjacent, the second matrix, the
incidence matrix indicates which vertices are incident to each edge. In other
words, for an undirected graph G = (V ,E), without self-loops the incidence
matrix is a binary |V | × |E| matrix whose rows are indexed by the vertices of V

and its columns are indexed by the edges of E. A(u, e) = 1, where u ∈ V and
e ∈ E if and only if e = {u,v} for some v ∈ V . In this case also A(v, e) = 1. For
a directed graph, we omit the definition as it will not be used in the book.

A factor in a directed graph G is a subgraph of G that contains a set of
vertex-disjoint simple cycles that contain all the vertices of the graph. The factor
can be described by its set of edges since each vertex in a cycle has in-degree
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one and out-degree one. Factors, Hamiltonian cycles, and Eulerian cycles, in a
graph will play an important role throughout the book.

A Hamiltonian path in a graph G is a path that visits each vertex of G

exactly once. A Hamiltonian cycle in a graph G is a cycle that visits each vertex
of G exactly once. An Eulerian path in a graph G is a path that visits each edge
of G exactly once. An Eulerian cycle in a graph G is a cycle that visits each
edge of G exactly once.

Theorem 1.15. A strongly connected directed graph G = (V ,E) has an Eule-
rian cycle if and only if for each v ∈ V , the in-degree of v equals the out-degree
of v.

Proof. Let G = (V ,E) be a strongly connected directed graph.
Assume that at one vertex v ∈ V , the in-degree is not equal to the out-degree.

In any tour C going through the vertices of V , the number of in-edges of v on the
tour equals the number of out-edges of v in the tour C. Thus C cannot contain
all the edges of G and hence it is not an Eulerian cycle.

Assume now that for each vertex of V , the in-degree equals the out-degree.
Let C be any tour of the largest length in G. If C is not an Eulerian cycle, then,
since G is strongly connected, there exists a vertex v ∈ V that is also on the
tour C for which not all the out-edges of v are on C. Let C be written as

v → u1 → u2 → ·· · → u� → v.

Since not all the out-edges of v are on C, it follows that we can enlarge the
path C from the last written appearance of v until it ends in v again (this is
because for each in-edge to a vertex u in V , which is not on C, there exists also
an out-edge from u, not on C). The outcome is a new tour C′ larger than C. This
contradicts our assumption that C is a tour of the largest length.

Therefore G has an Eulerian cycle if and only if for each v ∈ V , the in-degree
of v equals the out-degree of v.

Note that the proof of Theorem 1.15 can be used for an efficient algorithm
to find an Eulerian cycle in any strongly connected directed graph in which for
each vertex the in-degree equals the out-degree.

Finally, we are going to present some basic concepts for sequences that are
the second main topic of this book. Usually, the definitions are given in a general
way to fit into binary sequences and non-binary sequences, but some of them are
suitable only for binary sequences.

Definition 1.6. A sequence S over an alphabet � of size σ is an ordered list of
symbols from �.

There are many types of sequences and hence there are also various nota-
tions for sequences. There are finite sequences and there are infinite sequences.
There are cyclic sequences and there are acyclic sequences. An infinite sequence
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can be denoted by a0a1a2 · · · , or {a0a1a2 · · · } or just {ak}. A sequence with k

consecutive αs, where α is an alphabet letter, will be denoted by αk . The start-
ing point (index of the first element) of the sequence does not have to be zero.
We will not consider sequences that do not have a starting point. In a cyclic
sequence S = [s0s1 · · · sn−1] the first symbol s0 follows the last symbol sn−1
and hence each symbol can be taken as the starting point. Nevertheless, also
in cyclic sequences, there are cases when the starting point is important. This
is very similar to the distinction between cycles and closed paths. Two cyclic
sequences S1 and S2 for which S2 is a cyclic shift of S1, but do not have the
same starting point, are said to be equivalent and will be denoted by S2 � S1.
The length of the sequence is the number of symbols written in the sequence.
Hence, the length of the sequence S = [s0s1 · · · sn−1] is n. The period π(S) of
the cyclic sequence S = [s0s1 · · · sn−1] or an infinite sequence S = s0s1s2 · · · ,
is the least positive integer π such that si = sπ+i , for each i ≥ 0 if the sequence
is infinite, and for each 0 ≤ i ≤ n − 1, where indices are taken modulo n, when
the sequence is cyclic. For a cyclic sequence S = [s0s1 · · · sn−1] any integer π ,
1 ≤ π ≤ n, such that π divides n and si = sπ+i for 0 ≤ i ≤ n − 1 − π is a pe-
riod of S, but the period is the smallest such integer. The same applies to an
infinite sequence. To avoid confusion, sometimes we refer to the period as the
least period. If the least period of a cyclic sequence is equal to its length, then
we say that the sequence is not periodic (aperiodic). The weight of a sequence
(cyclic or acyclic, periodic or aperiodic) is the number of nonzero entries in the
sequence.

For two sequences (finite or infinite) of the same length A = a0, a1, a2, a3, . . .

and B = b0, b1, b2, b3, . . ., over a group, a ring, or a field, we define the addition
A + B by

A + B � a0 + b0, a1 + b1, a2 + b2, a3 + b3, . . . ,

where ai + bi is the addition in the group, the ring, or the field, respectively.
Usually, when addition or subtraction is done, it would be understood from

the context if it is done in the finite group Zm, the finite field Fq , or in the ring
of integers Z. When binary addition and addition over the integers are mixed,
⊕ will be used for the binary addition.

Example 1.2. The infinite sequence S = s0s1s2 · · · defined by sk = sk−6 with
initial conditions s0 = s2 = s3 = s5 = 0 and s1 = s4 = 1 can be written as

010010010010 · · · .

The period of S is 3, but it also has periods, 6, 9, and similarly each positive
multiple of 3.

The cyclic sequence

[010010010]
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is of length 9, but its period is 3. It also has periods 6 and 9.
The two sequences

[0011101111001] and [1011110010011]
are equivalent sequences as one is a cyclic shift of the other, i.e.,

[0011101111001] � [1011110010011].
These two sequences can be added to obtain a new sequence, i.e.,

[0011101111001] + [1011110010011] = [1000011101010].
�

For an acyclic sequence A = (a1, a2, . . . , an), there is always a starting sym-
bol and a last symbol. The period π(A) (or just π) of the sequence A (will be
rarely used in our context) is the smallest positive integer π such that ai = ai+π

for each 1 ≤ i ≤ n − π . If no such π exists, then the period is defined to be n.
A cyclic sequence is said to be of full-order if the period of the sequence

is equal to the length of the sequence. If it is not of a full-order, then it is a
degenerated sequence.

Example 1.3. For the acyclic sequence

S = (10010010010011)

of length 14, the period is 13.
The acyclic sequence

S = (1100101000100)

of length 13 has period 13.
For the acyclic sequence

S = (1001001001001)

of length 13, the period is 3. It also has periods 6, 9, and 12.
For the cyclic sequence

S = [1001001001001]
of length 13, the period is 13, i.e., it is aperiodic.

The acyclic sequence

S = (100100100100)

of length 12 has period 3. It also has periods 6 and 9. �
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Usually, words are considered to be acyclic sequences. Sequences that rep-
resent cycles in a graph, which will be considered in the next section, are
represented by cyclic sequences. However, while sequences are represented by
their consecutive digits, the cycles can be also represented by their consecutive
vertices. Note the difference in brackets between cyclic sequences and acyclic
sequences. Without brackets, the type of the sequence (cyclic or acyclic) should
be understood from the context. Note that also for acyclic sequences we can
define cyclic shifts. This will be used, for example, in enumerations performed
in Chapter 3.

The characteristic vector of a subset {s1, s2, . . . , sk} taken from an n-set,
say Zn is a binary vector (word) of length n, where its j th entry is one if and
only if j ∈ {s1, s2, . . . , sk}.
Example 1.4. Let S = {0,3,5,6,7,9,12} be a set taken from Z13 that has the
characteristic vector (1001011101001). �

For a binary sequence S = s1, s2, . . . , sn the complement sequence S̄ is de-
fined by

S̄ � s̄1, s̄2, . . . , s̄n,

where x̄ is the binary complement of x, i.e., x̄ = 1−x. The reverse sequence SR

of a sequence S = s1, s2, . . . , sn is defined by

SR � sn, . . . , s2, s1.

A cyclic binary sequence S is called a complement-reverse (or a CR sequence)
if S = S̄R , which is equivalent to SR = S̄.

Finally, a cyclic sequence S is called a self-dual sequence if S̄ � S. It will be
proved later that a self-dual sequence S can be written as S = [X X̄]. Self-dual
sequences will have an important role throughout the book.

Now, we will define a few operators for sequences that will be used
throughout the book. The first important operator that will be used through-
out our discussion is the shift operator E. When applied on a cyclic sequence
[s0s1 · · · sn−1] it is defined by Esi = si+1, where indices are taken modulo n, i.e.,

E[s0, s1, . . . , sn−1] = [s1, s2, · · · , sn−1, s0].
The sequence remains the same but in another cyclic shift, i.e., an equivalent
sequence is obtained. If the operator is applied on an acyclic sequence (word)
(s1, s2, . . . , sn), then

E(s1, s2, . . . , sn) = (s2, . . . , sn, s1).

A second operator is the derivative operator D. We distinguish now between
cyclic sequences and acyclic sequences. For a cyclic sequence [s0s1 · · · sn−1] it
is defined by

D[s0, s1, . . . , sn−1] = [s1 − s0, s2 − s1, · · · , sn−1 − sn−2, s0 − sn−1],
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where indices are taken modulo n, i.e., D = E − 1, and 1 is the identity operator.
If the sequence is binary, then also D = E − 1 = E + 1. If the operator is applied
on an acyclic sequence (word) (s1, s2, . . . , sn), then

D(s1, s2, . . . , sn) = (s2 − s1, s3 − s2, . . . , sn − sn−1).

Two more related operators are the prefix and the suffix of a sequence. For a
sequence S = (s1, s2, . . . , sn−1, sn), the prefix of S, LS, is defined by

L(s1, s2, . . . , sn−1, sn) = (s1, s2, . . . , sn−1)

and the suffix of S, RS, is defined by

R(s1, s2, . . . , sn−1, sn) = (s2, . . . , sn−1, sn).

Clearly, by the definitions, for an acyclic sequence S, we have that

DS = RS − LS = (R − L)S.

It is also important to note that the operators D, E, L, and R, are linear operators,
i.e., D(S1 + S2) = DS1 + DS2 and the same applies to the other three operators.
Each operator can be applied several times, e.g., EiS = E(Ei−1S), for i > 1.
Finally, the operator E can be used as a parameter in a polynomial as follows.

Example 1.5. If f (x) = x3 + x + 1 is a polynomial and S = [0110110001],
then

f (E)S = (E3 + E + 1)S = E3S + ES + S

= [0110001011] + [1101100010] + [0110110001] = [1101011000].
�

1.3 The de Bruijn graph and feedback shift registers

The graph Gσ,n = (Vσ,n,Eσ,n), is called the de Bruijn graph of order n

over an alphabet � of size σ , usually taken as {0,1, . . . , σ − 1}. It is a di-
rected graph with σn vertices in Vσ,n, associated by the σn words of length n

over �. The graph has σn+1 edges in Eσ,n, associated by the σn+1 words of
length n + 1 over �. From the vertex x = (x0, x1, . . . , xn−1), where xi ∈ �,
0 ≤ i ≤ n − 1, there is a directed edge to each one of the σ vertices of the form
y = (x1, . . . , xn−1, xn), where xn ∈ �. The associated edge is represented by the
(n + 1)-tuple (x0, x1, . . . , xn−1, xn).

A path of length � in Gσ,n can be represented by its consecutive vertices
or consecutive edges as in a directed graph, but it can be also represented by a
sequence of � + n − 1 consecutive symbols from �,

x1x2x3 · · · x�x�+1 · · · x�+n−1,

where (xi, xi+1, . . . , xi+n−1), 1 ≤ i ≤ �, is the ith vertex in the path. A cycle of
length �, in Gσ,n, can be represented similarly by � consecutive symbols of the
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cyclic sequence

[x0x1 · · ·x�−1],
where (xi, xi+1, . . . , xi+n−1), 0 ≤ i ≤ � − 1, is the ith vertex in the cycle and
indices are taken modulo �.

Lemma 1.15. Given two vertices u,v ∈ Gσ,n, there is a unique path of length n

from u to v.

Proof. The representation of the paths in Gσ,n by the symbols from � implies
that from the vertex u = (u1, u2, . . . , un) to the vertex v = (v1, v2, . . . , vn) there
exists a unique path that contains 2n consecutive symbols from �. This path
consists of n + 1 vertices (each one is represented by n consecutive symbols)
and n edges (each one is represented by n+ 1 consecutive symbols), is given by

u1u2 · · ·unv1v2 · · ·vn.

The following theorem can be easily verified by the definitions of the de
Bruijn graph and the line graph.

Theorem 1.16. The Line graph of Gσ,n, is Gσ,n+1, i.e., Gσ,n+1 = L(Gσ,n).

The graph G2,n will be denoted by Gn = (Vn,En), and its vertices are repre-
sented by binary words of length n. The vertices can be also represented by the
integers from 0 to 2n − 1. We will also denote N = 2n and hence the two self-
loops of Gn are at vertices 0 and N − 1. From the vertex whose integer value
is k, there are two edges, one to vertex 2k and a second to vertex 2k + 1, where
the computation is performed modulo N if 2k ≥ N . The graph G3 is depicted in
Fig. 1.1 in both its binary and integer representations.

FIGURE 1.1 The de Bruijn graph G3 in binary representation on the left and integer representation
on the right.

We will demonstrate the adjacency matrix on G3 in the following example.
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Example 1.6. Consider the de Bruijn graph G3, which is a directed graph, de-
picted in two different ways in Fig. 1.1. The adjacency matrix of G3, where
vertices are ordered by their number (binary or integer), is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�

Given the de Bruijn graph Gn defined by binary words, it is quite natural to
define the complement of Gn, Ḡn, to be the graph defined by complementing
the labeling on the vertices and edges of Gn. In other words, Ḡn = (V̄n, Ēn),
where

V̄n � {v̄ = (v̄1, v̄2, . . . , v̄n) : v = (v1, v2, . . . , vn) ∈ Vn}
and

Ēn � {(u, v) : (ū, v̄) ∈ En}.
Lemma 1.16. For each n ≥ 1, Ḡn = Gn.

Proof. Clearly, by the definition, we have that V̄n = Vn, i.e., each of these sets
contains all the 2n binary words of length n. By the definition of Ēn we have
that

Ēn = {((ū1, ū2, . . . , ūn), (ū2, . . . , ūn, ūn+1)) : ui ∈ {0,1}, 1 ≤ i ≤ n + 1}
= {((u1, u2, . . . , un), (u2, . . . , un,un+1)) : ui ∈ {0,1}, 1 ≤ i ≤ n + 1} = En

and hence Ḡn = Gn.

The reverse graph GR of the digraph G = (V ,E), is a digraph defined as
GR = (V ,ER), where

ER � {(u, v) : (v,u) ∈ E}.
Lemma 1.17. For each n ≥ 1, GR

n is isomorphic to Gn.

Proof. By the definition of GR
n , we have that

ER
n = {((x1, . . . , xn−1, xn), (x0, x1, . . . , xn−1)) : xi ∈ {0,1}, 0 ≤ i ≤ n}.
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Now, we apply the mapping gR : Vn → Vn defined by

gR(x1, x2, . . . , xn) = (xn, . . . , x2, x1),

which yields a mapping g′
R : ER

n → En defined by

g′
R(e) = (uR, vR), where e = (u, v) ∈ ER

n ,

u = (x1, . . . , xn−1, xn), and v = (x0, x1, . . . , xn−1).

This definition implies that

g′
R(ER

n ) = {((xn, xn−1, . . . , x1), (xn−1, . . . , x1, x0)) : xi ∈ {0,1}, 0 ≤ i ≤ n}.
Clearly, g′

R(ER
n ) = En and hence the definition of g′

R is consistent and GR
n is

isomorphic to Gn.

A span n de Bruijn sequence (or a de Bruijn sequence of order n, also called
a de Bruijn cycle of order n) over � is a cyclic sequence S = [s0, s1, . . . , sσn−1]
in which each n-tuple over � appears exactly once as a window in the sequence
(where a window consists of consecutive elements of the sequence and it can
also start at the end of the sequence and end at its beginning). The cyclic se-
quence S = [s0, s1, . . . , sσn−1] can be described as an acyclic sequence of length
σn + n − 1,

S′ = (s0, s1, . . . , sσn−1, s0, . . . , sn−1),

where each n-tuple over � appears exactly once as a window in the sequence
and also a first n-tuple is defined. We also define a span n shortened de Bruijn
sequence of length σn −1 to be a cyclic sequence in which each nonzero n-tuple
over � appears exactly once as a window in the sequence. The span of a se-
quence S is the least n for which all the consecutive n-tuples are distinct.

A de Bruijn sequence of order n is associated with two types of cycles in
the graph. On the one hand, this sequence forms an Eulerian cycle in the graph
Gσ,n−1. This sequence also forms a Hamiltonian cycle in the graph Gσ,n. Hence,
such cycles in the de Bruijn graph are also called de Bruijn cycles. As a Hamil-
tonian cycle, a de Bruijn cycle will be also called a full cycle. The cycles (either
Eulerian or Hamiltonian) are represented by σn consecutive symbols, where
each n consecutive symbols either represents an edge in Gσ,n−1 or a vertex
in Gσ,n. Given an Eulerian cycle in Gσ,n−1 or a Hamiltonian cycle in Gσ,n, the
de Bruijn sequence is generated, for example, by the first symbol of the consecu-
tive edges in the Eulerian cycle in Gσ,n−1 or the first symbol of the consecutive
vertices in the Hamiltonian cycle in Gσ,n. In other words, given a de Bruijn
sequence S = [s0s1s2 · · · sσn−1], a Hamiltonian cycle in Gσ,n is constructed
where the ith vertex in this cycle is (si , si+1, . . . , si+n−1), and subscripts are
taken modulo σn. Clearly, (si , si+1, . . . , si+n−1) → (si+1, . . . , si+n−1, si+n) is
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an edge in Gσ,n and hence S represents a Hamiltonian cycle in Gσ,n. On the
other hand, (si , si+1, . . . , si+n−1) can be viewed as the edge

(si , si+1, . . . , si+n−2) → (si+1, . . . , si+n−2, si+n−1)

in Gσ,n−1 and since each n-tuple appears exactly once as a window in S, it
follows that each edge of Gσ,n−1 will appear exactly once in the cycle. Therefore
we have the following two theorems.

Theorem 1.17. The number of span n de Bruijn sequences equals the number
of Eulerian cycles in Gσ,n−1.

Theorem 1.18. The number of span n de Bruijn sequences equals the number
of Hamiltonian cycles in Gσ,n.

Corollary 1.11. The number of Eulerian cycles in Gσ,n−1 equals the number of
Hamiltonian cycles in Gσ,n.

Similarly to a de Bruijn sequence, each cycle in Gσ,n can be represented
by a cyclic sequence. A cycle of length k in Gσ,n is represented by a cyclic
sequence of length k, S = [s0, s1, . . . , sk−1], where each n consecutive symbols
of S represents a vertex in Gσ,n.

Example 1.7. Consider the graph G6 and the four sequences, S1 = [01],
S2 = [0101], S3 = [00101], and S4 = [0001101].

The sequence S1 is the following simple cycle of length 2 and weight 1

(010101) → (101010) → (010101).

The sequence S2 is the following cycle

(010101) → (101010) → (010101) → (101010) → (010101)

of length 4. This cycle is not simple and its weight is 2. It is periodic with
period 2, where in one period we have the cycle S1.

S3 is the cycle of length 5, period 5, and weight 2

(001010) → (010100) → (101001) → (010010) → (100101) → (001010) .

S4 is the following cycle of length 7, period 7, and weight 3

(000110) → (001101) → (011010) → (110100)

→ (101000) → (010001) → (100011) → (000110) .

�
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The introduction of the de Bruijn graph was motivated by the interesting
combinatorial problem of enumerating the number of binary cyclic sequences
of length 2n in which each binary n-tuple appears exactly once as a window of
n consecutive symbols. The introduction of nonsingular feedback shift registers
that are associated with factors in the de Bruijn graph was motivated by many
practical applications. For example, it was first used in NASA missions for space
exploration.

The theory of shift-register sequences was developed in parallel with the
theory of cycles, with different lengths and properties, in the de Bruijn graph. In
this section, we consider only the binary case although many of the results can be
generalized to the non-binary case. However, in some cases, the generalization
for the non-binary case is slightly more complicated. Nevertheless, in Chapter 2
the linear theory will be discussed for any finite field, so some of the definitions
will be given for any finite field.

FIGURE 1.2 Feedback shift register of order n.

A feedback shift register of order n (an FSRn in short) has 2n states, rep-
resented by the set of 2n binary words of length n. The register has n cells
(which are binary storage elements, e.g., flip-flops that are positioned on a delay
line), where each cell stores at each stage one of the bits of the current state.
Such an FSRn is depicted in Fig. 1.2. Given the word (x1, x2, . . . , xn) that is
a state in the FSRn, xi is stored in the ith cell of the FSRn. The n cells are
connected to another logic element that computes a Boolean feedback function
f (x1, x2, . . . , xn). At periodic intervals that are controlled by a master clock,
x2 is transferred to x1, x3 to x2, and so on until xn is transferred to xn−1. The
value of the feedback function is transferred to xn and hence it is common to
denote xn+1 = f (x1, x2, . . . , xn). The register starts to work with an initial state
(a1, a2, . . . , an), where ai , 1 ≤ i ≤ n, is the initial value stored in the ith cell. The
feedback function f is a Boolean function and hence it also has a truth table.
There are 2n possible distinct values for x1, x2, . . . , xn, i.e., there are 2n distinct
states and each one can have a value of either 0 or 1. Hence, there are 22n

dif-
ferent FSRn, but not all of these functions are of interest.

A linear feedback shift register of order n (an LFSRn in short) over Fq is
an FSRn whose feedback function f is linear, i.e.,

xn+1 = f (x1, x2, . . . , xn) =
n∑

i=1

cixi, ci ∈ F2.
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It is possible to define feedback shift registers also over Fq , where ci ∈ Fq .
In this section, our exposition on shift registers will be only over F2. However,
when we consider the representation of linear shift registers and their sequences
as polynomials, also sequences and polynomials over Fq will be discussed. All
these will be done without an associated feedback shift register over Fq . How-
ever, it should be clear that once a factor in Gσ,n is given, then there exists a
bijective function from Vσ,n to Vσ,n associated with this factor.

Each FSRn has a state diagram that is a graph with 2n vertices (the states
of the FSRn). Given an FSRn with a feedback function f (x1, x2, . . . , xn), the
vertex (x1, x2, . . . , xn) in the associated state diagram has an edge to the vertex
(x2, . . . , xn, xn+1) if xn+1 = f (x1, x2, . . . , xn). This implies that the state dia-
gram with 2n states (vertices) has exactly 2n edges. A nonsingular feedback
shift register has a feedback function whose state diagram contains only cycles.
Such a state diagram is associated with a factor in Gn. These are the only FSRns
that are of interest and hence from the next chapter, all FSRns will always be
nonsingular. The length of the cycles (sequences) in the state diagram of the
FSRn will be always considered equal to their period, i.e., all these cycles are
simple. The same convention will be made in a factor of a graph, i.e., all the
cycles will be simple.

The feedback function of an FSRn is a Boolean (binary) function and hence,
as said before, it can be represented by a truth table. A truth table of a Boolean
function with n variables contains 2n rows. Each row contains a distinct binary
n-tuple (x1, x2, . . . , xn) and also the binary value f (x1, x2, . . . , xn) of the feed-
back function. When we refer to the truth table we usually refer to the values of
the function f .

Lemma 1.18. A (binary) FSRn is nonsingular if and only if for each xi ∈ {0,1},
2 ≤ i ≤ n, we have

f (0, x2, . . . , xn) �= f (1, x2, . . . , xn).

Proof. A state diagram of an FSRn contains only cycles if and only if the in-
degree and the out-degree of each vertex is one. By the definition of an FSRn,
we have that each vertex of the state diagram has an out-degree of one. Given a
vertex (x2, . . . , xn, xn+1), its in-degree is one if either xn+1 = f (0, x2, . . . , xn)

or xn+1 = f (1, x2, . . . , xn). Hence, a binary FSRn is nonsingular if and only if
for each xi ∈ {0,1}, 2 ≤ i ≤ n, we have that f (0, x2, . . . , xn) �= f (1, x2, . . . , xn).

Corollary 1.12. The last 2n−1 terms in the truth table of the feedback function
of a nonsingular FSRn are the complements of the first 2n−1 terms.

The weight of the feedback function f (x1, . . . , xn) of an FSRn is the num-
ber of ones of the first 2n−1 terms (of the function f ) in the truth table. This will
be also called the weight of the truth table (both halves of the table are comple-
ments and together have weight 2n−1 and hence only one half is important in
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describing the weight of the table). The truth table represents the function and
some properties of the function and its associated state diagram can be obtained
from the truth table. The function f of the FSRn can be also described by the
binary sequence whose entries are the consecutive values of f . Therefore the
truth table is important in our discussion.

Theorem 1.19. A (binary) FSRn is nonsingular if and only if its feedback func-
tion f (x1, x2, . . . , xn) satisfies

f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn),

where g(x2, . . . , xn) is any Boolean function.

Proof. Clearly for x = (x1, x2, . . . , xn) we have,

f (x) = x1f (1, x2, . . . , xn) + (x1 + 1)f (0, x2, . . . , xn). (1.7)

Assume first that f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn). Hence, for each
xi ∈ {0,1}, 2 ≤ i ≤ n, we have that

f (0, x2, . . . , xn) �= f (1, x2, . . . , xn)

and thus, by Lemma 1.18 f is nonsingular.
Assume now that f is nonsingular, i.e., by Lemma 1.18 for each xi ∈ {0,1},

2 ≤ i ≤ n, we have that

f (1, x2, . . . , xn) �= f (0, x2, . . . , xn),

which is equivalent to

f (1, x2, . . . , xn) = 1 + f (0, x2, . . . , xn).

Therefore by Eq. (1.7) we have that

f (x) = x1(f (0, x2, . . . , xn) + 1) + (x1 + 1)f (0, x2, . . . , xn)

= x1 + f (0, x2, . . . , xn) = x1 + g(x2, . . . , xn).

Corollary 1.13. The number of distinct nonsingular FSRns is 22n−1
.

Corollary 1.14. The number of distinct factors in Gn is 22n−1
.

Definition 1.7. The companion, x′ of a state x = (x1, x2, . . . , xn−1, xn) is the
state x′ = (x1, x2, . . . , xn−1, x̄n), i.e., x and x′ differ exactly on their last bit.

Definition 1.8. The conjugate, x̂ of a state x = (x1, x2, . . . , xn−1, xn) is the
state x̂ = (x̄1, x2, . . . , xn−1, xn), i.e., x and x̂ differ exactly on their first bit.
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Given a state diagram of a nonsingular FSRn, one might want to reduce the
number of cycles in the state diagram and obtain a new state diagram for an-
other FSRn with another feedback function. For this purpose, a simple merging
method called the merge-or-split method can be applied. Assume that we are
given a nonsingular FSRn with a feedback function

f (x) = f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn)

and a state diagram (factor) F of Gn that is associated with the function
f (x1, x2, . . . , xn). Consider now the two conjugate states (0, z1, . . . , zn−1) and
(1, z1, . . . , zn−1), and also consider the two companion states (z1, . . . , zn−1,0)

and (z1, . . . , zn−1,1), for any set of values for z1, · · · , zn−1 ∈ {0,1}. These four
states are associated with four edges in Gn as follows:

(0, z1, . . . , zn−1) → (z1, . . . , zn−1,0),

(1, z1, . . . , zn−1) → (z1, . . . , zn−1,1),

(0, z1, . . . , zn−1) → (z1, . . . , zn−1,1),

(1, z1, . . . , zn−1) → (z1, . . . , zn−1,0).

The factor F of Gn contains exactly two of these edges, either the first two or
the last two. Removing these two edges from F and adding the other two yields
a set F1. We claim that F1 is also a factor in Gn. This is a simple observation
as the exchange of these pairs of edges preserves the vertices of the factor and
also preserves the in-degree one and out-degree one of all the vertices. The new
function of the nonsingular FSRn associated with the factor F1 is

f1(x) = f1(x1, x2, . . . , xn) = x1 + g(x2, . . . , xn) + x
z2
2 x

z3
3 · · · xzn

n , (1.8)

where x1
i = xi and x0

i = x̄i . The function f1 differs from the function f only in
the rows of the conjugate states (0, z2, . . . , zn) and (1, z2, . . . , zn). The weights
of the truth table of the functions f and f1 differ by 1. If F contains the first
two edges, then its weight is smaller by 1 from the weight of the truth table of
the function f1 and vice versa. Finally, this exchange of edges either splits one
cycle in the state diagram of F into two cycles or merges two cycles in the state
diagram of F into one cycle. This merge-or-split method is depicted in Fig. 1.3.
When the predecessors of the companion states x and y (which are the conjugate
states u and v) are interchanged, either one cycle is split into two cycles or two
cycles are merged into one cycle. The two states x and y are called the bridging
states of the join (or the split). Bridging states can be taken either as companion
states (which will be usually the case in our discussion) or as conjugate states.
If in the state diagram, the state y follows the state v and the state x follows the
state u (one cycle), and the merge-or-split method is applied, then one cycle is
split into two. If in the state diagram the state y follows the state u and the state
x follows the state v (two cycles) and the merge-or-split method is applied, then
two cycles are merged into one. This implies the following consequences.
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FIGURE 1.3 The merge-or-split method. The conjugate states are u and v; the companion states
are x and y; the split and join of the cycles are depicted in the lower figures.

Lemma 1.19. For each state diagram of an FSRn, we can find a pair of bridging
states x and x′, such that interchanging the predecessors of x and x′ either
(1) merges two cycles C1 and C2 into one cycle and reduces the number of cycles
in the state diagram by one; or
(2) splits one cycle C into two cycles C1 and C2 and increases the number of
cycles in the state diagram by one.

If two companion states x and x′ are on two different cycles, then by applying
the merge-or-split method with x and x′ as bridging states, the two cycles will be
merged into one cycle. If two companion states x and x′ are on the same cycle,
then by applying the merge-or-split method with x and x′ as bridging states, the
cycle will be split into two cycles.

Lemma 1.20. Assume F is a factor in Gn and assume we are changing a zero
to a one or a one to a zero in the top half of the associated truth table and
the opposite change in the bottom half of the truth table (in the same related
row position modulo 2n−1). Then, either the number of cycles is increased by 1
compared to F (one cycle is split into two cycles) or the number of cycles is
decreased by 1 (two cycles are merged into one cycle).

Proof. The claim of the lemma follows immediately from the fact that such a
change in the truth table is equivalent to one application of the merge-or-split
method.

Corollary 1.15. Each application of the merge-or-split method changes the
weight of the truth table by one.

To summarize the merge-or-split method as described, we have the following
theorem.

Theorem 1.20. If a factor F contains k cycles, then the minimum number of
applications of the merge-or-split method to form a full cycle is k −1. Moreover,
there exist k −1 applications of the merge-or-split method that form a full cycle.
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Proof. By Lemma 1.20 each application of the merge-or-split method can join
two cycles of a factor into one. Therefore at least k − 1 applications of the
merge-or-split method are required to form a full cycle. To complete the proof it
is sufficient to prove that we can join two of the cycles and obtain a factor with
k − 1 cycles. Since by Lemma 1.15 we have that Gn is a strongly connected
graph, it follows that there exists an edge e = (u, v) of Gn, which is not an edge
of F , with u on one cycle C1 of F and v on another cycle C2 of F . This implies
that (u, v′) is an edge in F on C1, (û, v) is an edge in F on C2, and (û, v′) is
an edge of Gn that is not in F . Applying the merge-or-split method with these
four edges, (u, v), (u, v′), (û, v), and (û, v′), will join two cycles of F and form
a new factor with k − 1 cycles. By induction, a total of k − 1 applications of this
process with the merge-or-split method will yield a full cycle.

1.4 Overview of the chapters

The rest of the material in the book is organized into eleven chapters and is built
in a way that it can be used as a textbook for a course on this topic. Many chap-
ters contain material that can be split into two lectures or some of the material
can be skipped. Therefore one can prepare a course that can mention multi-
dimensional arrays only briefly or not mention them at all. Similarly, one can
reduce the enumeration methods considerably. This depends on the flavor that
the teachers want to give to their course. Each chapter will contain a short intro-
duction to the sections of the chapter, as was done at the beginning of the current
chapter.

Chapter 2 is devoted to the linear theory of feedback shift-register sequences.
In particular, the chapter discusses the length of the cycles obtained by a given
LFSRn. The traditional way to compute the length is by using a polynomial
representation of the feedback function and also a polynomial representation
of the obtained sequences. We will present a second method to compute the
length of the cycles by factoring the associated polynomial and either adding
sequences associated with the factored polynomials or interleaving them. The
scenario can be sometimes very clear if we add into the analysis the shift oper-
ator E and consider the polynomial that generates the sequence as a polynomial
with the variable E. In particular, we consider the sequences of maximum length
obtained by an LFSRn, called M-sequences. These sequences have many inter-
esting properties, some of which are exhibited in this chapter. For example, these
sequences are associated with patterns with distinct differences that will be also
discussed in the chapter. M-sequences are generated by primitive polynomials.
These polynomials and irreducible polynomials play an important role in our
exposition and they will be discussed in this chapter.

In Chapter 3 the nonlinear theory of feedback shift-register sequences is con-
sidered. In particular, we introduce a few FSRns and consider the number of
cycles that are produced by these feedback shift registers (some of these FSRns
are linear, but the number of cycles in these FSRn is not computed by linear
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methods). Counting the number of irreducible polynomials and primitive poly-
nomials of a given degree will be done in this chapter. We continue and present
some enumeration methods for the number of cycles with some given properties
and given length in de Bruijn graphs. In particular, we consider the number of
self-dual cycles. Finally, in this chapter, we show what is the largest number of
cycles induced by a state diagram of an FSRn.

Constructions of de Bruijn sequences are the topic of Chapter 4. First, con-
structions based on Eulerian cycles in the de Bruijn graph are presented. Based
on these constructions we will present an enumeration method to compute the
total number of de Bruijn sequences in Gn. Next, a recursive construction based
on a homomorphism of the de Bruijn graph, called the D-morphism (associated
with the operator D) will be presented. The properties of this operator in the
binary case and the non-binary case will be discussed. The feedback functions
of the sequences obtained by the recursive construction will be given. Finally,
constructions based on Hamiltonian cycles in the graph are presented. The basic
idea of the constructions is to start with a factor in the graph and merge its cycles
via the merge-or-split method. This method is also the basis for the first naive
constructions of de Bruijn sequences. Some other constructions that compete
with the first naive construction will be discussed. In these methods, the next
symbol of the sequence is determined by some rule associated with the last con-
structed n symbols of the sequence. These methods include the prefer one (for
the next bit) construction, the prefer same construction, and the prefer opposite
construction.

The linear complexity of sequences whose length is a power of a prime is
the topic of Chapter 5. The linear complexity is the length of the shortest LFSR
that generates the sequence. The linear complexity is an important parameter to
determine the predictability of the sequence (low linear complexity makes the
sequence of high predictability, but high linear complexity does not guarantee
low predictability). In particular, the linear complexity of de Bruijn sequences
is discussed. The basic concepts of linear complexity will be presented and an
efficient algorithm to compute the linear complexity of sequences whose length
is a power of a prime, and their alphabet is over a power of the same prime, will
be discussed. Constructions for de Bruijn sequences with specified complexity,
e.g., minimal and maximal, will be presented.

The linear complexity of sequences is one criterion from which sequences
are classified. Chapter 6 is devoted to several other methods to classify se-
quences. In particular, we classify balanced sequences, i.e., binary sequences
that have either the same number of ones and zeroes or the difference in their
number is one. M-sequences and de Bruijn sequences form two important fam-
ilies of these sequences. The classifications will be based on some properties
associated with these sequences. Sequences that satisfy some of the basic prop-
erties of M-sequences, which will be discussed in Chapter 2, will be classified.
Classification of de Bruijn sequences by the weight of the truth table will be dis-
cussed too. Furthermore, the linear complexity and the complexity distribution
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of shortened de Bruijn sequences will be examined too. Generalizations of de
Bruijn sequences, to sequences in which each �-tuple appears the same number
of times in the sequence, will be given. In this context, the derivative operator D,
will be used to classify balanced sequences based on the number of their bal-
anced derivatives. The basic property that each n-tuple appears as a window is
a constraint implied by the properties of a de Bruijn sequence. Finally, we con-
tinue and further generalize the concept of linear complexity discussed earlier
to acyclic sequences of any given length. With this generalization, we will also
classify linear codes and for this purpose, another measure called the depth of
the sequence will be defined.

Chapter 7 completes most of the discussion on one-dimensional sequences
by presenting several diverse applications of these sequences and the techniques
used for these sequences. The applications will come from different areas of
science. Stream ciphers form the cryptographic application of long sequences
in the de Bruijn graph (such as de Bruijn sequences). Testing and verification of
many Boolean functions with a small number of inputs for each function, but
a large number of inputs for all the functions is the next application. It will be
shown how to use sequences of irreducible polynomials for this testing. Gray
codes are the subject of much research as they have many applications, on the
one hand, and are of interest from a mathematical point of view, on the other
hand. One family of Gray codes, namely single-track Gray codes, has some nice
applications. The properties of such codes will be discussed. Two types of con-
structions of such codes, which resemble constructions of de Bruijn sequences,
will be presented, and their properties will be discussed too. The constructions
are based on either full-order sequences or full-order self-dual sequences. Proof
of the nonexistence of some codes based on the linear complexity of sequences
will be also given. The concepts of linear complexity and depth can be applied
also in combinatorial games and in particular in one game called the rotating-
table game. An analysis of a winning strategy for the game will be presented.

Chapter 8 is dedicated to two applications associated with DNA. The first
one is associated with the human genome project. The human genome project
started in the late 1980s and had as its target to find the human genome from
subsequences of the genome. Many methods were proposed for this task. In
particular, one of the most efficient methods is based on paths in the de Bruijn
graph, and much research was done in this direction. An introduction and a brief
illustration of the methods and in particular those using the de Bruijn graph will
be presented. The second application is associated with storage. The amount of
storage required at the beginning of the 21st century is increasing day to day and
new reliable and space-saving storage is required. It will not be too long before
we will suffer from a shortage of storage and especially reliable storage. Non-
volatile memories and in particular DNA storage was suggested as a solution
to the high demand for storage. This is the second topic of this chapter. Some
solutions for these applications require certain generalizations of the de Bruijn
graph. The first one is to consider a de Bruijn sequence based only on the words
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of the same weight w (or words with a few consecutive weights) in the graph.
As the subgraph of Gn that contains these words of length n and weight w is not
a connected graph, the words of length n − 1 and weights w − 1 and w, which
can represent these words of length n and weight w, will be considered in Gn−1.
The existence of an Eulerian cycle in this subgraph will be shown. Another type
of problem that will be discussed is the reconstruction of sequences from their
subsequences (either some complete windows in the sequence or some projec-
tions of the sequence). Finally, a few types of codes in which suffixes do not
overlap prefixes will be considered too. These types of codes include comma-
free codes and non-overlapping codes and they have some direct connection to
our overall exposition.

Chapter 9 presents generalizations of the one-dimensional sequences into
two-dimensional arrays. In particular, there is a generalization for de Bruijn
sequences, called de Bruijn arrays or perfect maps, an analog generalization
for M-sequences, called pseudo-random arrays, and an analog for shortened
de Bruijn sequences that will be called shortened de Bruijn arrays (or short-
ened perfect maps). There are also associated generalizations for the de Bruijn
graph. Direct constructions and recursive constructions for such arrays will be
presented. There are also several generalizations for patterns with distinct differ-
ences into two dimensions. These generalizations are also motivated by several
applications that are presented in Chapter 10.

The first application presented in Chapter 10 is to use two-dimensional pat-
terns with window property in a global positioning system (GPS), i.e., to design
an instrument for self-location in some areas. The constructed arrays have a
two-dimensional window property. Another application that will be discussed is
in assigning cryptographic keys for secure communication in a sensor network.
Patterns with distinct differences play an important role in the construction of
such schemes and systems. Finally, in this chapter, we present a method of fold-
ing a one-dimensional sequence with either the span n property or with distinct
differences into a two-dimensional array (or a multi-dimensional array) with
similar properties as in the one-dimensional sequence. These directions will
force us to consider some results associated with integer lattices and tiling of
the multi-dimensional grid.

Chapter 11 is devoted to one generalization of the de Bruijn graph into a
family of digraphs in which there is a unique directed path of length n between
any pair of vertices. These graphs can be described also in terms of the properties
of their adjacency matrices. Several properties of these graphs are discussed and
based on some of these properties an algorithm to decide whether two such
graphs are isomorphic or not, will be given. Constructions for large sets of these
graphs will be presented and an asymptotic enumeration of the number of non-
isomorphic graphs obtained by the constructions is provided. In this chapter
we will call the line graph also the integral graph, since it can be described
as an operation on the graph and the inverse operation can be regarded as its
derivative. The properties of these two operations will be discussed. It will be
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also shown how factors in these graphs can be associated with state diagrams of
nonsingular FSRns. These graphs can be also used to form a class of networks
in one of the important families of interconnection networks.

Interconnection networks are the topic of Chapter 12. The chapter takes a
completely different direction, defining networks that are used for parallel com-
putations. The discussion will be on networks that are either defined from the de
Bruijn graph or defined by a modification and a generalization of the de Bruijn
graph. This chapter is concentrated on the definitions of these networks and
in particular the shuffle-exchange network, which is derived directly from the
de Bruijn graph. Multistage interconnection networks, in which the basic ele-
ment is a 2 × 2 switching box, such as the omega network, the flip network, the
modified data manipulator network, and the baseline network, will be defined.
It will be shown that these networks are isomorphic. The connection between
these networks and the graphs with a unique path property will be discussed.
Interconnection networks will be considered also for the realization of permu-
tations and the minimum number of stages as well as the minimum number of
switching elements in a permutation network, will be considered too. Finally, in
this chapter, we consider problems associated with the implementations of some
of these networks with hardware. Implementation of interconnection networks
is on a board with appropriate wires between vertices that are connected in the
graph. Such an implementation forms an embedding of the network into another
graph and it is a layout of the network into electronic chips. Several layouts for
the shuffle-exchange network will be presented.

1.5 Notes

This chapter is very general and since it presents various concepts from different
areas, some material from each section appears in other books. Sometimes, the
definitions might be slightly different in the different books, but they all lead to
the same results. The chapter is an introduction to various concepts, but many
other important concepts are used in the book. For example, the well-known
Stirling’s formula, e.g., see MacWilliams and Sloane [47, p. 319], is required
for the approximation of formulas.

Theorem 1.21. For large enough n we have

n! ∼ √
2πn

(n

e

)n

and hence

log2(n!) = n · log2 n − n · log2 e + �(log2 n),

where e is Euler’s number, i.e.,

e = lim
n→∞

(
1 + 1

n

)n

≈ 2.71828 . . . .
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Section 1.1. This section presents the first preliminaries in groups, rings, and
finite fields. These are very important algebraic structures for some parts of the
book. An excellent reference book for algebra was written by MacLane and
Birkhoff [46] and also such material can be found in the excellent book of Lidl
and Niederreiter [35].

An important result that is frequently used in the discussion on polynomials
is the fundamental theorem of algebra. In our exposition, it is required in the
following setup.

Theorem 1.22. An irreducible polynomial f (x) of degree n over Fq has n dis-
tinct roots in the field Fqn .

Basic properties of finite fields will be used throughout the book. An excel-
lent reference on finite fields is the book by Lidl and Niederreiter [35]. Such
material also exists in most books on coding theory, e.g., see MacWilliams and
Sloane [47]. As an example, we have the following theorem whose proof can be
found in MacWilliams and Sloane [47, p. 107].

Theorem 1.23. If p is a prime number and m a positive integer, then xpm −x is
equal to the product of all monic polynomials irreducible over Fp, whose degree
divides m.

Similarly to Theorem 1.23, the following theorem can be also proved, as was
mentioned in MacWilliams and Sloane [47, p. 107].

Theorem 1.24. If q is a prime power and m a positive integer, then xqm − x is
equal to the product of all monic polynomials irreducible over Fq , whose degree
divides m.

Corollary 1.16. If q is a prime power, m a positive integer, and α a primitive
element in Fqm , then

xqm−1 − 1 =
qm−1∏
i=0

(x − αi) .

Burnside’s lemma was credited to the work of Burnside [13,14], but Burn-
side himself wrote that the credit for the result should be given to Frobenius [22].

The results we have presented on number theory are classic ones and appear
in any basic book on number theory such as Andrews [5], Niven and Zucker-
man [50], and Rosen [56]. A large number of open problems in basic number
theory and references to the work that was done on these problems can be found
in the book by Guy [27].

One step in finding primes is the well-known Dirichlet’s theorem.

Theorem 1.25. If a and b are two positive relatively prime integers, then the
arithmetic progression of terms ai +b, for i = 1,2, ..., contains an infinite num-
ber of primes.
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The proof of Theorem 1.25 is not simple and it is also beyond what is gen-
erally proved in the basic books on number theory. A proof of the theorem can
be found in Ireland and Rosen [31], Rosen [56], and Serre [57]. Even a simple
case of the theorem such as b = 1 requires a slightly complicated proof in Niven
and Zuckerman [50, pp. 226–228]. What is the gap between two consecutive
primes? This question occupied the thoughts of mathematicians for more than a
hundred years, e.g., see Tchudakoff [59]. A very important result in this direc-
tion was given by Ingham [30] from which many consequences were obtained.
Such a consequence is the following result proved by Cheng [15].

Theorem 1.26. For any given integer n sufficiently large, there is always a
prime p such that n < p < n + n5/8.

It is worthwhile noting that Corollary 1.3 can be also proved by using the
well-known combinatorial principle of inclusion–exclusion, see for example van
Lint and Wilson [38, p. 89].

The Euler function φ(·) and the Möbius function μ(·) are basic functions
in number theory and their analysis and applications can be found in any basic
book on number theory and also in some combinatorics books.

Theorems 1.13 and 1.14 are well-known theorems in number theory. The
converse to these theorems was proved later by Kelly [32] in two associated
theorems as follows.

Theorem 1.27. Let p be an integer of the form 4k + 1. Let the 4k least positive
residues modulo p be partitioned into two mutually exclusive classes of 2k el-
ements each. Call these two classes A and B. Suppose that A and B may be
chosen so that:

(a) 1 ∈ A.
(b) For every choice of a∗ ∈ A, the set a∗ + B contains k elements of A and

k elements of B.
(c) For every choice of b∗ ∈ B, the set b∗ + A contains k elements of A and

k elements of B.

Then,

(1) p is a prime.
(2) A consists of the quadratic residues modulo p and B consists of the

quadratic non-residues modulo p.

Theorem 1.28. Let p be an integer of the form 4k − 1. Let the 4k − 2 least
positive residues modulo p be partitioned into two mutually exclusive classes of
2k − 1 elements each. Call these two classes A and B. Suppose that A and B

may be chosen so that:

(a) 1 ∈ A.
(b) For every choice of a∗ ∈ A, the set a∗ + B contains 0, k − 1 elements of A

and k − 1 elements of B.
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(c) For every choice of b∗ ∈ B, the set b∗ + A contains 0, k − 1 elements of A

and k − 1 elements of B.

Then,

(1) p is a prime.
(2) A consists of the quadratic residues modulo p and B consists of the

quadratic non-residues modulo p.

There are many interesting families of primes of which some will be men-
tioned and used in the book. One such family is the set of Mersenne primes. A
prime number of the form 2n − 1 is called a Mersenne prime. Mersenne primes
are called after the French mathematician and monk Martin Mersenne who stud-
ied these primes in the 17th century. If 2n − 1 is a prime number, then n must be
a prime. The main interest in these primes arose since the test for their primality
is easier than for other possible primes. Such tests have been known for more
than a hundred years, see for example Lehmer [34] and Lucas [45], and there
is a volunteers project “great internet Mersenne prime search” (GIMPS) to find
Mersenne primes. Other primality tests for Mersenne primes were considered
during the years, e.g., see Gross [26]. Hence, it is no surprise that the largest
known primes are Mersenne primes. As of 2022, there are 51 known Mersenne
primes. The last interesting fact about Mersenne primes is their connection with
perfect numbers. A number n is called a perfect number if n equals the sum
of its divisor. It is well known that n is an even perfect number if and only if
n is of the form (2p − 1)2p−1, where 2p − 1 is a Mersenne prime. It is not
known whether there exists an odd perfect number greater than 1. This is a topic
of extensive research, see Ochem and Rao [51], Pollack and Shevelev [54] and
references in these papers and papers that cite them.

Section 1.2. Coding theory and the theory of sequences are parts of two re-
lated areas in information theory. We already mentioned the excellent book
on error-correcting codes by MacWilliams and Sloane [47]. There are other
books on coding theory, such as those of Berlkamp [7], Blahut [10], Blake and
Mullin [11], Etzion [19], Lin and Costello [36], McEliece [49], Pless [53], and
Roth [55].

Graph theory is also a very rich discipline and a sample of the theory can be
found in many books such as those of van Lint and Wilson [38], West [61], and
Wilson [62]. The research area of sequences is rich as sequences are also used
in many disciplines that are not connected at all to our exposition. For example,
one can consult a book on the combinatorics of words, e.g., see the volumes
under the pseudonym Lothaire [41–44]. The history with the basic results of
combinatorics on words was given by Berstel and Perrin [9].

Although this book is not about algorithms, it will be impossible to avoid
considering some of the associate algorithms, e.g., Euclid’s algorithm or algo-
rithms for constructing de Bruijn cycles. Algorithms to find Hamiltonian paths
and Eulerian paths are two types of algorithms that will be mentioned. In a
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general graph, the complexity of finding an Eulerian path, if such a path ex-
ists, depends on the data structure that is used. The process can be done in
time complexity O(|E|). On the other hand, finding a Hamiltonian path in a
general graph is considered to be a difficult problem and it is in the class of
problems called NP-complete, see Garey and Johnson [23]. Nevertheless, in
specific graphs like Gn, both problems are equivalent and are relatively easy to
solve.

Section 1.3. The de Bruijn graph Gn was defined by de Bruijn [12] and in paral-
lel by Good [25]. The number of span n de Bruijn sequences that will be proved
in Corollary 4.3 was computed by de Bruijn [12].

Theorem 1.29. The number of span n de Bruijn sequences is 22n−1−n.

The generalization to Gσ,n was done by van Aardenne-Ehrenfest and de
Bruijn [1]. The de Bruijn graph and its sequences are the concepts that tie to-
gether all the topics in our book. No book is devoted to the graph, although some
books have a chapter or two associated with the graph. Examples of such books
are those by Hall [29] and van Lint and Wilson [38]. There is no book whose
title and content indicate that the de Bruijn graph is at its center. There are books
on the genome assembly that have chapters on the de Bruijn graph or mention
the concept, e.g., see Compeau and Pevzner [16] and Mäkinen, Belazzougui,
Cunial, and Tomescu [48]. These chapters are noted since one of the applica-
tions of the de Bruijn graph is for the genome assembly; subgraphs of the de
Bruijn graph are considered for this application and more specifically, paths and
cycles in the graph are considered.

As for feedback shift registers and their sequences, there is no other excellent
book like that of Golomb [24]. The book also contains some material associated
with the de Bruijn graph. However, the material in this book is limited in scope,
and since more than fifty years have passed from the time that it was written and
only some limited material was added to the book in later editions, an updated
and more comprehensive book was required. Only the binary case is covered in
the book of Golomb [24] and the current book also expands in this direction. As
was mentioned when the definition of a shift register was given, the shift register
is made from some flip-flops. These are electronic elements in logic design that
were considered in many books, such as that by Patterson and Hennessy [52].

Section 1.4. The book contains diverse material from different areas of math-
ematics, computer science, and electrical engineering. Some of the material in
this book is in the front line of the research and some material is slightly out-
dated. However, the slightly outdated material also has its mathematical interest
and it includes techniques that might be used in future areas of research, as the
general topic of the book has a habit to reinvent itself over and over again in new
research areas. There is also new material in some of the chapters. For example,
the material in Chapters 2 and 3 is classic shift-register theory that is covered in
Golomb [24], but the first edition of that book was published in 1967 and only
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a “selective update” was added for the third edition. We have added new mate-
rial that is not covered in that book. Some of the enumerations did not appear
in Golomb [24], patterns with distinct differences were not covered there, and
the material on sequences from powers of irreducible polynomials is presented
from a different point of view. Chapters 4, 5, and 6 continue with some clas-
sic theory on sequences and in particular de Bruijn sequences and some more
recent material. Chapter 7 presents various applications in which the graph, its
sequences, and their generalizations, are involved. These applications show that
the theory that will be developed in the book can be used in practice. Chap-
ter 8 is an example of more recent applications of the graph and its sequences.
These applications have a direct line to DNA, either as DNA sequencing used in
the genome assembly project or for new storage technology, namely DNA stor-
age. Chapters 9 and 10 present the two-dimensional sequences, material that
currently does not appear in any book. Chapters 11 and 12 are motivated by
research that was done on the slightly outdated interconnection networks, but
they contain material of theoretical value as well as some material that is still
of use in communication for out-of-the-universe space. Also, the material of
Chapter 11 has its own algebraic and combinatorial interest.

Many topics on the de Bruijn graph and its sequences were not covered by
this book. For example, a nice connection between the de Bruijn graph and
the well-investigated fix-free codes was considered in Ahlswede, Balkenhol,
and Khachatrian [2] and Deppe and Schnetteler [18]. A partial list of some
other references for such papers includes Alhakim [3], Alhakim and Akin-
wande [4], Au [6], Bermond and Fraigniaud [8], Deng and Wu [17], Etzion and
Bar-David [20], Fraigniaud and Gauron [21], Hales and Hartsfield [28], Klas-
ing, Monien, Peine, and Stöhr [33], Lin and Zhang [37], Liu, Hildebrandt, and
Cavin [39], Liu, Lee, and Jordan [40], Tan, Xu, and Qi [58], and Wang, Zheng,
Wang, and Qi [60].
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Chapter 2

LFSR sequences
Polynomials, M-sequences, cycles, difference sets

This chapter is devoted to the most important shift registers, the linear shift reg-
isters, and to the linear theory of shift registers. There are several interesting
questions about the state diagrams of these shift registers. The first is about the
length of cycles in the state diagrams of the related shift registers. This ques-
tion is partially answered in Section 2.1 by using a polynomial representation
for both the shift-register functions that are linear and also for the sequences
generated by the associated functions of the shift registers.

The most interesting shift-register sequences are those for which their func-
tion is derived from a primitive polynomial. Primitive polynomials form a subset
of the irreducible polynomials. Sequences associated with primitive polynomi-
als are called M-sequences (for maximal length linear shift-register sequences)
or PN sequences (for pseudo-noise sequences). These sequences, which have
the maximum possible length for LFSRns, contain all the states of the state di-
agram, except for the all-zeros state that is always isolated, with a self-loop,
in the state diagram, since the function is linear. These sequences have many
interesting properties, some of which are discussed in Section 2.2.

Section 2.3 considers sequences that are generated by powers of irreducible
polynomials. We mainly concentrate on counting the number of sequences of
each length that are generated from a power of an irreducible polynomial. With
the initial discussion presented in Section 2.1, this completes the exposition on
this topic for any given polynomial.

One of the properties that M-sequences have is a good autocorrelation func-
tion. As such they can be used to form difference sets. The type of difference set
that they form is called a Hadamard difference set. These combinatorial struc-
tures are discussed in Section 2.4.

2.1 Sequence length and polynomial representation

Recall that an LFSRn has a feedback function of the form

f (x) = f (x1, x2, . . . , xn) =
n∑

i=1

cixn+1−i , ci ∈ Fq .

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00008-1
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As only nonsingular FSRs are considered we have that cn �= 0. Moreover,
w.l.o.g. we will assume later that cn = 1 and it will imply that our polynomials
in the following are monic. In other words, similar to Theorem 1.19 we have the
following theorem.

Theorem 2.1. An LFSRn over Fq is nonsingular if and only if its feedback
function f (x1, x2, . . . , xn) satisfies

f (x1, x2, . . . , xn) = cx1 + g(x2, . . . , xn), c ∈ Fq \ {0},
where g(x2, . . . , xn) is any linear function with n − 1 variables over Fq .

Corollary 2.1. The number of nonsingular LFSRn over Fq is (q − 1)qn−1. The
number of nonsingular binary LFSRn is 2n−1.

Note that sometimes we will use FSRn for plural. When used as plural it will
be readily understood from the context.

An LFSRn sequence {ak}∞k=−n, where the initial state is (a−n, a−n+1,. . ., a−1),
satisfies a linear recursion

ak =
n∑

i=1

ciak−i , k = 0,1, . . . . (2.1)

The generating function of {ak} is defined by

G(x) =
∞∑

k=0

akx
k .

The characteristic polynomial of the sequence {ak} is defined by

c(x) = 1 −
n∑

i=1

cix
i . (2.2)

We say that the characteristic polynomial c(x) generates the sequence {ak}.
Theorem 2.2. Let {a0, a1, a2, . . .} be a shift-register sequence with initial state
(a−n, a−n+1, . . . , a−1). If

γ (x) �
n∑

i=1

cix
i(a−ix

−i + a−i+1x
−i+1 + · · · + a−1x

−1)

=
n∑

i=1

cix
i

−1∑
k=−i

akx
k,

then degγ (x) ≤ n − 1 and G(x) = γ (x)
c(x)

.
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Proof. The fact that deg γ (x) ≤ n− 1 is easily verified by the structure of γ (x).
Now,

G(x) =
∞∑

k=0

akx
k =

∞∑
k=0

(
n∑

i=1

ciak−i

)
xk =

n∑
i=1

cix
i

∞∑
k=0

ak−ix
k−i

=
n∑

i=1

cix
i

∞∑
k=−i

akx
k =

n∑
i=1

cix
i

(
G(x) +

−1∑
k=−i

akx
k

)
.

Therefore

G(x) = G(x)

n∑
i=1

cix
i +

n∑
i=1

cix
i

−1∑
k=−i

akx
k = G(x)

n∑
i=1

cix
i + γ (x).

Hence,

G(x)

(
1 −

n∑
i=1

cix
i

)
= γ (x),

which implies that

G(x) = γ (x)

1 −∑n
i=1 cixi

= γ (x)

c(x)
,

and the proof of the theorem is completed.

By the definition of γ (x) in Theorem 2.2 and since degγ (x) ≤ n − 1, it
follows that

γ (x) =
n∑

i=1

cix
i(a−ix

−i + a−i+1x
−i+1 + · · · + a−1x

−1) =
n−1∑
i=0

γix
i . (2.3)

The coefficients of the polynomial γ (x) in Eq. (2.3) can be written in a
matrix form as follows:⎛

⎜⎜⎜⎜⎜⎝

γ0
γ1

...

γn−2
γn−1

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

cn cn−1 · · · c2 c1

0 cn · · · c3 c2

...
...

. . .
...

...

0 0 · · · cn cn−1

0 0 · · · 0 cn

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

a−n

a−n+1

...

a−2
a−1

⎞
⎟⎟⎟⎟⎟⎠ . (2.4)

If the LFSRn is nonsingular, then cn �= 0 (and w.l.o.g. cn = 1), and hence the
n × n matrix is invertible. Therefore for every polynomial h(x) whose degree is
less than n, there exists an initial state for which γ (x) = h(x). This polynomial
is obtained by solving the associated equations system obtained from Eq. (2.4).
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Each sequence of a nonsingular FSRn over Fq is periodic since there are only
qn possible states. Hence, the period of the sequence is π ≤ qn and for LFSRn

we have that π ≤ qn − 1 since the all-zeros state is in the separate sequence [0].
Definition 2.1. The exponent e(h(x)) of a polynomial h(x) over Fq is the least
integer e such that h(x) divides xe − 1.

The next result is a key theorem for computing the length of the sequences
generated by an LFSRn. It presents the connection between the exponent of a
polynomial and the period of the sequences that it generates.

Theorem 2.3. Let {ak} be a nonzero sequence over Fq whose characteristic
polynomial is c(x). If g.c.d.(γ (x), c(x)) = 1, then π({ak}) = e(c(x)).

Proof. Denote π({ak}) by π . By Theorem 2.2, the definition of G(x), and since
1

1−x
=∑∞

i=0 xi , it follows that

γ (x)

c(x)
= G(x) =

∞∑
k=0

akx
k =
(

π−1∑
k=0

akx
k

)( ∞∑
i=0

xiπ

)
=
∑π−1

k=0 akx
k

1 − xπ
= A(x)

1 − xπ
.

Hence,

γ (x)(1 − xπ) = A(x)c(x).

Since g.c.d.(γ (x), c(x)) = 1, it follows that c(x) divides 1 − xπ , which implies
that e(c(x)) ≤ π({ak}).

Let e be the exponent of c(x). Since c(x) divides 1 − xe, the degree of γ (x)

is at most n − 1, and the degree of c(x) is n, it follows that we can define

β(x) � γ (x)
1 − xe

c(x)
=

e−1∑
k=0

βkx
k.

Now, by Theorem 2.2, we have that

∞∑
k=0

akx
k = G(x) = γ (x)

c(x)
= β(x)

1 − xe
= β(x)

∞∑
i=0

xie.

Hence, π({ak}) ≤ e(c(x)).
Thus we have that π({ak}) = e(c(x)).

Corollary 2.2. If c(x) is an irreducible polynomial, then the period of its asso-
ciated sequence {ak} is the same for each initial state, except for the all-zeros
state.

Corollary 2.3. If c(x) is an irreducible polynomial of degree n, over Fq , then
all the nonzero sequences that it generates have the same period, which is a
factor of qn − 1.
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Corollary 2.4. If 2n − 1 is a prime, then every irreducible polynomial of de-
gree n, over F2, corresponds to a binary linear shift-register sequence of maxi-
mum length, i.e., length 2n − 1.

Assume that a sequence contains all the qn − 1 nonzero states before it re-
turns to the initial state. This implies that each nonzero n-tuple appears as a
window of length n in the sequence. Hence, we can choose the n-tuple (10n−1)

as the initial state. This implies that γ (x) = cn = 1, g.c.d.(γ (x), c(x)) = 1 and
the period of the sequence qn − 1 is the exponent of c(x).

Theorem 2.4. If the period of an LFSRn sequence is qn − 1, then its character-
istic polynomial c(x) is irreducible.

Proof. Assume that c(x) is a reducible polynomial and c(x) = s(x)t (x), where
g.c.d.(s(x), t (x)) = 1. Hence, by Theorem 1.6 there exist two polynomials α(x)

and β(x), where degα(x) < deg s(x) and degβ(x) < deg t (x), such that

1 = α(x)t (x) + β(x)s(x).

Therefore

1

c(x)
= α(x)

s(x)
+ β(x)

t (x)
.

Assume that s(x) and t (x) have degrees n1 > 0 and n2 > 0, respectively,
where n = n1 + n2, α(x)

s(x)
is a power series with a period π1, which is at

most qn1 − 1, β(x)
t (x)

is a power series with period π2, which is at most qn2 − 1.

Hence, 1
c(x)

= α(x)
s(x)

+ β(x)
t (x)

is a power series with a period equal to [π1,π2].
Clearly, [π1,π2] is at most (qn1 − 1)(qn2 − 1) < qn − 1, a contradiction. If
c(x) = (s(x))�, then the claims will follow from Corollary 2.25 (proved in Sec-
tion 2.3), which enumerates all the sequences obtained from this characteristic
polynomial.

Definition 2.2. An irreducible polynomial of degree n over Fq , which is a char-
acteristic polynomial of an LFSRn that generates a sequence of period qn − 1,
is called a primitive polynomial. The sequence of period qn −1 that it generates
is called an M-sequence.

Another definition for a primitive polynomial was given in Section 1.1 and
from the analysis of M-sequences it will be understood that the two definitions
are equivalent. In the rest of this section and also in Section 2.3 we will com-
plete the examination of the question regarding the number of cycles generated
by a given LFSRn whose characteristic polynomial is c(x), where c(x) is not an
irreducible polynomial. We examine first the sequences obtained from the mul-
tiplication of some irreducible polynomials, not necessarily of the same degree.

The following simple lemma is very significant in understanding the behav-
ior of sequences generated by an LFSRn.
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Lemma 2.1. If f (x1, x2, . . . , xn) is a function of an LFSRn, y = (y1, y2, . . . , yn)

and z = (z1, z2, . . . , zn) are two binary n-tuples, then f (y + z) = f (y) + f (z),
i.e.,

f (y1 + z1, y2 + z2, . . . , yn + zn) = f (y1, y2, . . . , yn) + f (z1, z2, . . . , zn).

Proof. Assume that

f (x1, x2, . . . , xn) =
n∑

i=1

aixi, ai ∈ Fq .

This implies that

f (y1 + z1, y2 + z2, . . . , yn + zn) =
n∑

i=1

ai(yi + zi)

=
n∑

i=1

aiyi +
n∑

i=1

aizi = f (y1, y2, . . . , yn) + f (z1, z2, . . . , zn).

Corollary 2.5. If S1 and S2 are two sequences of the same period that are gen-
erated by an LFSRn with a feedback function f , then S1 + S2 is also generated
by the same LFSRn.

Corollary 2.6. If fi(x), 1 ≤ i ≤ r , are r different primitive polynomials of de-
gree n over Fq , then the exponent of the polynomial

∏r
i=1 fi(x) is qn − 1.

We note that Corollary 2.6 can be also proved as a consequence of Theo-
rem 1.24 and Definition 2.1.

We consider again the linear recursion of a sequence as given in Eq. (2.1) that
is associated with the characteristic polynomial c(x) in Eq. (2.2). The following
lemma is a direct consequence of the definition of the shift operator E.

Lemma 2.2. If a sequence S = [s0, s1, . . . , sπ−1] satisfies a linear recurrence
of the degree m,

si+m = am−1si+m−1 + am−2si+m−2 + · · · + a1si+1 + a0si , ai ∈ Fq

for each i ≥ 0, then

Emsi =
⎛
⎝m−1∑

j=0

aj Ej

⎞
⎠ si

for each i ≥ 0.

We rephrase now the definition for a polynomial that generates a sequence.
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Definition 2.3. The polynomial c(x) generates the sequence S if c(E)S = 0
or equivalently if c(x)S(x) ≡ 0 (mod xπ − 1), where S(x) is the generating
function of S, i.e., the representation of S by a polynomial.

Definition 2.4. If c(x) is the polynomial of the least degree that generates the
sequence S, then c(x) will be also called the minimal polynomial of S.

Definition 2.5. The set of nonzero sequences that are generated by a polyno-
mial f (x) will be denoted by S(f (x)).

Example 2.1. For the irreducible polynomial f (x) = x4 + x3 + x2 + x + 1
over F2, we have that S(f (x)) = {[00011], [01010], [11011]}. �

By the definitions, we have that the characteristic polynomial c(x) of a se-
quence S generates the sequence S. Since the sequence S is a cyclic sequence
and c(x) generates the sequence S, it follows that c(x) generates any cyclic
shift EiS for each i ≥ 0.

Corollary 2.7. For any nonzero polynomial f (x) and any cyclic nonzero se-
quence S, f (E)S = 0, if and only if the sequence S is generated by f (x).

Corollary 2.8. If S is a nonzero cyclic sequence generated by the nonzero poly-
nomial f m(x) and f m−1(E)S = R, then S is not generated by f m−1(x) if and
only if the sequence R is a nonzero sequence generated by f (x).

Each sequence S can be generated by several distinct polynomials, but it
appears that the structure of the polynomials that generate S is determined by
the minimal polynomial of S.

Lemma 2.3. If the two polynomials f (x) and g(x) generate the same se-
quence S, then h(x) = g.c.d.(f (x), g(x)) also generates S.

Proof. By Corollary 2.7, f (x) generates S if and only if f (E)S = 0. Similarly,
g(x) generates S if and only if g(E)S = 0. By the Euclidean algorithm, there
exist two polynomials α(x) and β(x) such that h(x) = α(x)f (x) + β(x)g(x).
Hence, h(E)S = α(E)f (E)S + β(E)g(E)S, and therefore since f (E)S = 0 and
g(E)S = 0, it follows that h(E)S = 0. Therefore by Corollary 2.7, the polyno-
mial h(x) generates S.

Corollary 2.9. If S is a nonzero sequence, then it has a unique minimal poly-
nomial.

Corollary 2.10. If S is a nonzero sequence that is generated by the polyno-
mial f (x), and g(x) is any nonzero polynomial, then S is also generated by
f (x)g(x).

Corollary 2.11. If f (x) is a polynomial that generates the nonzero sequence S,
then the minimal polynomial of S is a factor of f (x).
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Corollary 2.12. If f (x) is an irreducible polynomial and f m(x) generates the
nonzero sequence S, then the minimal polynomial that generates S is f k(x) for
some 1 ≤ k ≤ m.

Lemma 2.4. If g(x) is an irreducible polynomial and R is a sequence in
S(g(x)), then for any polynomial f (x), such that g.c.d.(g(x), f (x)) = 1, we
have that f (E)R ∈ S(g(x)).

Proof. Suppose that S = f (E)R, for some sequence R ∈ S(g(x)).
Assume first, on the contrary, that S = 0, where 0 denotes a sequence of

zeros. By Corollary 2.7, this implies that f (x) generates R. Since g(x) also gen-
erates R, it follows by Lemma 2.3 that g.c.d.(g(x), f (x)) generates R. However,
g.c.d.(g(x), f (x)) = 1 and hence g.c.d.(g(x), f (x)) cannot generate a nonzero
sequence R, a contradiction. Thus S is a nonzero sequence.

Since R ∈ S(g(x)) it follows that

g(E)S = g(E)(f (E)R) = f (E)(g(E)R) = f (E)0 = 0.

Since S is a nonzero sequence, it follows that S = f (E)R ∈ S(g(x)).

The second part of Lemma 2.4 can be proved also by using Corollary 2.5.
Lemma 2.4 leads to three interesting consequences.

Corollary 2.13. If g(x) is an irreducible polynomial and R is a nonzero se-
quence generated by g(x), then for any polynomial f (x), f (E)R = 0 if and
only if f (x) is divisible by g(x).

Proof. If f (x) is divisible by g(x), i.e., f (x) = h(x)g(x), then

f (E)R = h(E)g(E)R = h(E)0 = 0.

Now, suppose that f (E)R = 0 and assume that f (x) is not divisible by g(x).
Since g(x) is an irreducible polynomial, it implies that g.c.d.(g(x), f (x)) = 1.
Therefore by Lemma 2.4, f (E)R ∈ S(g(x)) and hence f (E)R �= 0, a contra-
diction. Thus f (x) is divisible by g(x).

Corollary 2.14. Assume that g(x) and f (x) are two polynomials over Fq . If
g.c.d.(g(x), f (x)) = 1, then the only sequence that is generated by both g(x)

and f (x) is the all-zeros sequence.

The third consequence from Lemma 2.4 is a generalization of the shift-and-
add property that will be discussed in the next section. This version, which is a
consequence of Lemma 2.4, generalizes the one that is usually used.

Corollary 2.15. Let S be an M-sequence generated by a polynomial g(x). If
f (x) is any other polynomial for which g.c.d.(g(x), f (x)) = 1, then f (E)S � S.
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Proof. Since S is an M-sequence, it follows that g(x) is a primitive polynomial
and S is the only sequence in S(g(x)). The claim is now an immediate conse-
quence from Lemma 2.4.

We continue to discuss the length of the sequences that are generated by
an LFSR and the number of sequences for each length. Sequences will be also
referred to as cycles since they represent cycles in the associated states diagrams.

Lemma 2.5. Assume an LFSRn1 with a characteristic polynomial c1(x) gen-
erates a cycle C1 whose period is r , i.e., C1 = [a0a1 · · · ar−1] and an LFSRn2

with a characteristic polynomial c2(x) generates a cycle C2 whose period is s,
s ≥ r , i.e., C2 = [b0b1 · · · bs−1]. If g.c.d.(c1(x), c2(x)) = 1, then the LFSRn1+n2

with characteristic polynomial c1(x)c2(x) has g.c.d.(r, s) = r·s
[r,s] distinct cycles

of period [r, s] of the form

C1 +EjC2 � [a0 +bj , a1 +bj+1, a2 +bj+2 · · · ar−1 +bj+r−1, a0 +bj+r , · · · ],
where 0 ≤ j < g.c.d.(r, s) and the indices in ς� are taken modulo s.

Proof. For a given j , where 0 ≤ j < r·s
[r,s] consider the cycle C1 + EjC2. Since

c1(x)c2(x) = c2(x)c1(x), and by definition c1(E)C1 = 0 and c2(E)EjC2 = 0, it
follows that

c1(E)c2(E)(C1 + EjC2) = c2(E)c1(E)C1 + c1(E)c2(E)EjC2 = 0

and hence C1 + EjC2 is a cycle generated by the characteristic polynomial
c1(x)c2(x).

It is straightforward to see that [r, s] is a period of C � C1 + EjC2. We will
show now that the least period of the cycle C is [r, s]. Since the defined cycle
has a period that is the least common multiple of r and s, it follows that if it has
some smaller period, then this period should be a divisor of [r, s]. Assume, on
the contrary, that there exists such a period r ′s′t , where t = g.c.d.(r, s), r ′ di-
vides r/t , and s′ divides s/t . This implies that the cycle C also has a period
p′ = δr < [r, s] or a period p′ = δs < [r, s], where δ divides s or δ divides r ,
respectively. We distinguish now between these two cases.
Case 1: p′ = δr < [r, s].

Assume first that n1 ≥ n2. Consider the first n1 bits, (x1, . . . , xn1), of C and
these n1 bits, (x1, . . . , xn1), after the period p′. These n1 bits are obtained from
the same n1 bits of C1 (since the period r of C1 divides p′) added to n1 bits of C2
that are located in two different positions of C2 (the positions are different since
p′ is not a multiple of s) and since n2 ≤ n1 these n1 bits on the two different
locations of C2 cannot be the same. Therefore the addition in these two locations
will yield two different strings of length n1, contradicting the periodicity p′.

Assume now that n2 ≥ n1. Consider the first n2 bits of the cycle C and these
n2 bits after the period p′. These bits are combined from the same n2 bits of C1
added to n2 bits of C2 that are from two different positions of C2. Therefore the



62 Sequences and the de Bruijn Graph

addition will yield two different strings of length n2, contradicting the periodic-
ity p′.
Case 2: p′ = δs < [r, s].

As in Case 1, consider the first n1 bits (or n2 bits, respectively) of the cycle
and the n1 bits (or n2 bits, respectively) after period p′. Now, the bits coming
from C2 are the same, while those coming from C1 are different, yielding the
same contradiction.

To complete the proof we have to show that for each 0 ≤ j2 < j1 <

g.c.d.(r, s) the cycles C1 + Ej1C2 and C1 + Ej2C2 are distinct cycles (not equiv-
alent cycles, i.e., C1 + Ej1C2 �� C1 + Ej2C2).

Assume, on the contrary, that C1 + Ej1C2 � C1 + Ej2C2, i.e., there exists an
integer j , where 0 ≤ j < [r, s], such that

Ej
(
C1 + Ej1C2

)
= C1 + Ej2C2,

which implies that

EjC1 − C1 = Ej2C2 − Ej+j1C2.

By Corollary 2.5, the sequence EjC1 − C1 is also a sequence generated by
the polynomial c1(x) and the sequence Ej2C2 − Ej+j1C2 is also a sequence gen-
erated by the polynomial c2(x). Since g.c.d.(c1(x), c2(x)) = 1, it follows by
Corollary 2.14 that the only sequence that is generated by both c1(x) and c2(x)

is the all-zeros sequence. If EjC1 − C1 is the all-zeros sequence, then we have
that r divides j . If Ej2C2 − Ej+j1C2 is the all-zeros sequence, then we have that
s divides j + j1 − j2. Since 0 ≤ j < g.c.d.(r, s) ≤ [r, s] and r divides j , it fol-
lows that j = i · r , where 0 ≤ i < [r,s]

r
. Similarly, since s divides j + j1 − j2, it

follows that j + j1 − j2 = � · s, i.e., j1 − j2 = � · s − i · r , where 0 ≤ � < [r,s]
s

.
However, by Lemma 1.1 we have that rs = g.c.d.(r, s) · [r, s]. Moreover, by

Corollary 1.1 we have that

|� · s − i · r| ≥ g.c.d.(r, s) = rs

[r, s]
and hence since 0 ≤ j2 < j1 < g.c.d.(r, s), it follows that j1 − j2 �= � · s − i · r ,
a contradiction.

Thus the claims of the lemma follow.

The set of g.c.d.(r, s) cycles obtained from the two cycles C1 and C2 gen-
erated from the two polynomials c1(x) and c2(x), respectively, as described in
Lemma 2.5, will be denoted by 	(C1,C2) and will be called the product of the
cycles C1 and C2. For a simple cycle C, let |C| denote the number of states in C,
i.e., the period of C.

Lemma 2.6. With the same conditions as in Lemma 2.5, the number of distinct
states, of length n1 + n2, in the cycles of the product 	(C1,C2) is |C1| · |C2|.
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Proof. This follows immediately from the definition of 	(C1,C2), Lemma 2.5,
and the observation that if two cycles have a state in common, then by the
recursion implied by the feedback function we have that the two cycles are iden-
tical.

Theorem 2.5. Assume an LFSRn1 with a characteristic polynomial c1(x) has
cycles C1 and C2 (not necessarily distinct) and an LFSRn2 with a characteris-
tic polynomial c2(x) has cycles S1 and S2 (not necessarily distinct). Assume
further that g.c.d.(c1(x), c2(x)) = 1. If C1 �� C2 or S1 �� S2, then the sets of cy-
cles 	(C1,S1) and 	(C2,S2) contain distinct states. As a consequence, all the
cycles, of the LFSRn1+n2 whose characteristic polynomial is c1(x)c2(x), are
generated in this way.

Proof. By Lemmas 2.5 and 2.6, we have that 	(Ci ,Sj ) have rs
[r,s] distinct cycles

with a total of rs distinct states, where r is the period of C1 and s is the period
of C2. All these cycles are generated by LFSRn1+n2 and hence by Lemma 2.5
each of the two cycles are either equivalent or disjoint (in states). We will
show now that the cycles contained in 	(Ci1 ,Sj1) and the cycles contained in
	(Ci2 ,Sj2) are not equivalent when i1 �= i2 or j1 �= j2. Assume, on the contrary,
that there exists i1, j1, i2, j2 ∈ {1,2}, where i1 �= i2 or j1 �= j2, such that

Ci1 + Sj1 = Ci2 + Sj2 ,

when we assume that the four sequences are given in the appropriate shift to
have this equality. However, this implies that Ci3 = Ci1 − Ci2 = Sj2 − Sj1 = Sj3 ,
where Ci3 is generated by LFSRn1 and Sj3 is generated by LFSRn2 , which
implies that this is the all-zeros sequence, i.e., Ci1 = Ci2 and Sj1 = Sj2 , a contra-
diction.

The number of states in Gq,n1 is qn1 and the number of states in Gq,n2 is qn2 .
Assume that c1(x) generates k distinct cycles C1,C2, . . . ,Ck and c2(x) generates
m distinct cycles S1,S2, . . . ,Sm. Since by Lemma 2.6 each product of cycles
	(Ci ,Sj ) forms sequences with a total of |Ci | · |Sj | distinct states in Gq,n1+n2

and no two products have the same states, it follows that the total number of
states in

k⋃
i=1

m⋃
j=1

	(Ci ,Sj )

is

k∑
i=1

m∑
j=1

|Ci | · |Sj | =
(

k∑
i=1

|Ci |
)

·
⎛
⎝ m∑

j=1

|Sj |
⎞
⎠= qn1qn2 = qn1+n2,

which implies that all states of Gq,n1+n2 are formed in this way.
Thus the set of cycles 	(C1,S1), 	(C2,S2) contains distinct states and all

the cycles of the LFSRn1+n2 with characteristic polynomial c1(x)c2(x) are gen-
erated in this way.
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Theorem 2.5 suggests a simple recursive method to compute the number of
cycles for each length generated by a polynomial f (x) that is not irreducible.
We just have to factorize f (x) into two polynomials c1(x) and c2(x) such that
g.c.d.(c1(x), c2(x)) = 1 and the number of cycles of each length generated by
each polynomial is known. The basis of the recursion are polynomials of the
form f (x)m, where f (x) is an irreducible polynomial and m ≥ 1. When m = 1
these polynomials are associated with irreducible polynomials, as discussed in
this section. Some of them will be also analyzed in the next section. When m ≥ 2
these polynomials are discussed in Section 2.3.

To end this section we will consider two binary linear shift registers that have
reversed feedback functions. For a feedback function

f (x1, x2, . . . , xn) = x1 +
n∑

i=2

aixi,

the reversed function f R(x1, x2, . . . , xn) is defined by

f R(x1, x2, . . . , xn) = x1 +
n∑

i=2

an−i+2xi.

Theorem 2.6. The sequences generated by the reversed function, f R , of a feed-
back function f (x1, x2, . . . , xn) are the reverse sequences of those generated by
the feedback function f .

Proof. By the function f we have that for each state (x1, x2, . . . , xn),

xn+1 = f (x1, x2, . . . , xn) = x1 +
n∑

i=2

aixi .

Hence, we have that for the state (xn+1, xn, . . . , x2),

f R(xn+1, xn, . . . , x2) = xn+1 +
n−2∑
i=0

an−ixn−i = xn+1 +
n∑

i=2

aixi = x1 .

This implies that the sequences generated by f R are the reverse sequences gen-
erated by f .

2.2 Maximum length linear shift-register sequences

Recall that a nonzero sequence whose characteristic polynomial is primitive
is called an M-sequence (for maximal length sequence) or PN sequence (for
pseudo-noise sequence). For an M-sequence {ak} we define

A0 = (a0, a1, . . . , aπ−1), α0 = (a0, a1, . . . , an−1)
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and

Ak = (ak, ak+1, . . . , aπ−1, a0, . . . , ak−1), αk = (ak, ak+1, . . . , ak+n−1)

for each 0 ≤ k < π .
Clearly, by Corollary 2.5 and Corollary 2.15 we have that Ai + Aj = A�

for 0 ≤ i < j < qn − 1 since the Ai and Aj satisfy the same recursion and
there is only one nonzero (cyclic) sequence that satisfies this recursion. This
is the shift-and-add property of M-sequences, a property that was general-
ized in Corollary 2.15. If the polynomial f (x) = xj−i + 1 used for this pur-
pose in Lemma 2.4 and in Corollary 2.15, then we have as in Corollary 2.15,
f (E)S = (Ej−i + 1)S = Ej−iS + S � S, which is exactly the shift-and-add
property.

Example 2.2. Consider the characteristic polynomial c(x) = x4 +x +1 over F2
and the associated recursion a4 = a3 + a0. The M-sequence generated by this
recursion, when a0 = a1 = a2 = 0, and a3 = 1 is 000111101011001. Now,

A0 + A5 = 000111101011001 + 110101100100011 = 110010001111010 = A10.

�

Random sequences, such as those formed by coin flipping are very important
in many applications. The search for associated pseudo-random sequences and
the desire to define their properties were always targeted by mathematicians and
computer scientists. The following properties defined by Solomon W. Golomb
were perhaps the first such attempt.

Golomb’s randomness postulates:

For a periodic sequence {am}πm=1 over {−1,+1}
R-1

∣∣∑π
m=1 am

∣∣≤ 1.
R-2 In every period, half of the runs have length one, a quarter have length two,

one-eighth have length three, etc., as long as there are at least two runs. For
each of these lengths, the number of runs of −1s and +1s are equal.

R-3 Two values for the autocorrelation function

C(τ) =
π∑

m=1

amam+τ =
{

π τ = 0

K 0 < τ < π
,

where the computation is over the reals.

Theorem 2.7. A binary M-sequence A satisfies R-1, R-2, and R-3, when 0 is
replaced by +1 and 1 is replaced by −1.

Proof. The first property of a binary M-sequence S of length 2n − 1 is that each
nonzero binary n-tuple appears exactly once in each period of the M-sequence S.

R-1 is implied since S has 2n−1 values of −1s and 2n−1 − 1 values of +1s.
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R-2 let rk denote the number of runs of length k in S. Consider the n-tuples
starting with 10k1. There are 2n−k−2 such n-tuples. Hence, rk = 2n−k−1,
where 1 ≤ k ≤ n − 2; rn−1 = rn = 1. This is for the total of 2n−1 runs.

R-3 is implied by the shift-and-add property, which yields K = −1.

Consider the characteristic polynomial c(x) over Fq given by

c(x) = 1 −
n∑

i=1

cix
i

and assume that the polynomial

ĉ(x) � xnc(x−1) = xn −
n∑

i=1

cix
n−i , (2.5)

called the companion polynomial, is a primitive polynomial. The companion
matrix C of c(x) is defined by

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 cn

1 0 · · · 0 cn−1

0 1 · · · 0 ck−2

...
...

. . .
...

...

0 0 · · · 1 c1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

If β is a root of ĉ(x), then from Eq. (2.5) we have that

βn =
n∑

i=1

ciβ
n−i =

n−1∑
i=0

cn−iβ
i

and for each k ≥ 0 we have by definition that

βk =
n−1∑
i=0

biβ
i .

In vector notation, we have

(
βk
)

=

⎛
⎜⎜⎜⎜⎝

b0

b1

...

bn−1

⎞
⎟⎟⎟⎟⎠ .
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Therefore we have that

βk+1 =
n−1∑
i=0

biβ
i+1 =

n−1∑
i=1

bi−1β
i + bn−1β

n

=
n−1∑
i=1

bi−1β
i + bn−1

n−1∑
i=0

cn−iβ
i = bn−1cn +

n−1∑
i=1

(bi−1 + bn−1cn−i )β
i .

This implies that (
βk+1

)
= C

(
βk
)

.

Therefore we have that
(
βk
)= Ck

(
β0
)
, and it follows that

CkI = Ck
[(

β0
) (

β1
)

· · ·
(
βn−1

)]
=
[(

βk
) (

βk+1
)

· · ·
(
βk+n−1

)]
and hence

βi + βj = β� ⇒ βi+k + βj+k = β�+k ⇒ Ci + Cj = C�.

Theorem 2.8. The mapping ϕ defined by ϕ(βi) = Ci for each 0 ≤ i < π and
ϕ(0) = 0, is an isomorphism.

Proof. The claim follows from the following equalities:

ϕ(βi + βj ) = ϕ(β�) = C� = Ci + Cj = ϕ(βi) + ϕ(βj )

ϕ(βi · βj ) = ϕ(βi+j ) = Ci+j = Ci · Cj = ϕ(βi) · ϕ(βj ).

Corollary 2.16. The set {0n} ∪ {αk}π−1
k=0 with vector addition and multiplication

defined by αi · αj = αi+j (mod π) for 0 ≤ i, j < π and 0n · γ = γ · 0n = 0n, is
isomorphic to Fπ+1. The same holds when αk is replaced by Ak and 0n by 0π .

Theorem 2.9. A set with n shifts of an M-sequence (as a row vector)
of length 2n − 1, which are linearly independent vectors, written by an
n × (2n − 1) matrix (each shift as one of the rows), contains each nonzero col-
umn vector defined by the 2n − 1 nonzero n-tuple as one of the columns.

Proof. It is easy to verify that the first n shifts have this property. If some other n

shifts have this property, then by replacing one row with its addition to another
row, the new n shifts have this property. Any n linearly independent such shifts
can be obtained in this way and the claim is proved.

Theorem 2.10. A set with n shifts of an M-sequence (as a row vector) of
length qn −1, which are linearly independent vectors, written as an n× (qn −1)

matrix, contains each nonzero column vector defined by the qn − 1 nonzero n-
tuple as one of the columns.
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Theorem 2.11. For all prime powers q, n ≥ 1, and 1 ≤ k ≤ qn, there exists an
FSRn over Fq that generates a cycle of length k.

Proof. If k = qn, then let S be an M-sequence of length qn − 1 over Fq .
By definition, we have the edge α0 → α1, where α0 = (1,0, . . . ,0) and
α1 = (0, . . . ,0,1). Clearly, the only state not in S is (0,0, . . . ,0) and we can
insert it between α0 and α1, i.e., α0 → (0,0, . . . ,0) → α1 to obtain a cycle of
length qn.

Now, assume that 1 ≤ k < qn − 1 and consider a primitive element β ∈ Fqn .
We have that βk − 1 = βt for some t , which implies that βk−t = β0 + β−t , and
hence by Corollary 2.16 αk−t = α0 + α−t . Therefore we have that in Gq,n the
vertices αk−t and α−t have the same successors, i.e., they are conjugate states.
Thus we can apply the merge-or-split method to obtain two cycles from the
M-sequence S, as depicted in Fig. 2.1.

FIGURE 2.1 The merge-or-split of Theorem 2.11.

The first cycle has the following sequence of edges

· · · → αk−t−1 → αk−t → α−t+1 → α−t+2 → ·· ·

and hence its length is π − k = qn − 1 − k (see Fig. 2.1). The second cycle has
the following sequence of edges

· · · → α−t−1 → α−t → αk−t+1 → αk−t+2 → ·· ·

and hence its length is k (see Fig. 2.1).

Example 2.3. For q = 2 and n = 4, let c(x) = x4 + x3 + 1 be the characteristic
polynomial and hence ĉ(x) = x4 + x + 1 is its companion polynomial and⎛

⎜⎜⎜⎝
0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠

is its associated companion matrix. This implies that {ak} is obtained from the
recurrence ak = ak−3 +ak−4 and also αk = αk−3 +αk−4. Let β be a root of ĉ(x),
i.e., β4 + β + 1 = 0 or β4 = β + 1 and therefore F16 formed from ĉ(x) has the
following structure
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k | β3 β2 β β0 | ak ak+1 ak+2 ak+3

0 | 0 0 0 1 | 1 0 0 0
1 | 0 0 1 0 | 0 0 0 1
2 | 0 1 0 0 | 0 0 1 0
3 | 1 0 0 0 | 0 1 0 0
4 | 0 0 1 1 | 1 0 0 1
5 | 0 1 1 0 | 0 0 1 1
6 | 1 1 0 0 | 0 1 1 0
7 | 1 0 1 1 | 1 1 0 1
8 | 0 1 0 1 | 1 0 1 0
9 | 1 0 1 0 | 0 1 0 1

10 | 0 1 1 1 | 1 0 1 1
11 | 1 1 1 0 | 0 1 1 1
12 | 1 1 1 1 | 1 1 1 1
13 | 1 1 0 1 | 1 1 1 0
14 | 1 0 0 1 | 1 1 0 0

,

where αk = akak+1ak+2ak+3.
The associated binary M-sequence of length π = 15 is

{ak} = 10001001101011

and as a cycle in the de Bruijn graph, it is depicted in Fig. 2.2. This cycle of
length 15 is split into two cycles of length 6 and 9, as explained in the proof of
Theorem 2.11. �

FIGURE 2.2 The merge-or-split of Theorem 2.11 to form cycles of length 6 and 9 from an
M-sequence of length 15.
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Next, we will try to find some operations that will partition a set of sequences
into equivalence classes and will be able to have some classification of the se-
quences. A more detailed discussion on possible classification will be given in
Chapter 6. For this classification, two operations – the shift and the decimation,
will be defined. Specifically, these operations will work on M-sequences and
difference sets that will be presented in Section 2.4.

Definition 2.6. The t-shift of a sequence {ak}, with period π , is defined by

S t {ak} � Et {ak} = {at+k} = {at , at+1, at+2, . . .}.
For an integer r , such that 0 < r < π and g.c.d.(r,π) = 1, the r-decimation

of a sequence {ak} is defined by

Dr{ak} � {akr} = {a0, ar , a2r , . . .}.
The following two theorems can be easily verified.

Theorem 2.12. The π shift operators S0,S1,S2, . . . ,Sπ−1 form an Abelian
group under the decomposition

S t1S t2 = S t3, t3 ≡ t1 + t2 (mod π).

Theorem 2.13. The φ(π) decimation operators Dr , such that 1 ≤ r < π and
g.c.d.(r,π) = 1, form an Abelian group under the composition

Dr1Dr2 = Dr3 , r3 ≡ r1r2 (mod π).

Lemma 2.7. For each integer t and an integer r , such that 0 < r < π and
g.c.d.(r,π) = 1,

DrS t {ak} = {at+kr}.
Proof. Note that

Dr {b0, b1, b2, b3, . . .} = {b0, br , b2r , b3r , · · · }
and if {b0, b1, b2, b3, . . .} = {at , at+1, at+2, at+3, . . .}, then

Dr {at , at+1, at+2, . . .} = {at , at+r , at+2r , . . .}.
The lemma follows now from the sequence of equalities

DrS t {ak} =Dr {at+k} =Dr {at , at+1, at+2, . . .} = {at , at+r , at+2r , . . .} = {at+kr }.
Corollary 2.17. For each two integers t and r , such that 0 < r < π and
g.c.d.(r,π) = 1, we have that

DrS tr{ak} = Dr {atr , atr+1, atr+2, . . .}
= {atr+r , atr+2r , atr+3r , . . .} = {atr+kr} = {a(t+k)r}.
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Lemma 2.8. For each nonnegative integer t and an integer r , such that
0 < r < π and g.c.d.(r,π) = 1,

S tDr {ak} = DrS tr{ak}.
Proof. The claim follows from the sequence of equalities using Corollary 2.17:

S tDr{ak} = S t {akr} = S t {a0ara2r · · · }
= {atra(t+1)ra(t+2)r · · · } = {a(t+k)r} = DrS tr{ak}.

Corollary 2.18. For each integer t and an integer r , such that 0 < r < π and
g.c.d.(r,π) = 1, then

DrS t = Sr−1tDr .

Proof. By Lemma 2.8 we have that

Sr−1tDr = DrSr−1tr = DrS t .

Lemma 2.9. The set πφ (see Eq. (1.4)) is a multiplicative Abelian group of the
nonzero residues modulo π .

Proof. Clearly (a · b) · c = a · (b · c) for each a, b, c ∈ πφ . It is also clear that
1 ∈ πφ is an identity element. Finally, if g.c.d.(a,π) = 1, then by Theorem 1.5
there exist two integers r and s such that

a · r + π · s = 1,

which implies that

a · r ≡ 1 (mod π).

Therefore the residue modulo π between 0 and π −1 that is congruent to r mod-
ulo π is relatively prime to π and is the inverse of a. Thus πφ is a group and it
is readily verified that the group is Abelian.

Lemma 2.10. Let A be a subset of πφ such that for every r ∈ A there exists an
integer t , 0 ≤ t < π , such that Dr {ak} = S t {ak}. Then, A is a subgroup of πφ .

Proof. Let r1, r2 ∈ A, i.e., by the definition of A, there exist t1, t2, such that

Dri {ak} = S ti {ak} for i ∈ {1,2}.
Now, we have the following sequence of equalities (using Theorems 2.12
and 2.13 and Corollary 2.18)

Dr1r2{ak} = Dr1Dr2{ak} = Dr1S t2{ak}
= Sr−1

1 t2Dr1{ak} = Sr−1
1 t2S t1{ak} = S t1+r−1

1 t2{ak}.
This implies by the definition of the subset A, that A is a subgroup of πφ .
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Theorem 2.14. If r1, r2 ∈ πφ , then Dr1{ak} and Dr2{ak} are shifts of one an-
other if and only if r1 and r2 are in the same coset of A in πφ .

Proof. If r1 and r2 are in the same coset of A, then r2 = mr1, where m ∈ A.
Hence, using the definition of the subgroup A we have that

Dr2{ak} = Dmr1{ak} = DmDr1{ak} = S tDr1{ak}.

If Dr2{ak} = S tDr1{ak}, then since g.c.d.(r1,π) = 1, it follows by Lemma 2.8
that Dr2{ak} = Dr1S tr1{ak}. Therefore we have that

Dr−1
1 r2{ak} = Dr−1

1 Dr2{ak} = Dr−1
1 Dr1S tr1{ak} = S tr1{ak},

which implies that r−1
1 r2 is an element of A and therefore r2 ∈ r1A, i.e., r1 and r2

are in the same coset of A in πφ .

Now, we can use Corollary 2.16 to obtain the following result.

Theorem 2.15. Let {ak} be an M-sequence of length qn − 1 and let r be an
integer, 2 ≤ r ≤ qn − 2, such that g.c.d.(r, qn − 1) = 1. Then, {ark} is also an
M-sequence of length qn − 1.

Definition 2.7. If {ak} is an M-sequence and {ark} is also an M-sequence, then
r is called a multiplier of the M-sequence.

Example 2.4. Consider n = 4 and the span 4 M-sequence of Example 2.3

{ak} = 100010011010111 = a0a1 · · · a14.

The period of the sequence is π = 15 and φ(15) = 8, where

πφ = {1,2,4,7,8,11,13,14}.

For this M-sequence, we have the following decimations

D2{ak} = {a2k} = 101011110001001 = a0a2 · · · a14a1a3 · · · a13 = S8{ak},
D4{ak} = {a4k} = 111100010011010 = a0a4a8a12a1a5 · · · a11 = S12{ak}

and

D8{ak} = {a8k} = 110001001101011 = a0a8a1a9a2 · · · a14a7 = S14{ak}.

Clearly, {1,2,4,8} is a subgroup of πφ . �
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2.3 Powers of irreducible polynomials

In Section 2.1 we found the length of the cycles generated by a given polyno-
mial. We also gave a method to compute the number of cycles of each length.
To complete these computations it is required to find the length of the cycles
generated by the polynomial gn(x), where g(x) is an irreducible polynomial
and n > 1. It is also required to find the number of cycles for each length. The
results in this section will be proved only over F2, but they can be generalized
along the same lines to sequences over any field Fq .

Consider any irreducible polynomial g(x) = ∑k
i=0 aix

i over F2, where
a0 = ak = 1 and k > 1. The period of sequences generated by g(x) was given
by Theorem 2.3. All the nonzero sequences generated by g(x) have the same
period e, where e is the smallest integer such that g(x) divides xe − 1. The

number of sequences of such length is 2k−1
e

. The sequences generated by the
polynomial gn(x) yield an interesting hierarchy that will be explored in this
section. The polynomial g(x) = x + 1 yields further properties and they will be
discussed separately in Section 5.1.

For any polynomial g(x) of degree k and any binary sequence S we define
DgS � g(E)S.

Let 
g(n) be the set of sequences that are generated by the polynomial gn(x)

and are not generated by the polynomial gn−1(x), where n ≥ 1 and 
g(0) is the
set that contains the all-zeros sequence. Clearly, by the definitions we have the
following observation.

Lemma 2.11. The set 
g(n) can be defined recursively by the operators Dg

and g(E) as follows:


g(n) = {S : ∃S′ ∈ 
g(n − 1), S′ = DgS = g(E)S},
where 
g(0) = {[0]}.

We will present two examples for the sets 
g(·), one for a primitive polyno-
mial and a second one for an irreducible polynomial that is not primitive.

Example 2.5. For the primitive polynomial g(x) = x2 +x +1, the first few sets
of 
g(n) are as follows:


g(0) ={[0]}.

g(1) ={[011]},

g(2) ={[000101], [011110]},

g(3) ={[000001110111], [011010101100], [000100110010], [011111101001]}

g(4) ={[000000010001], [011011001010], [101101111100], [110110100111],

[000101010100], [011110001111], [101000111001], [110011100010],
[000001100110], [011010111101], [101100001011], [110111010000],
[000100100011], [011111111000], [101001001110], [110010010101]}.

�
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Example 2.6. For the irreducible polynomial g(x) = x4 + x3 + x2 + x + 1 that
is not a primitive polynomial, the first few sets of 
g(n) are as follows:


g(0) ={[0]},

g(1) ={[00011], [00101], [01111]},

g(2) ={[0010101111], [0010111110], [0011111010], [0111101010], [0110101011],

[0010111011], [0011101110], [0110111010], [0011101011], [0110101110],
[0000011011], [0000111001], [0010110001], [1010010001], [1000010011],
[0000000101], [0000010001], [0001010101], [0000001111], [0000101101],
[0000110011], [0010011001], [0011111111], [0110111111]}.

�
We will derive now some relations between the various 
g(i)s. The proofs

of the following claims are left as an exercise. A detailed analysis for another
polynomial g(x) = x +1, will be presented in Section 5.1. Recall that the degree
of g(x) is k.

Lemma 2.12. The sequences in
⋃n

i=0 
g(i) are generated by the LFSRkn

whose characteristic polynomial is gn(x).

Lemma 2.13. The sequences in
⋃n

i=0 
g(i) contain each (kn)-tuple exactly
once as a window in exactly one of the sequences.

Lemma 2.14. A sequence S = [s0, s1, s2, . . . , s�−1] is contained in 
g(n) if and
only if gn−1(E)S ∈ S(g(x)).

Corollary 2.19. The period of the sequences that are contained in 
g(2m + 1)

is 2m+1 · e(g(x)).

Definition 2.8. A set of sequences S are t-interleaved if they form all the se-
quences of the form

[s1, s2, s3, . . . , srt ],
where [si , si+t , si+2t , . . . , si+(r−1)t ] is a sequence in S for each 1 ≤ i ≤ t . Any
such constructed sequence is said to be t-interleaved from S , and the operation
done on the sequences is called t-interleaving.

Lemma 2.15. The sequences that are generated by the polynomial g2m
(x)

are the sequences in the set of all 2m-interleaved sequences generated from
S(g(x)) ∪ {[0]}.
Proof. Let S be the set of sequences generated by g(x) (including the all-zeros
sequence).

The equality

g2m

(x) =
(

k∑
i=0

aix
i

)2m

=
k∑

i=0

aix
i·2m = g(x2m

)
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implies that any 2m-interleaved sequence generated from S is a sequence gen-
erated by g2m

(x).
On the other hand, if S = [s1, s2, s3, . . . , sr2m ] is a 2m-interleaved sequence

obtained from the sequences of S , then since

g2m

(x) = g(x2m

),

it follows that for each i, 1 ≤ i ≤ 2m, the sequence

[si , si+2m, si+2·2m, . . . , si+(r−1)2m]
is a sequence generated by g(x).

Lemma 2.16. Let S1 and S2 be two sequences whose periods are n1 and n2,
respectively, where n2 divides n1. The 2-interleaved sequence of S1 and S2 has
period 2n1 if S1 �� S2. If S1 � S2, then usually the period is 2n1, except for one
case in which the period is n1.

Proof. If S1= [a1, a2, . . . , an1] and S2= [b1, b2, . . . , bn2], then the 2-interleaved
sequences of S1 and S2 are of the form

Ti = [a1, bi, a2, bi+1, a3, bi+2, . . . , an1, bi−1], 1 ≤ i ≤ n2.

It is easy to verify that since the period of S1 is n1 and n2 divides n1, it follows
that the period of Ti is either n1 or 2n1. Moreover, if n1 is even, then the only
possible period of Ti is 2n1 since period n1 of Ti implies that S1 has period n1

2 .
If n1 is odd, then the possible periods of the Tis are n1 and 2n1, where the
period n1 occurs only when S1 = S2 and i = n1+3

2 .

Example 2.7. Let S1 be the M-sequence [000111101011001] and S2 be the
same M-sequence. The sequences T1 and T9 are given by

T1 = [000000111111110011001111000011],
whose period is 30, and

T9 = [010001111010110010001111010110],
whose period is 15. �
Lemma 2.17. The period of the sequences that are contained in 
g(2n) is twice
the period of the sequences that are contained in 
g(n).

Proof. The sequences that are contained in 
g(n) are those sequences gener-
ated by the polynomial gn(x) and are not generated by the polynomial gn−1(x),
while the sequences that are contained in 
g(2n) are those generated by g2n(x)

and are not generated by g2n−1(x). By Lemma 2.15, the sequences generated
by the polynomial g2n(x) are the 2-interleaving of the sequences generated by
the polynomial gn(x). As a consequence, the claim of the lemma can be proved
by induction using Lemma 2.16.
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Corollary 2.20. The period of the sequences that are contained in 
g(2m) is
e(g(x)) · 2m.

Corollary 2.21. The period of the sequences that are contained in 
g(2m + 1)

is twice the period of the sequences that are contained in 
g(2m).

Corollary 2.22. If g(x) is an irreducible polynomial of degree k, then the
number of sequences that are contained in 
g(n + 1) is 2k · ∣∣
g(n)

∣∣, for
2m + 1 ≤ n ≤ 2m+1 − 1.

Corollary 2.23. If g(x) is a primitive polynomial of degree k, then the number
of sequences that are contained in 
g(2m + 1) is 2k−1 · ∣∣
g(2m)

∣∣.
Corollary 2.24. All the sequences contained in

⋃2m+1

i=2m+1 
g(i) have the same
period.

Proof. By Corollary 2.19, we have that the period of the sequences in

g(2m + 1) is e(g(x)) · 2m+1. By Corollary 2.20, we have that the period of
the sequences in 
g(2m+1) is e(g(x)) · 2m+1. By Lemma 2.11, we have that a
sequence S is contained in 
g(n) if there exists a sequence S′ in 
g(n+1) such
that S = DgS

′. Therefore since all the sequences in 
g(2m + 1) ∪ 
g(2m+1)

have the same period e(g(x)) · 2m+1, it follows that the sequences contained in⋃2m+1−1
i=2m+2 
g(i) also have the same period e(g(x)) · 2m+1.

Corollary 2.25. Let g(x) be an irreducible polynomial of degree k that gener-

ates t = 2k−1
π

sequences of period π . The number of sequences in 
g(n), n ≥ 1,

is 2k−1
π

2(n−1)k−�logn� and the period of a sequence in 
g(n) is π · 2�logn�.

A detailed proof of Corollary 2.25 for g(x) = x + 1 will be presented in
Section 5.1 (see Lemma 5.12).

2.4 Patterns with distinct differences

The autocorrelation property, R-3, of the randomness postulates, is associated
with another combinatorial structure called a difference set. This combinatorial
structure yields sequences with the randomness postulate R-3.

A (v, k, λ)-difference set D = {d1, d2, . . . , dk} is a collection of k residues
modulo v of the set Zv = {0,1, . . . , v − 1}, such that for any nonzero residue α

modulo v the equation

α ≡ di − dj (mod v)

has exactly λ solution pairs (di, dj ) ∈D×D.

Lemma 2.18. For any (v, k, λ)-difference set we have k(k − 1) = λ(v − 1).

Proof. The number of ordered pairs k(k − 1) can be counted by the number
of times, λ, that each of the v − 1 nonzero residues modulo v appears as a
difference.
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The complementary set D∗ of a (v, k, λ)-difference set is defined by the set
of residues Zv \D.

Example 2.8. The following four examples are trivial difference sets:

1. D0 = ∅ is a (v,0,0)-difference set.
2. D1 = {i}, 0 ≤ i ≤ v − 1, is a (v,1,0)-difference set.
3. D

∗
0 = {0,1, · · · , v − 1} = Zv is a (v, v, v)-difference set.

4. D
∗
1 = Zv \ {i}, 0 ≤ i ≤ v − 1, is a (v, v − 1, v − 2)-difference set.

�

Theorem 2.16. If D is a (v, k, λ)-difference set, then D
∗ is a (v∗, k∗, λ∗)-

difference set, where v∗ = v, k∗ = v − k, and λ∗ = v − 2k + λ.

Proof. Since the size of D is k, it follows that each nonzero element of Zv ap-
pears as a difference in D × Zv (or Zv × D) exactly k times. For the pairs in
D × D each nonzero element of Zv appears as a difference exactly λ times.
Since Zv = D ∪ D

∗ and D ∩ D
∗ = ∅, it follows that each nonzero element

of Zv appears as a difference in D × D
∗ (or D

∗ × D) exactly k − λ times.
Hence, each nonzero element of Zv appears as a difference in D

∗ ×D
∗ exactly

λ∗ = (v − k) − (k − λ) = v − 2k + λ times and D
∗ is a (v∗, k∗, λ∗)-difference

set, where v∗ = v, k∗ = v − k, and λ∗ = v − 2k + λ.

Example 2.9. For v = 7 we have the following two difference sets

1. D = {1,2,4} is a (v, k, λ) = (7,3,1)-difference set.
2. D

∗ = {0,3,5,6} is a (v∗, k∗, λ∗) = (7,4,2)-difference set.

Note that the characteristic vector of D∗ is the M-sequence 1001011. �

Consider the correspondence between a subset of a set and its associated
characteristic vector. Taking this correspondence in mind, the two operators,
i.e., the shift and the decimation, which were defined on sequences, are defined
similarly on difference sets. This leads to the following theorem.

Theorem 2.17. If D = {d1, d2, · · · , dk} is a (v, k, λ)-difference set, then so are
its t-shift

t +D � {t + d1, t + d2, . . . , t + dk}
and its r-decimation

r ·D � {rd1, rd2, . . . , rdk},
where g.c.d.(r, v) = 1 and the computations are performed modulo v.

Proof. The claim for the t-shift is trivial since a−b ≡ (t +a)− (t +b) (mod v).
Similarly, if g.c.d.(r, v) = 1, then r · (Zv \ {0}) = Zv \ {0}, and the claim is
satisfied for the r-decimation.
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Two difference sets D and D̂ with the same parameters (v, k, λ) are said to
be equivalent if there exist t and r , where g.c.d.(r, v) = 1 and D̂ = t + rD. Each
such r is called a multiplier of the difference set (compare with Definition 2.7).

Lemma 2.19. If n � k − λ, then v and n are invariant under complement.

Proof. The claim follows directly from the equation

k∗ − λ∗ = (v − k) − (v − 2k + λ) = k − λ.

The relation between the size of the difference set v and n = k − λ is very
important, as we will see in the following.

Theorem 2.18. If λ ≥ 1, then 4n − 1 ≤ v ≤ n2 + n + 1.

Proof. By Lemma 2.18 we have that k(k − 1) = λ(v − 1), which implies that

n = k − λ = k − k(k − 1)

v − 1
= k(v − k)

v − 1
.

Hence, by also using Theorem 2.16 we have that

k · k∗ = k(v − k) = n(v − 1).

Now, by using Theorem 2.16 again, we have that

λ · λ∗ = λ(v − 2k + λ) ≥ v − 2n − 1 (since λ ≥ 1) (2.6)

and also since k = n + λ we have that

λ · λ∗ = (k − n)(v − k − n) = k(v − k) − nv + n2 = n(n − 1) (2.7)

and

λ + λ∗ = (k − n) + (v − k − n) = v − 2n. (2.8)

This implies by Eqs. (2.7) and (2.8) that

(
v − 2n

2

)2

=
(

λ + λ∗

2

)2

=
(

λ − λ∗

2

)2

+ λ · λ∗ ≥ λ · λ∗ = n(n − 1). (2.9)

Since by Eq. (2.6) we have λ · λ∗ ≥ v − 2n − 1, it follows now from Eq. (2.9)
that n(n − 1) ≥ v − 2n − 1 and hence

v ≤ n2 + n + 1

and the upper bound on v is proved.
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Moreover, by Eq. (2.9), we have that
(

v−2n
2

)2 ≥ n(n − 1), which implies

that (v − 2n)2 ≥ 4n(n − 1), i.e.,

v − 2n ≥
⌈√

4n(n − 1)
⌉

= 2n − 1

and therefore 4n − 1 ≤ v.

The two extremes of the bound in Theorem 2.18 can be attained.

• If for a (v, k, λ)-difference set we have that v = 4n − 1, then the difference
set is a Hadamard-type difference set.

• If for a (v, k, λ)-difference set we have that v = n2 +n+1, then the difference
set is a finite projective plane-type difference set.

In our context, the interesting case is v = 4n − 1. A (4n − 1,2n − 1, n − 1)

difference set is called Hadamard difference set.

Theorem 2.19. The set D whose characteristic vector is the complement of an
M-sequence of length 2n − 1 forms a (2n − 1,2n−1 − 1,2n−2 − 1) Hadamard
difference set.

Proof. Let S = s0s1 · · · sv−1 be an M-sequence, where v = 2n − 1 and S̄ be
the characteristic vector of a set D. The number of pairs (di, dj ) ∈ D × D such
that t ≡ di − dj (mod v), where t is nonzero residue modulo 2n − 1, equals the
number of pairs (si , si+t ) such that si = si+t = 0.

By the shift-and-add property, the number of pairs in S, (si , si+t ) such that
si = si+t = 1 or si = si+t = 0 is 2n−1 −1 since 0+0 = 1+1 = 0 and the number
of zeros in S is 2n−1 − 1. This implies that the total number of pairs (si , si+t )

such that si = 0 and si+t = 1 or si = 1 and si+t = 0 is 2n−1. By symmetry
arguments the number of pairs (si , si+t ) such that si = 0 and si+t = 1 is 2n−2.
Similarly, the number of pairs (si , si+t ) such that si = 1 and si+t = 0 is 2n−2.
Since the number of zeros in S is 2n−1 − 1, it follows that the number of pairs
(si , si+t ) such that si = si+t = 0 is (2n−1 − 1) − 2n−2 = 2n−2 − 1.

Let p be an odd prime of the form 4m − 1 and let {ai}p−1
i=0 the sequence

defined by ai =
(

i
p

)
, for 1 ≤ i < p − 1 and a0 is either +1 or −1, where

(
i
p

)
is the Legendre symbol. This sequence is called the Legendre sequence or the
quadratic residues sequence. Its characteristic vector is obtained when +1 is
replaced by 0 and −1 is replaced by 1.

The following theorem is obtained as a consequence of Theorem 1.13.

Theorem 2.20. The set D whose characteristic vector is the Legendre sequence
of length p = 4n−1, where p is a prime (the set of quadratic residues modulo p)
forms a (4n − 1,2n − 1, n − 1) Hadamard difference set.

We continue to consider other Hadamard difference sets that are associated
with sequences satisfying R-3. There are three known parameters for families
of Hadamard difference sets.
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(H.1) v = 2n − 1 and this family is associated mainly with M-sequences, but
there are other constructions for this set of parameters.

(H.2) v = 4n − 1 is a prime and this type is associated with quadratic residues
sequences.

(H.3) v = p(p+2), where p and p+2 are primes; these primes are called twin
primes, and the associated sequences are called twin primes sequences.

Can one of the parameters be obtained via two families? The only v that can
be covered by both (H.1) and (H.3) is v = 15. Clearly, v cannot be covered by
both (H.2) and (H.3). Finally, the values of v that are covered by both (H.1) and
(H.2) are primes of the form v = 2n − 1, i.e., Mersenne primes.

2.5 Notes

The linear theory of shift register is well covered by Golomb [36]. Some items
appear there and are not covered in our exposition. These items include analysis
of irreducible polynomials, factorization of polynomials, cyclotomic cosets, and
Fourier analysis of M-sequences. A chapter on the linear theory of shift registers
also appears in the book of Lidl and Niederreiter [60].

Section 2.1. The approach in this chapter to compute the length of the cy-
cles generated by an LFSRn is based on a combination of their algebraic and
combinatorial structure, while in most papers and books the approach is purely
algebraic. Some of the material covered in this section appears in the book of
Golomb [36]. Some of the proofs that we gave cover cases that were omitted by
Golomb [36]. Cycles generated from a reducible polynomial were considered
by Lidl and Niederreiter [60]. The structure of cycles from LFSRn was also
discussed by Elspas [26]. Further analysis of sequences generated by the corre-
sponding polynomials was given by Chee, Chrisnata, Etzion, and Kiah [16].

Section 2.2. M-sequences are probably the most important set of sequences and
there is an enormous amount of research that was carried out on these sequences,
their properties, and their applications. The book of Golomb [36] should be the
first source on these sequences. Applications of M-sequences to coding theory
can be found in Etzion [28] and Weng [82], to pseudorandom number gener-
ators in Arvillias and Maritsas [3], to orthogonal sequences in Kirimoto and
Oh-Hashi [55], to ophthalmic electrophysiology in Müller and Meigen [68], to
linear time-invariant systems for signal processing in Xiang [86]. They are used
to construct other sequences with good correlation properties, see for example
Canteaut, Charpin, and Dobbertin [11], Games [31], Helleseth [44], Helleseth,
Lahtonen, and Rosendahl [45], Helleseth and Rosendahl [46], Hollmann and
Xiang [47], Lindholm [61], Ness and Helleseth [69], and Sutter [76]. For more
information on M-sequences, the reader is referred to the extensive literature,
see for example Briggs and Godfrey [8], Chang [12], Chang and Ho [14], God-
frey [33], Gold [34,35], Harvey [42], Mayo [65], Pursley and Sarwate [73],
Tretter [80], Tsao [81], Willett [83,84], and Zierler [88].
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Theorem 2.11 was proved by Bryant, Heath, and Killick [9] and Yoeli [87]
for F2 and Gn. The theorem was extended for any de Bruijn graph Gσ,n for
any positive integer σ > 1 by Lempel [59]. He proved that in Gσ,n there ex-
ists a cycle of length k for each k such that 1 ≤ k ≤ σn. Another proof for
the same claim and an algorithm to generate the associated sequences was pre-
sented by Etzion [27]. The algorithm was presented only for the binary case
with a straightforward generalization for any alphabet.

Section 2.3. The analysis of the length of the cycles obtained by powers of
primitive polynomials over F2 can be generalized for Fq , where q > 2 with a
similar analysis as was done in this section. This is left as an exercise for the
reader.

Section 2.4. Difference sets form an important branch of block design.
They are considered in several books, such as Baumert [4], Ding [24], and
Jungnickel [53]. There are more constructions for the family (H.1), where
v = 2n − 1, of Hadamard difference sets. For some values of composite n we
have such sets associated with GMW sequences. These sequences were consid-
ered first by Gordon, Mills, and Welch [39] and later by Scholtz and Welch [75].
Baumert and Fredricksen [5] found three Hadamard difference sets for v = 127.
Cheng [19] found two Hadamard difference sets for v = 255. An exhaustive
search for v = 511 was carried out by Dreier and Smith [25].

As for the family (H.2) the only known difference sets except for the
quadratic residues difference sets, are the difference sets constructed by
Hall [41] for primes of the form p = x2 + 27. These difference sets are called
Hall sextic residue difference sets.

The twin primes Hadamard difference sets were constructed by Stanton and
Sprott [78]. The generated sequences are also called Jacobi sequences and they
are generalizations of the quadratic residues (Legendre) sequences. These are
the only known sequences of the family (H.3).

More information on the existence of Hadamard difference sets can be found
in the papers by Golomb and Song [38,77] and the most updated information in
the work of Charpáin [15]. Constructions and applications of difference sets
can be found in Golomb [37]. The most important question associated with
Hadamard difference sets is the following.

Problem 2.1. Do there exist more parameters for which there exists a Hadamard
difference set?

Hadamard difference sets obtained their name as they can be used to form
Hadamard matrices. An n × n matrix H of {−1,+1} is a Hadamard matrix of
order n if H · H tr = H tr · H = nIn.

From a Hadamard difference set, it is straightforward to generate a related
Hadamard matrix. Let S be the characteristic vector of a (4m −1,2m −1,m −1)

Hadamard difference set and form a (4m − 1) × (4m − 1) matrix A from all the
cyclic shifts of S. Let H be the (4m) × (4m) matrix obtained from A by replac-
ing each “0” by “+1”, each “1” by “−1”, adding a row of “−1”s at the end, and
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a column of “−1”s at the right. The matrix obtained in this way is a Hadamard
matrix of order 4m.

Theorem 2.21. If there exists a (4m − 1,2m − 1,m − 1) Hadamard difference
set, then there exists a Hadamard matrix of order 4m.

Theorem 2.22. The 2n − 1 cyclic shifts of an M-sequence of length 2n − 1 with
the all-zeros word form a [2n − 1, n,2n−1] code.

Proof. Let C be a code obtained from the 2n − 1 cyclic shift of an M-sequence
and the all-zeros sequence. The length of the code 2n − 1 is an immediate con-
sequence of the length of the M-sequence. From the shift-and-add property, we
have that C is closed under addition and since it has 2n codewords, it follows
that its dimension is n. All the nonzero codewords have weight 2n−1 and hence
the minimum distance of C is 2n−1.

Definition 2.9. A [2n−1, n,2n−1] code is a well-known code called the simplex
code.

Each nonzero n-tuple appears exactly once as a column in any generator
matrix of the [2n − 1, n,2n−1] simplex code and hence any n consecutive shifts
of a span n M-sequences can form a generator matrix of the code.

A normalized Hadamard matrix is a Hadamard matrix in which the first row
and the first column have only +1s. One can readily verify that each Hadamard
matrix can be made a normalized Hadamard matrix by multiplying each row
and each column starting with a −1 by −1.

Theorem 2.23. If a Hadamard matrix of order n exists, then n is 1, 2, or a
multiple of 4.

Proof. It is easy to verify that Hadamard matrices of order 1 and 2 exist and
a Hadamard matrix of order 3 does not exist. If n > 3 and a Hadamard matrix
H of order n exists, w.l.o.g. assume that H is a normalized Hadamard matrix
and consider the first three rows of A. The triples, generated by the columns,
in these three rows, can be (+1,+1,+1)tr, (+1,+1,−1)tr, (+1,−1,+1)tr or
(+1,−1,−1)tr. Assume that there are i1 triples of the form (+1,+1,+1)tr,
i2 triples of the form (+1,+1,−1)tr, i3 triples of the form (+1,−1,+1)tr, and
i4 triples of the form (+1,−1,−1)tr. Since H trH = nIn implies that every two
distinct rows are orthogonal, i.e., their inner product is equal to zero, it follows
that

i1 + i2 − i3 − i4 = 0, from the first row and second row,

i1 − i2 + i3 − i4 = 0, from the first row and third row,

i1 − i2 − i3 + i4 = 0, from the second row and third row.

The solution for this set of three equations implies that i1 = i2 = i3 = i4, i.e.,
n is divisible by 4.
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There are many constructions for Hadamard matrices and it is conjectured
that for each n divisible by 4, there exists such a matrix.

The most celebrated construction of Hadamard matrices is Sylvester’s con-
struction [79], which is a simple doubling construction. Let H be any n × n

Hadamard matrix. The following matrix[
H H

H −H

]

is a (2n) × (2n) Hadamard matrix.
This construction immediately yields a Hadamard matrix for each order that

is a power of 2, but it is also applied to other orders for which Hadamard matri-
ces are known to exist.

Sylvester’s construction can be generalized as follows. Let A be an n × n

Hadamard matrix and B be an m×m Hadamard matrix. The Kronecker product
of A and B defined by ⎡

⎢⎢⎢⎢⎣
a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB

⎤
⎥⎥⎥⎥⎦

is an (nm) × (nm) Hadamard matrix. It generalizes Sylvester’s construction in
which the matrix A is the following 2 × 2 Hadamard matrix

A =
[

1 1
1 −1

]

in the Kronecker product.
Hadamard matrices were defined by Hadamard in [40], where it was proved

that any real n × n matrix A, with real entries between −1 and +1, satisfies
|detA| ≤ nn/2. Hadamard matrices meet this bound. These matrices have many
applications in coding theory and various areas of communication, information
theory, and computer science, as well as in other areas, see Hedayat and Wal-
lis [43], Horadam [48,49], and Seberry, Wysocki, and Wysocki [74]. They are
part of a family of matrices called weighing matrices. Coding with Hadamard
matrices and related weighing matrices was done, for example, by Etzion, Vardy,
and Yaakobi [29]. The first order divisible by 4, for which no Hadamard ma-
trix is known to exist (as of 2023) is 668, after the previous order of 428 was
constructed by Kharaghani and Tayfeh-Rezaie [54]. An excellent book for in-
formation on Hadamard matrices is that written by Geramita and Seberry [32]
and on the matrices and their applications by Horadam [48].

Difference sets with parameters (v, k,1) are of special interest as each
nonzero residue modulo v is obtained exactly once as a difference. A related
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concept is a Golomb ruler. A Golomb ruler of order k (or a k-mark Golomb
ruler) is a sequence with k nonnegative integers (d1 = 0, d2, . . . , dk) such that
di < dj when i < j , and all the

(
k
2

)
differences {dj − di : 0 ≤ i < j ≤ k}, which

are the distances measured by the ruler, are distinct. Each difference set yields a
ruler, but usually a ruler does not yield a difference set. The main goal is to find
such a ruler with the smallest possible largest number dk . If also d2 < dk −dk−1,
then such a Golomb ruler is called optimal. For some work on Golomb rulers
see Meyer and Jaumard [66]. Another interesting concept in this context is a
difference triangle. For a sequence of k integers, b1 < b2 < · · · < bk , the dif-
ference triangle has k − 1 rows, where in the rth row, 1 ≤ r ≤ k − 1, we have
the differences bj+r −bj , for j = 1,2, . . . , k − r , ordered by their appearance in
the sequence. Each distance (difference) measured by a ruler appears in a unique
row of the triangle. The difference triangle computes the differences in the finite
sequence and not just in a ruler. The definition of a difference triangle is mod-
ified to a definition of a difference cylinder when the sequence is cyclic and
we have to consider the difference bj+r − bj of the rth row for j = 1,2, . . . , k,
where subscripts are taken modulo k. In the difference cylinder, each row has k

differences.
The difference triangle (and the difference cylinder) is an important tool to

analyze the properties of structures with distinct differences like a ruler. It pro-
vides all the differences of the combinatorial structure and also the difference in
the positions of the structure where the associated difference appears. There are
many other related concepts and some are associated with graphs, as explained
in an early survey by Bloom and Golomb [7].

Example 2.10. The unique optimal 8-mark Golomb ruler is

(0,1,4,9,15,22,32,34).

The difference triangle of the ruler is

0 1 4 9 15 22 32 34
1 3 5 6 7 10 2

4 8 11 13 17 12
9 14 18 23 19

15 21 28 25
22 31 30

32 33
34

�

The concept of difference sets was generalized to difference families, where
there are several sets D1,D2, . . ., each of size k, where each nonzero residue
modulo n occurs as a difference in exactly λ of these sets. Constructions and
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bounds for such a family of designs can be found, for example, in Bitan and
Etzion [6], Buratti [10], and Wilson [85]. This family of designs, with λ = 1,
is also related to a family of codes called optical orthogonal codes or constant-
weight cyclically permutable codes, see A, Gyorfi, and Massey [1], Bitan and
Etzion [6], Chung and Kumar [22], Chung, Salehi, and Wei [23], and Moreno,
Zhang, Kumar, and Zinoviev [67]. There are also generalizations for the con-
cept of difference family. One of the most interesting generalizations is the
concept of external difference sets that have several variants. There are several
sets whose elements are taken from an Abelian group G and the differences that
are considered are between the different sets. Without going into the different in-
teresting variants, some work on this topic can be found, for example, in Chang
and Ding [13], Fujiwara and Tonchev [30], Huang and Wu [50], Huczynska
and Paterson [51], Jedwab and Li [52], Lu, Niu, and Cao [64], Ogata, Kuro-
sawa, Stinson, and Saido [71], and Paterson and Stinson [72]. The motivations
for all these variants of external difference sets are from different concepts in
cryptography and security, as was presented by Ogata, Kurosawa, Stinson, and
Saido [71] and later by Paterson and Stinson [72].

A survey on all types of difference families was given by Ng and Pater-
son [70].

Sets of sequences with distinct differences can be analyzed using sets of dis-
joint difference triangles. A comprehensive work on such sets was carried out
by Kløve [56–58] and for other work on this topic see Chee and Colbourn [17]
Chen [18], Chu, Colbourn, and Golomb [20], Chu and Golomb [21], Ling [62],
and Lorentzen and Nilsen [63]. An application of difference triangle sets to con-
structions of LDPC codes was suggested by Alfarano, Lieb, and Rosenthal [2].
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Chapter 3

Cycles and the nonlinear theory
Necklaces, self-dual sequences, enumeration

After discussing in Chapter 2 the theory of linear feedback shift registers, the
length of the cycles in the state diagram of such registers, and the class of
M-sequences, we turn our attention to specific shift-register feedback functions
and the nonlinear theory of shift registers.

In Section 3.1 we define a few feedback functions for some of the most inter-
esting shift registers. We consider the structure of their cycles and the relations
between the cycles of the different state diagrams.

Enumerations for the number of cycles in the state diagrams of these shift
registers are presented in Section 3.2. These enumerations involve the Euler
function and the Möbius function discussed in Section 1.1. We discuss the ap-
plications of these functions in counting the number of irreducible and primitive
polynomials. Special attention in the first two sections will be given to self-dual
sequences, i.e., sequences that are invariant under complements of their bits.

Section 3.3 is devoted to the following intriguing question: what is the max-
imum number of cycles in a state diagram of an FSRn? The answer to this
question is given by a coloring of the vertices in the de Bruijn graph. This col-
oring is defined based on the position of the center of mass of a vertex. The
center of mass is based on the bits of its representation that are located on the
two-dimensional plane. It appears that one of the specific shift registers defined
in Section 3.1 attains the maximum number of cycles, but quite surprisingly, by
using the merge-or-split method many other such shift registers can be found.

3.1 Cycles from feedback shift registers

There are a few families of feedback shift registers that are of special inter-
est. Each such family is associated with a different feedback function. Some
of these functions are linear functions and some of them are nonlinear func-
tions. The first such family, which was discussed in Section 2.2, is the family of
M-sequences that are generated from linear feedback functions associated with
primitive polynomials.

The next four families of FSRn are associated with four simple feedback
functions: two linear functions and two nonlinear ones. The first one is called the
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PCRn for the pure cycling register of order n, and its linear feedback function is

f (x1, x2, . . . , xn) = x1 .

This definition implies the following result.

Lemma 3.1. The weight function of the PCRn is zero.

Let Z(n) be the number of cycles in the state diagram of the PCRn. The
computation for the exact value of Z(n) will be presented in Section 3.2.

The extended representation E(C) of a cycle C from the PCRn is given by
an n-tuple E(C) � [x1 · · ·xn−1xn], where x = (x1, x2, . . . , xn) is any state on C
and also each cyclic shift of x is a state of C. If the cycle C is of length smaller
than n, i.e., it is not of a full-order, then some of these states formed by cyclic
shifts are equal. Each state in the PCRn is represented by a cyclic shift of the
extended representation of its cycle. Hence, the weight of a state is the same as
the weight of the extended representation of its cycle. The extended weight of
a cycle C, wtE(C) is the weight of any extended representation of C (for other
FSRn too). Using the extended weight, we have the following simple lemma.

Lemma 3.2. A state and its companion cannot be states on the same PCRn

cycle.

Lemma 3.3. The length of a cycle in the state diagram of the PCRn is a divisor
of n.

Proof. By the definition of the feedback function f (x1, x2, . . . , xn) we have that
the edges in the state diagram of the PCRn are of the form

(x1, x2, . . . , xn) → (x2, . . . , xn, x1),

i.e., the states in the cycle that contain the state x = (x1, x2, . . . , xn) are cyclic
shifts of (x1, x2, . . . , xn). If there are no repeated states in the cycle that contains
all the n cyclic shifts of x, then the length of the cycle in the state diagram is n.
If there is a repeated state, then w.l.o.g. we assume that the state x is repeated.
Assume further that it is repeated μ times on the cycles and let Pi , 1 ≤ i ≤ μ,
the path that starts with the ith appearance of x and ends at the vertex before its
(i + 1)th appearance (where the (μ + 1)th appearance is the first appearance).
Clearly, each path PiPi+1 · · ·PμP1 · · ·Pi−1, i ≥ 2 (as the path P1P2 · · ·Pμ), is a
path of length n from x to x and hence by Lemma 1.15 all these paths are equal.
This implies that Pi = Pj for 1 ≤ i < j ≤ μ and P1 is the associated cycle in the
state diagram. If � is the length of P1, then n = μ · � and hence � divides n.

Any cyclic sequence of period π can be viewed as a sequence in PCRn for
any n that is divisible by π and hence we have the following consequence.

Corollary 3.1. The period of a cyclic sequence of length m is a divisor of m,
i.e., a sequence of length m is associated with a cycle of length d in Gm, for
some d that is a divisor of m.
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Corollary 3.2. If a state on a PCRn cycle of length � has weight w, then the
weight of the cycle (not its extended weight) is w·�

n
.

It should be noted that the length of a cycle in the state diagram of an FSRn

is the period of the associated sequence. If the sequence S is of length n and
its period d is smaller than n, then as a cycle S is not a simple cycle. It is a
cycle with n

d
repetitions of the cycle of length d that is contained in the state

diagram generated by an FSRn that generates the sequence S. By Lemma 3.3
the length of a cycle from the PCRn divides n, but we also have that for each
d that divides n, there is at least one cycle of length d in the PCRn. If d = 1, then
there are two cycles of length d in the PCRn, the cycles [0] and [1]. If d > 1 is a
divisor of n then the cycle [0d−11] is one of the cycles of length d in the PCRn.

Theorem 3.1. The weight of the feedback function of a span n de Bruijn se-
quence with the minimum weight function is Z(n) − 1.

Proof. First, recall that by Lemma 3.1, we have that the weight function of the
PCRn is 0 and the state diagram of the PCRn has Z(n) cycles.

Assume that S is a de Bruijn sequence of order n with weight function ω(n).
By Lemma 1.20 we have that changing a one to a zero in the truth table of the
state diagram either splits one cycle into two cycles or merges two cycles into
one cycle. Therefore changing all the ω(n) ones of the truth table of S to zeros
yields a state diagram with at most ω(n) + 1 cycles. However, this truth table is
that of the PCRn since it has weight function zero. Therefore this truth table has
Z(n) cycles and ω(n) + 1 ≥ Z(n), i.e., ω(n) ≥ Z(n) − 1.

To complete the proof we have to show that there exists a span n de Bruijn
sequence S whose weight function is at most Z(n) − 1. Applying appropriately
the merge-or-split method Z(n) − 1 times on the cycles of the state diagram
of the PCRn by using Theorem 1.20 yields a span n de Bruijn sequence whose
weight function is Z(n) − 1.

The two parts of the proof imply that the weight of the feedback function of a
span n de Bruijn sequence with the minimum weight function is Z(n) − 1.

The state diagram of the PCRn is also called the necklaces factor as each
cycle can be viewed as a necklace with beads of two colors (a necklace is a
cycle in the state diagram of the PCRn). The number of beads is the length of
the cycle. The same feedback function can be defined over any alphabet with
σ letters. The associated state diagram for the larger alphabet is also called the
necklaces factor of order n, over σ beads, and each cycle has also a length that is
a divisor of n with identical proof to the one of Lemma 3.3. The necklaces factor
will be used in other parts of this book for various applications. The number of
cycles for each length in the state diagram will be computed in the next section.

The second FSRn is called the CCRn for the complemented cycling register
of order n, and its nonlinear feedback function is

f (x1, x2, . . . , xn) = x1 + 1.
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By definition and also by Lemma 3.1 the weight function of the PCRn is the
minimum possible for a weight function. For the CCRn, the weight function is
the maximum possible one. The sequence associated with the truth table of the
CCRn is the complement of the sequence associated with the truth table of the
PCRn.

Lemma 3.4. The weight function of the CCRn is 2n−1.

Clearly, by the definition of the CCRn, for each sequence x1x2 · · ·xn of
length n, the cyclic sequence [x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n] is generated by the
CCRn. This sequence is associated with a cycle of length 2n in Gn and by Corol-
lary 3.1 the period of the sequence is a divisor of 2n. Therefore the length of the
cycles contained in the state diagram of the CCRn is a divisor of 2n. Let Z∗(n)

be the number of cycles in the state diagram of the CCRn. The computation for
the exact value of Z∗(n) will be presented in the next section.

The extended representation E(C) of a cycle C from the CCRn is given by a
(2n)-tuple E(C) � [x1 · · ·xn−1xnx̄1 · · · x̄n−1x̄n], where (x1, x2, . . . , xn) is a state
on C. By the definition of the feedback function, it follows that any n consecutive
bits (also cyclically) of E(C) form a state on C.

The path of length n from the state x = (x1, x2, . . . , xn) to its complement
x̄ = (x̄1, x̄2, . . . , x̄n) can be represented by the sequence x1x2 · · ·xnx̄1x̄2 · · · x̄n,
where each n consecutive bits represent a state on this path. Since we have that
f (x̄1, x̄2, . . . , x̄n) = x1, it follows that the associated cycle is

[x1x2 · · ·xnx̄1x̄2 · · · x̄n] = [XX̄].
Moreover, when S = [XX̄] we have that S̄ = [X̄X], i.e., S̄ � S and hence S is a
self-dual sequence. Combining this observation and using a proof similar to the
one of Lemma 3.3 we have the following result.

Lemma 3.5. A sequence S is a self-dual sequence if and only if S can be rep-
resented as S = [XX̄].
Corollary 3.3. A sequence S of length n is a self-dual sequence if it can be
represented as S = [XX̄XX̄ · · ·XX̄], where [XX̄] is a sequence of full-order.

Corollary 3.4. The period (and the length) of a self-dual sequence is an even
integer.

Lemma 3.6. All the cycles of the CCRn are self-dual cycles. A self-dual cycle
from the CCRn has period d , where d is an even divisor of 2n and d does not
divide n.

Proof. By the definition of the feedback function of the CCRn we have that if
x = (x1, x2, . . . , xn), then it forms the cycle [x1x2 · · ·xnx̄1x̄2 · x̄n] and hence by
Lemma 3.5 all the cycles of the CCRn are self-dual cycles.

Assume now that a cycle from the CCRn has the form [c1c2 · · · cd ].
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By Corollary 3.1 the period d of such a cycle is a divisor of 2n. Assume first,
on the contrary, that d is odd. Hence, d divides n, i.e., n = μd , 2n = 2μd , and
the extended representation of the associated cycle (sequence) from the CCRn

can be written as

[
μ times︷ ︸︸ ︷

c1c2 · · · cd · · · · · · c1c2 · · · cd

μ times︷ ︸︸ ︷
c1c2 · · · cd · · · · · · c1c2 · · · cd ].

However, this sequence is not of the form [XX̄], a contradiction. Hence, d is an
even divisor of 2n.

Assume now that d divides n. It follows that n = μd , i.e., 2n = 2μd and
with the same argument, the associated extended representation of the cycle of
length 2n is again

[
μ times︷ ︸︸ ︷

c1c2 · · · cd · · · · · · c1c2 · · · cd

μ times︷ ︸︸ ︷
c1c2 · · · cd · · · · · · c1c2 · · · cd ].

However, again, this sequence is not of the form [XX̄], a contradiction. Hence,
d is an even divisor of 2n and d does not divide n.

Let SD(n) denote the number of self-dual cycles of period n.

Lemma 3.7. For each positive integer n

Z∗(n) =
∑
d|2n
d�n

SD(d).

Proof. By Lemma 3.6 we have that all the CCRn cycles are self-dual cycles
with period d = 2k, where d divides 2n and d does not divide n.

Assume now that C = [XX̄] is a self-dual cycle of length and period d , where
d divides 2n, but d does not divide n. This implies that 2n = μd , where μ is an
odd integer, i.e., μ = 2r + 1 and 2n = (2r + 1)d . Hence, C has an extended
representation of length 2n given by

[
r times︷ ︸︸ ︷

XX̄ · · · · · ·XX̄ XX̄

r times︷ ︸︸ ︷
XX̄ · · · · · ·XX̄].

This structure is associated with an extended representation E(C) of a CCRn

cycle C since the (n+ i)th bit is the complement of the ith bit for each 1 ≤ i ≤ n.
Thus by the analysis of the CCRn cycles and of the structure of self-dual

sequences we have that

Z∗(n) =
∑
d|2n
d�n

SD(d).
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Corollary 3.5. The cycles of length d in the state diagram of the CCRn are all
the self-dual cycles of period d .

Theorem 3.2. The weight of the feedback function of a span n de Bruijn se-
quence with the maximum weight function is 2n−1 − Z∗(n) + 1.

Proof. Assume that S is a de Bruijn sequence of order n with weight func-
tion ω(n). The associated truth table (top half) has 2n−1 − ω(n) zeros. By
Lemma 1.20 we have that changing a zero to a one in the truth table of the
state diagram either splits one cycle into two cycles or merges two cycles into
one cycle. Therefore changing all the 2n−1 − ω(n) zeros of the truth table of S

to ones yields a state diagram with at most 2n−1 − ω(n) + 1 cycles. However,
this truth table of the state diagram that was obtained is the truth table of the
CCRn since it has weight function 2n−1. Therefore 2n−1 − ω(n) + 1 ≥ Z∗(n),
i.e., 2n−1 − Z∗(n) + 1 ≥ ω(n)

To complete the proof we have to show that there exists a span n de Bruijn
sequence S whose weight function is at least 2n−1 −Z∗(n)+1. Applying appro-
priately the merge-or-split method Z∗(n) − 1 times on the cycles of the CCRn

by using Theorem 1.20 yields a span n de Bruijn sequence with weight function
2n−1 − Z∗(n) + 1.

The two parts of the proof imply that the weight of the feedback function
of a de Bruijn sequence of length 2n and the maximum weight function is
2n−1 − Z∗(n) + 1.

The third FSRn, which will be considered, is called the PSRn for the pure
summing register of order n. Its linear feedback function is

f (x1, x2, . . . , xn) =
n∑

i=1

xi.

Similarly to Lemmas 3.1 and 3.4 that give the weight functions for the PCRn

and the CCRn, respectively, we can easily calculate the weight function of the
PSRn.

Lemma 3.8. The weight function of the PSRn is 2n−2.

Proof. The value of f (x1, x2, . . . , xn) is
∑n

i=1 xi , i.e., zero if the weight of
(x1, x2, . . . , xn) is even, and one if the weight of (x1, x2, . . . , xn) is odd. Since
x1 = 0 for calculating the weight function, it follows that the number of ones,
in the top half of the truth table, equals the number of distinct (n − 1)-tuples
(x2, . . . , xn) of odd weight. Exactly half of the (n − 1)-tuples have odd weight
and hence the weight function of the PSRn is 2n−2.

The extended representation E(C) of a cycle C from the PSRn is given by
an (n + 1)-tuple E(C) � [x0x1 · · ·xn−1xn], where (x0, x1, . . . , xn−1) is a state
on C and xn = ∑n−1

i=0 xi . Clearly, for each i, 0 ≤ i ≤ n, the ith bit xi in the



Cycles and the nonlinear theory Chapter | 3 95

extended representation is the sum modulo 2 of the other n bits, which form
(when read cyclically) a state on the cycle C. Note further that the sum of the
n + 1 bits in this extended representation is even and all the possible extended
representations are cyclic shifts of the others. Hence, by Corollary 3.1 the length
of the cycles contained in the state diagram of the PSRn is a divisor of n+1. Let
S(n) be the number of cycles in the state diagram of the PSRn. The computation
for the exact value of S(n) will be presented in the next section.

The fourth FSRn is called the CSRn for the complemented summing register
of order n, and its nonlinear feedback function is

f (x1, x2, . . . , xn) =
n∑

i=1

xi + 1.

The truth table for the function of the CSRn is the complement of the truth
table for the function of the PSRn and hence we have the following lemma.

Lemma 3.9. The weight function of the CSRn is 2n−2.

The extended representation E(C) of a cycle C from the CSRn is given by
an (n + 1)-tuple E(C) � [x0x1 · · ·xn−1xn], where (x0, x1, . . . , xn−1) is a state
on C and xn = 1 + ∑n−1

i=0 xi . Clearly, for each i, 0 ≤ i ≤ n, the ith bit xi in the
extended representation is the complement of the sum modulo 2 of the other n

bits, which form (when read cyclically) a state on the cycle C. This implies that
the sum of the n + 1 bits in this extended representation is odd. Note further
that all the extended representations are cyclic shifts of the other. Hence, by
Corollary 3.1, the length of the cycles contained in the state diagram of the CSRn

is a divisor of n + 1. Let S∗(n) be the number of cycles in the state diagram of
the CSRn. The computation for the exact value of S∗(n) will be presented in the
next section.

Lemma 3.10. All the cycles in the state diagram of the CSRn have odd weights.

Proof. The sum of the n + 1 bits in this extended representation of a cycle of
the CSRn is odd and hence the weight w of the extended representation is odd.
The length of a cycle from the CSRn is a divisor d of n + 1 and the weight of
such a cycle is w d

n+1 . Since w is an odd integer and d divides n + 1, it follows

that w d
n+1 is also an odd integer. Therefore all the cycles in the state diagram of

the CSRn have odd weights.

It is important to note that for the PSRn no lemma is analogous to
Lemma 3.10. A cycle of the PSRn can be of either even weight or odd weight,
although the extended representation for a cycle of the PSRn is always of even
weight. A slightly restricted analog to Lemma 3.10 is the following lemma.

Lemma 3.11. When n is even all the cycles in the state diagram of the PSRn

have even weights.
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Proof. If n is even, then the extended representation of a cycle from the PSRn

has n + 1 bits, where n + 1 is odd and hence by Corollary 3.1 the length of the
cycle in the state diagram is an odd d that divides n + 1. Therefore n+1

d
is odd.

If w is the weight of the extended representation, then w d
n+1 is the weight of

the cycle in the state diagram. Since w is even and n+1
d

is odd, it follows that
w d

n+1 is even, and hence all the cycles in the state diagram of the PSRn have
even weight.

Example 3.1. Consider n = 9 and the state x = (001000110). The extended
representation of its cycle C in the PSR9 is E(C) = [0010001101] whose weight
is 4 and it contains 10 states, i.e., its period is 10. The state y = (001110011) is
on a cycle C whose extended representation is E(C) = [0011100111] and it has
period 5 and hence as a cycle it is represented by [00111], a cycle of length 5
with 5 states and weight 3.

Consider now n = 8 and the state x = (01101011). The extended represen-
tation of its cycle C in the PSR8 is E(C) = [011010111] whose weight is 6 and
it contains 9 states, i.e., its period is 9. The state y = (01101101) is on a cycle C
whose extended representation is E(C) = [011011011] and it has period 3 and
hence as a cycle it is represented by [011], a cycle of length 3 with 3 states and
weight 2. �

Lemma 3.12. When n is even, the cycles of the CSRn are the complements of
the cycles from the PSRn.

Proof. Each n + 1 bits have either an odd weight or an even weight and can
serve as the extended representation of a cycle. If these n + 1 bits are of odd
weight, then they are associated with a cycle of the CSRn and if they are of even
weight, they are associated with a cycle of the PSRn. When n + 1 is odd, the
complement of each (n + 1)-tuple of odd weight is an (n + 1)-tuple of even
weight. Hence, when n is even, the cycles of the CSRn are the complements of
the cycles from the PSRn.

The values of Z(n), Z∗(n), S(n), and S∗(n), are highly related and their ex-
act computation will be done in the next section. Now, some of the connections
between these values will be proved.

Lemma 3.13. For every n ≥ 1 we have that Z(n + 1) = S(n) + S∗(n).

Proof. Each extended representation E(C) of either the PSRn or CSRn forms
a cycle of PCRn+1 of either even extended weight or odd extended weight, re-
spectively. Similarly, each extended representation E(C) of a cycle C from the
PCRn+1 forms an extended representation of a cycle from either the PSRn or
the CSRn, depending on whether the (extended) weight of E(C) is even or odd,
respectively.
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For the next theorem the operator D, which was defined and partially ana-
lyzed in Section 1.2, will be required. This operator will be analyzed in detail in
Section 4.2 and Chapters 5 and 6.

Lemma 3.14. For every n ≥ 1 we have that Z∗(n) = S∗(n − 1).

Proof. Let C be a cycle from the CCRn. By Lemma 3.6, all the cycles of
the CCRn are self-dual cycles, where the structure of such a cycle C of pe-
riod 2d is [XX̄], X = x1x2 · · ·xd−1xd , and d divides n. By the definition
of the operator D we have that DC = [b1b2 · · ·bd−1bdbd+1bd+2 · · ·b2d−1b2d ],
where bi = xi + xi+1, bd+i = x̄i + x̄i+1 = bi for 1 ≤ i ≤ d − 1, bd = xd + x̄1,
and b2d = x̄d + x1 = bd . Hence, bi+d = bi for each 1 ≤ i ≤ d , which im-
plies that the period of DC is half of the period of C, i.e., d . Moreover,∑d

i=1 bi = ∑d−1
i=1 (xi + xi+1) + xd + x̄1 = x1 + x̄1 = 1 and hence the weight

of DC is odd, which implies that DC is a cycle of the CSRn−1.
Furthermore, the mapping implies that each two complement n-tuples are

mapped to the same (n − 1)-tuple. Therefore the mapping on the CCRn cycles
maps all the n-tuples (states) of the CCRn cycles onto all the (n − 1)-tuples
(states) of the CSRn−1. Moreover, given a cycle C of the CSRn−1 whose period
is d and its weight is odd, we can find exactly one cycle C′ for which DC′ = C
and this cycle of period 2d has the form C′ = [XX̄], where X is a sequence of
length d . Now, it is easy to verify that this is a one-to-one mapping between the
cycles of CCRn and the cycles of the CSRn−1, i.e., Z∗(n) = S∗(n − 1).

Corollary 3.6. If n is a positive integer, then S(n) = Z(n + 1) − Z∗(n + 1).

Proof. By Lemma 3.13, we have that S(n) = Z(n+1)−S∗(n). By Lemma 3.14,
we have S∗(n) = Z∗(n + 1) and hence S(n) = Z(n + 1) − Z∗(n + 1).

Lemma 3.15. If n is even, then S(n) = S∗(n).

Proof. By Lemma 3.12, if n is even, then n+ 1 is odd, and there is a one-to-one
correspondence between the cycles of the PSRn and the cycles of the CSRn,
under which an extended representation E(C) of a PSRn (CSRn, respectively)
cycle C is mapped into its complement that is an extended representation of the
cycle C̄ of the CSRn (PSRn, respectively). This implies that S(n) = S∗(n).

By Corollary 1.13, the number of FSRn is 22n−1
. By Corollary 2.1, the num-

ber of LFSRn is 2n−1. Hence, it is obvious that most shift registers are nonlinear
and their representation can be done either by the associated truth table or by
the function derived from this truth table based on basic methods of digital sys-
tems for reducing the number of terms in a function. Span n de Bruijn sequences
that form factors with one cycle in Gn are all nonlinear and we are interested in
their feedback functions. By Theorem 1.29, there are 22n−1−n span n de Bruijn
sequences. This is still a small fraction of the total number of FSRn. Construc-
tions of de Bruijn sequences will be given in the next chapter by construction
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algorithms rather than their function. It is still interesting to find feedback func-
tions that form interesting shift registers in terms of their state diagrams, i.e., the
sequences that they form.

The cycles of some nonlinear FSRn (NLFSRn in short) can be of increased
interest based on the discussion that we had so far. Given an LFSRn with a
feedback function f (x1, x2, . . . , xn), we already know how to find the number
of cycles of each length in its state diagram (see Lemma 2.5 and Theorem 2.5).
Consider now the simple modification of the feedback function to

h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + 1.

If h(x1, x2, . . . , xn) = x1 +1 or h(x1, x2, . . . , xn) = ∑n
i=1 xi +1, then the length

of the cycles and their number are discussed in this section and the following
one. Can we say something about other functions? There are some cases where
the answer is very simple.

Lemma 3.16. If f (x1, x2, . . . , xn) is the characteristic (feedback) function for
an M-sequence S, then the state diagram of the feedback function

h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + 1

has two sequences, S̄ and [1].
Proof. Let (y1, y2, . . . , yn) be an arbitrary state. If f (y1, y2, . . . , yn) = b, then
by using Lemma 2.1 we have

h(ȳ1, ȳ2, . . . , ȳn) = f (ȳ1, ȳ2, . . . , ȳn) + 1 = f (y1 + 1, y2 + 1, . . . , yn + 1) + 1

= f (y1, y2, . . . , yn) + f (1,1, . . . ,1) + 1

= b + 0 + 1 = b̄ .

Therefore since the function f (x1, x2, . . . , xn) generates the sequences S

and [0], it follows that the function h(x1, x2, . . . , xn) generates the sequences S̄

and [1].
For a factor F in the de Bruijn graph Gn, the complement factor Fc is

defined as Fc � {e : e ∈ E, e /∈ F}, i.e., Fc contains all the edges of Gn that
are not contained in F . The binary complement factor F̄ of F is defined by
F̄ � {C : C̄ ∈ F}. These definitions are associated with state diagrams of an
FSR. The following observation can be easily verified.

Lemma 3.17. If f (x1, x2, . . . , xn) form a factor F , then h(x1, x2, . . . , xn) =
f (x1, x2, . . . , xn) + 1 if the feedback function of the FSRn whose state diagram
is the factor Fc. Moreover, the sequences of their truth tables are complements.

By Lemma 3.6, all the cycles in the state diagram formed from the function
h(x1, x2, . . . , xn) = x1 + 1 are self-dual. If h(x1, x2, . . . , xn) = ∑n

i=1 xi + 1,
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then by Lemma 3.10 all the cycles of the state diagram are of odd weight.
If n is even, then by Lemma 3.12 they are the complements of the cy-
cles generated by the function f (x1, x2, . . . , xn) = ∑n

i=1 xi . If n is odd,
then by the discussion on the CSRn we have that for each cycle C gen-
erated by h(x1, x2, . . . , xn) = ∑n

i=1 xi + 1, also its complement C̄ is gen-
erated by the same function since both extended representations have even
length n + 1 and odd weight. This implies that a general characterization,
for the function h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + 1 based on the func-
tion f (x1, x2, . . . , xn), will be difficult to obtain. Consider the associated shift
register for these two feedback functions. There is another interesting property
that is a generalization of Lemma 3.16.

Theorem 3.3. Let f (x1, x2, . . . , xn) be a linear function of an LFSRn. The se-
quence defined by the truth table (top half) of f is a CR sequence if and only if
the sequences generated by the feedback function

h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + 1

are the complements of the sequences that are generated by the feedback func-
tion f (x1, x2, . . . , xn).

Proof. Note first that if (0, x2, . . . , xn) is in the ith row of the truth table, then
(0, x̄2, . . . , x̄n) is in the ith row from the bottom (the (2n − i + 1)th row) of the
top half of the truth table. If the sequence defined by the top half of the truth
table is a CR sequence, then f (0, x2, . . . , xn) and f (0, x̄2, . . . , x̄n) must have
different values. Therefore f (0, x2, . . . , xn) and f (1, x̄2, . . . , x̄n) have the same
values for all n-tuples of the form (0, x2, . . . , xn) if and only if the truth-table
sequence defined by the function f is a CR sequence.

Assume first that the sequence, defined by the top half of the truth table of
the feedback function f , is a CR sequence. Let f (0, x2, . . . , xn) = b for some
xi ∈ {0,1}, 2 ≤ i ≤ n, and b ∈ {0,1} and hence by the definition of h we have
that h(0, x2, . . . , xn) = b̄. Since the sequence defined by the truth table of the
function f is a CR sequence, it follows that f (0, x̄2, . . . , x̄n) = b̄ and therefore
f (1, x̄2, . . . , x̄n) = b and h(1, x̄2, . . . , x̄n) = b̄.

Thus we have that f (0, x2, . . . , xn) = b implies that h(1, x̄2, . . . , x̄n) = b̄,
f (1, x̄2, . . . , x̄n) = b, and h(0, x2, . . . , xn) = b̄. Hence, the cycles of the state
diagram defined by the feedback function h are the complements of the cycles
of the state diagram defined by the feedback function f .

Now, assume that the sequences generated by the feedback function h are
the complements of the sequences generated by the feedback function f . Let
f (0, x2, . . . , xn) = b for some xi ∈ {0,1}, 2 ≤ i ≤ n, and b ∈ {0,1}. This
implies that f (1, x2, . . . , xn) = b̄, h(0, x2, . . . , xn) = b̄, h(1, x2, . . . , xn) = b,
and since the sequences defined by h are the complements of those defined
by f and f (1, x2, . . . , xn) = b̄, it follows that h(0, x̄2, . . . , x̄n) = b. Hence, by
the definition of the function h we have that f (0, x̄2, . . . , x̄n) = b̄ and since
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f (0, x2, . . . , xn) = b, it follows that the sequence defined by the truth table of
the feedback function f is a CR sequence.

Corollary 3.7. The sequence defined by the truth table of an M-sequence is a
CR sequence.

Proof. This is an immediate consequence from Theorem 3.3 and Lemma 3.16.

Problem 3.1. Given a factor F in Gn, can the number of cycles of the comple-
ment factor Fc and their length be given as a function of the cycles of F and
their length? What if F is the state diagram of an LFSRn?

3.2 Enumeration methods for polynomials and cycles

This section is devoted to the enumeration of sequences having certain prop-
erties. We enumerate the number of irreducible polynomials and the number
of primitive polynomials of any given degree. In particular, we concentrate on
counting the number of cycles in the state diagrams of the PCRn, the CCRn, the
PSRn, and the CSRn, i.e., finding the values of Z(n), Z∗(n), S(n), and S∗(n),
respectively. These enumerations are based on the Euler function φ(·) and the
Möbius function μ(·).

As we saw in Theorem 2.5, the length of a sequence obtained from an
LFSRn depends on the factorization of its characteristic polynomial. Moreover,
sequences of maximum length qn − 1, over Fq , are obtained from primitive
polynomials that form a subset of the set of irreducible polynomials. How many
irreducible polynomials of degree n over Fq exist? How many of them are prim-
itive polynomials? This section will be devoted first to answering these two
questions and related ones.

Theorem 3.4. The number of distinct primitive polynomials of degree n over Fq

is

φ(qn − 1)

n
.

Proof. Let α be a primitive element in Fqn . If g.c.d.(k, qn − 1) = 1, then αk has
order qn − 1 in Fqn , i.e., αk is also a primitive element in Fqn . Moreover, αk is
not a primitive element in Fqn if and only if g.c.d.(k, qn − 1) > 1. Hence, the
number of primitive elements in Fqn is φ(qn − 1). As a consequence of The-
orem 1.24, we have that each primitive polynomial of degree n over Fq has
n distinct primitive elements, which are the roots of the polynomial. Hence, the
number of distinct primitive polynomials of degree n over Fq is

φ(qn − 1)

n
.
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We are now going to provide a few applications of the Möbius inversion
formula and in particular, several such applications that are associated with the
computation of the number of cycles in the state diagram of some FSRns or the
number of cycles with some given properties. The first application is to find the
number of irreducible polynomials of degree n over the field Fq .

Lemma 3.18. The number of distinct irreducible polynomials of degree n

over Fq is

1

n

∑
d|n

μ(d) · qn/d .

Proof. Let Iq(n) be the number of distinct irreducible polynomials of degree n

over Fq . By Theorem 1.24, each element of Fqn is a root of an irreducible
polynomial whose degree divides n. Hence, since an irreducible polynomial of
degree d has d distinct roots, we have that

qn =
∑
d|n

d · Iq(d).

Now, we apply the Möbius inversion formula (see Theorem 1.10) and obtain

n · Iq(n) =
∑
d|n

μ(d) · qn/d

and the claim of the lemma follows.

Theorem 3.5. The number of cycles of length n in the state diagram of the
PCRn is

1

n

∑
d|n

μ(d) · 2n/d .

Proof. Let Fn be the number of PCRn cycles of length n. Counting the number
of states in the state diagram of the PCRn in two different ways implies that

2n =
∑
d|n

d · Fd.

Now, we apply the Möbius inversion formula and obtain

n · Fn =
∑
d|n

μ(d) · 2n/d

and the claim of the theorem follows.

Theorem 3.5 can be generalized for any necklaces factor with σ beads, i.e.,
σ alphabet letters, using the same proof.
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Theorem 3.6. The number of necklaces of length n over σ beads is

1

n

∑
d|n

μ(d) · σn/d .

Each necklace of length k, k ≤ n, having beads with σ colors, is also a cycle
in Gσ,n, and therefore we have the following consequence.

Corollary 3.8. The number of cycles of period k, k ≤ n in Gσ,n is

1

k

∑
d|k

μ(d) · σk/d .

The connection between Lemma 3.18 and Theorem 3.5 is readily verified.
There is a one-to-one correspondence between the cycles of length n in the
state diagram of the PCRn and the number of binary irreducible polynomials of
degree n. Having found the number of PCRn cycles with length n, we would
like to find the total number of PCRn cycles. To this end, we will use Burnside’s
lemma (see Theorem 1.2).

Theorem 3.7. For each positive integer n, the number of cycles in the state
diagram of the PCRn is

Z(n) = 1

n

∑
d|n

φ(d) · 2n/d .

Proof. Let U be the set of all binary words of length n and let G be a finite
group decomposed by the n cyclic permutations on the coordinates of the words
in U . First, one should note that an n-tuple remains unchanged under a cyclic
permutation if the n-tuple has period p and the cyclic permutation is a multiple
of p. Therefore the number of n-tuples that remained unchanged by a cyclic
shift of i positions is 2g.c.d.(n,i). If we consider two words that are different only
by a cyclic shift as equivalent, then the number of equivalence classes of this
relation is Z(n). Hence, by Burnside’s lemma, we have

Z(n) = 1

n

n∑
i=1

2g.c.d.(n,i) = 1

n

∑
d|n

∑
g.c.d.(n,i)=d

1≤i≤n

2d = 1

n

∑
d|n

2d
∑

g.c.d.(n,i)=d
1≤i≤n

1

= 1

n

∑
d|n

2d
∑

g.c.d.(n/d,i)=1
1≤i≤n/d

1 = 1

n

∑
d|n

φ
(n

d

)
· 2d = 1

n

∑
d|n

φ(d) · 2n/d .

By Theorem 3.1 we have that the minimum weight function of a span n de
Bruijn sequence is Z(n) − 1. The parity of Z(n) that will be discussed next is
important not only for its theoretical value, it will be used later in the proof of
Theorem 5.6.
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Lemma 3.19. The value of Z(n) is an even integer for each n ≥ 3.

Proof. We distinguish between three cases depending on whether n is odd, a
power of 2 greater than 2, or another even integer.
Case 1: If n is odd, then dividing

∑
d|n φ(d) · 2n/d by n does not change the

parity. Since all the powers of 2 in
∑

d|n φ(d) · 2n/d are even integers, it follows
that Z(n) is even.
Case 2: If n = 2k , where k > 1, then since φ(1) = 1 and φ(2�) = 2�−1 for � > 0,
we have that

Z(n) = 1

n

∑
d|n

φ(d) · 2n/d = 1

2k

k∑
i=0

φ(2i ) · 22k−i = 22k−k +
k∑

i=1

2−k+(i−1)+2k−i

.

Clearly, 22k−k is even and −k + (i − 1) + 2k−i > 0, unless i = k − 1 or i = k. If
i = k−1, then −k+(i−1)+2k−i = 0 and if i = k, then −k+(i−1)+2k−i = 0.
Hence, in both cases (i ∈ {k − 1, k}) we have that 2−k+(i−1)+2k−i = 1. However,
since both i = k − 1 and i = k are in the summation they add up to 2 and the
whole expression of Z(n) is even.
Case 3: n is not odd and not a power of 2 greater than 2, i.e., n can be written
as n = 2km, where k > 0 and m > 1 is an odd integer. The divisors of n = 2km

are the divisors of m multiplied by 2i for each 0 ≤ i ≤ k. Hence, we have (using
the divisors of φ(d) as given in Lemma 1.4) that

Z(n) = 1

n

∑
d|n

φ(d) · 2n/d

= 1

2km

∑
d|2km

φ(d) · 2n/d

= 1

2km

∑
d ′|m

k∑
i=0

φ(2id ′) · 22km/(2id ′)

= 1

m

∑
d|m

φ(d) · 1

2k

k∑
i=0

φ(2i ) · 22k−i (m/d)

= 1

m

∑
d|m

φ(d) ·
(

2(2k ·m/d)−k +
k∑

i=1

2−k+(i−1)+2k−i (m/d)

)
.

As in Case 1, dividing by the odd integer m does not change the parity. If d > 1
and since d is odd, it follows that φ(d) is even, and hence we only have to show
that when d is odd and d > 1 the expression in the parenthesis is an integer.
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Exactly as in Case 2 we have that

2(2k ·m/d)−k +
k∑

i=1

2−k+(i−1)+2k−i (m/d)

is an integer and hence

φ(d) ·
(

2(2k ·m/d)−k +
k∑

i=1

2−k+(i−1)+2k−i (m/d)

)

is even. If d = 1, then m/d = m and as in Case 2 we have that

2(2k ·m)−k +
k∑

i=1

2−k+(i−1)+2k−im

is an integer and this integer is even since m > 1.

Corollary 3.9. For n ≥ 3, the weight function of an FSRn with a function f is
even or odd, respectively, if and only if the number of cycles in the state diagram
of f is even or odd, respectively.

Proof. By Lemma 3.19 the number of cycles in the state diagram of the PCRn,
where n ≥ 3, is even and the weight function is 0, i.e., an even integer. Assume
that the weight function of some function f of an FSRn is k. This implies that
the truth table of the function f is obtained from the truth table of the PCRn

by changing k zeros to ones. By Lemma 1.20 and Corollary 1.15, each change
of one zero to a one either increases the number of cycles in the state diagram
by 1 or decreases this number by 1. Therefore the number of cycles in the state
diagram of f is even if k is even and odd if k is odd.

Corollary 3.10. The weight of the feedback function of any span n de Bruijn
sequence is odd when n ≥ 3.

Proof. By Corollary 3.9 we have that all span n de Bruijn sequences have the
same parity for the weight of their feedback functions. By Theorem 3.1 the
minimum weight function of a span n de Bruijn sequence is Z(n) − 1. By
Lemma 3.19, this number is odd and the claim follows.

Corollary 3.11. The value of Z∗(n) is an even integer for each n ≥ 3.

Proof. By Lemma 3.2 the maximum function weight of a span n de Bruijn
sequence is 2n−1 − Z∗(n) + 1 and by Corollary 3.10 this number is odd for
n ≥ 3. Hence, Z∗(n) is even for n ≥ 3.

Corollary 3.11 and Lemma 3.14 imply the following consequence.
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Corollary 3.12. The value of S∗(n) is an even integer for each n ≥ 2.

Corollaries 3.6 and 3.12 and Lemma 3.15 imply the following consequence.

Corollary 3.13. The value of S(n) is an even integer for each n ≥ 2.

Proof. By Corollary 3.6 we have that S(n) = Z(n + 1) − Z∗(n + 1). By Corol-
lary 3.11, we have that Z∗(n) is even for n ≥ 3. By Lemma 3.19, we have that
Z(n) is even for n ≥ 3. Thus we have that S(n) is even for each n ≥ 2.

Finally, we want to make an asymptotic computation of the number of cycles
in the PCRn. Recall that each cycle of the PCRn is a necklace with two beads.

Lemma 3.20. For N = 2n, there are O
(√

N
)

states in the degenerate neck-

laces of Gn and N
log N

− O
( √

N
log N

)
full-order necklaces.

Proof. By Corollary 3.1 each degenerate necklace has a length that is a divisor
d < n of n and hence the number of states in the degenerate necklaces is at most∑

d|n
d<n

2d ≤ 2
n
2 +1 = O

(√
N

)
.

The remaining N − O
(√

N
)

states are on full-order necklaces. Each full-order

necklace contains logN states and therefore there are N
logN

− O
( √

N
logN

)
full-

order necklaces.

Theorem 3.7 can be generalized easily using the same proof for the necklaces
factor with σ beads. Similarly to Theorem 3.7 we can prove the following claim.

Theorem 3.8. For each positive integer n, the number of cycles in the necklaces
factor of order n, over σ beads, is

1

n

∑
d|n

φ(d) · σn/d .

Theorem 3.8 indicates that we can handle factors of Gσ,n in the same way
that we handle state diagrams of FSRn. This is left as an exercise for the reader.

Theorem 3.9. For each positive integer n, the number of cycles in the state
diagram of the CSRn is

S∗(n) = 1

2(n + 1)

∑
d|n+1
d odd

φ(d) · 2(n+1)/d .
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Proof. Assume first that n is even, i.e., n + 1 is odd. By Lemma 3.15 we have
that S(n) = S∗(n) and by Lemma 3.13 we have that Z(n + 1) = S(n) + S∗(n),
i.e., S∗(n) = 1

2Z(n + 1). We also have by Theorem 3.7 that

Z(n + 1) = 1

n + 1

∑
d|n+1

φ(d) · 2(n+1)/d .

Since n + 1 is odd, it follows that all the divisors of n + 1 are odd, and therefore

S∗(n) = 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d .

Assume now that n is odd, i.e., n + 1 is even. Let m be a positive integer,
Am be the set of words of length m and even weight, and let Bm be the set
of words of length m and odd weight. It is easy to verify that |Am| = |Bm|.
Consider now the extended representation of the cycles in the CSRn and the
words of length n + 1 obtained by the n + 1 cyclic shift of each cycle. For a
cycle C in the CSRn, the first n bits of each cyclic shift of E(C) is a state on C.
Note also that if n + 1 is even, then each cycle of the CSRn has period n+1

d
for

some divisor d of n + 1. Since w = wt(E(C)) is odd, it follows that also w
d

is
odd, which implies that d is odd and hence the period n+1

d
is even. Let U be

the set of binary words of length n + 1 and odd weight, i.e., Bn+1. Let G be the
finite group decomposed of the n + 1 cyclic permutations on the coordinates of
words in U . By Burnside’s lemma, we have that

S∗(n) = 1

n + 1

n+1∑
i=1

n+1
g.c.d.(n+1,i)

odd

2g.c.d.(n+1,i)−1 = 1

n + 1

∑
d|n+1
n+1
d

odd

∑
g.c.d.(n+1,i)=d

1≤i≤n+1

2d−1

= 1

2(n + 1)

∑
d|n+1
n+1
d

odd

2d
∑

g.c.d.( n+1
d

,i)=1
1≤i≤n+1

1 = 1

2(n + 1)

∑
d|n+1
n+1
d

odd

φ

(
n + 1

d

)
· 2d

= 1

2(n + 1)

∑
odd d|n+1

φ(d) · 2(n+1)/d ,

where the division by 2 in the first equation is because |Am| = |Bm|, where
m = g.c.d.(n + 1, i). Note that m = g.c.d.(n + 1, i) is an even integer, but
d = n+1

m
is an odd integer. The number of words of length n + 1 that remains

unchanged under a cyclic permutation by i positions is 2m, but only half of them
have extended representations with odd weights.

This completes the proof of the theorem.
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Corollary 3.14. For each positive integer n, the number of cycles in the state
diagram of the CCRn is

Z∗(n) = 1

2n

∑
d|n

d odd

φ(d) · 2n/d .

Theorem 3.10. For each positive even integer n, the number of cycles in the
state diagram of the PSRn is

S(n) = 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d .

For each positive odd integer n, the number of cycles in the state diagram of the
PSRn is

S(n) = 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d + 1

2(n + 1)

∑
d|n+1
d even

φ(d) · 2(n+1)/d

= 1

2(n + 1)

∑
d|n+1
d odd

φ(d) · 2(n+1)/d + 1

n + 1

∑
d|n+1
d even

φ(d) · 2(n+1)/d .

Proof. Assume first that n is even. By Lemma 3.15 we have that S(n) = S∗(n)

and hence by Theorem 3.9 we have that

S(n) = 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d .

Assume now that n is odd. By Lemma 3.13, S(n) = Z(n + 1) − S∗(n) and
together with the value of Z(n) provided in Theorem 3.7 and the value of S∗(n)

provided in Theorem 3.9 we have that

S(n) = 1

n + 1

∑
d|n+1

φ(d) · 2(n+1)/d − 1

2(n + 1)

∑
d|n+1
d odd

φ(d) · 2(n+1)/d

= 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d + 1

2(n + 1)

∑
d|n+1
d even

φ(d) · 2(n+1)/d .

Since for even n, n + 1 has only odd divisors, we have the following conse-
quence.
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Corollary 3.15. For each positive integer n, the number of cycles in the state
diagram of the PSRn is

S(n) = 1

2(n + 1)

∑
d|n+1

φ(d) · 2(n+1)/d + 1

2(n + 1)

∑
d|n+1
d even

φ(d) · 2(n+1)/d .

Let N(n, ε) be the number of PCRn cycles of length n and weight εn, where
0 ≤ ε ≤ 1 (εn is not necessarily an integer).

Lemma 3.21. If we define
(
β
α

) = 0 when α is not an integer, then

N(n, ε) = 1

n

∑
d|n

(
d

εd

)
· μ

(n

d

)
.

Proof. The number of states of length n with weight εn is
(

n
εn

)
. This number of

states is also equal to
∑

d|n d · N(d, ε). Therefore(
n

εn

)
=

∑
d|n

d · N(d, ε)

and hence, by the Möbius inversion formula (Theorem 1.10) we have that

N(n, ε) = 1

n

∑
d|n

(
d

εd

)
· μ

(n

d

)
.

Lemma 3.22. The number of PCRn cycles of length n and odd weight is

1

n

∑
d|n

μ
(n

d

)
· Q(n,d),

where Q(n,d) = 2d−1 if n
d

is odd and Q(n,d) = 0 if n
d

is even.

Proof. The number of PCRn cycles of length n and odd weight is equal to the
number of CSRn−1 cycles with an extended representation of length n. This
number is equal to


n/2�∑
k=0

N

(
n,

2k + 1

n

)
.

By Lemma 3.21, we have that


n/2�∑
k=0

N

(
n,

2k + 1

n

)
=


n/2�∑
k=0

1

n

∑
d|n

(
d

(2k+1)d
n

)
· μ

(n

d

)
.
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By changing the order of the summation we have


n/2�∑
k=0

1

n

∑
d|n

(
d

(2k+1)d
n

)
· μ

(n

d

)
= 1

n

∑
d|n

μ
(n

d

) 
n/2�∑
k=0

(
d

(2k+1)d
n

)
.

If n
d

is even, then for every k, (2k+1)d
n

is not an integer and hence


n/2�∑
k=0

(
d

(2k+1)d
n

)
= 0.

If n
d

is odd, then (2k+1)d
n

is either odd or not an integer. Moreover, all the odd

integers between 0 and d have exactly one representation as (2k+1)d
n

. Hence,


n/2�∑
k=0

(
d

(2k+1)d
n

)
=

∑
odd k

(
d

k

)
= 2d−1.

Therefore we have

1

n

∑
d|n

μ
(n

d

) 
n/2�∑
k=0

(
d

(2k+1)d
n

)
= 1

n

∑
d|n

μ
(n

d

)
· Q(n,d).

Theorem 3.11. For every positive integer n, the number of CCRn cycles of
length (period) 2n is

1

n

∑
d|n

μ
(n

d

)
· Q(n,d).

Proof. By Lemmas 3.6 and 3.7 and by Corollary 3.5, the self-dual sequences
of period 2n are exactly the CCRn cycles of length 2n. Similarly to the proof
of Lemma 3.14 we have that the number of CCRn cycles of length 2n is equal
to the number of CSRn−1 cycles of length n (and odd weight). This number is
equal, as explained in the proof of Lemma 3.13, to the number of PCRn cycles
of length n and odd weight that by Lemma 3.22 equals

1

n

∑
d|n

μ
(n

d

)
· Q(n,d).

By Lemma 3.6 all the self-dual sequences have even lengths. Now, we can
also calculate their number as an immediate consequence from Theorem 3.11.

Corollary 3.16. The number of self-dual sequences of period 2n is

SD(2n) = 1

n

∑
d|n

μ
(n

d

)
· Q(n,d).
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FIGURE 3.1 A state of G5, colored with an I, on the left and a state of G6, colored with an R, on
the right.

3.3 Maximum number of cycles in a state diagram

Which factor of Gn has the largest number of cycles, i.e., which FSRn has a state
diagram with the largest number of cycles, and what is the number of cycles
in the associated factor? Is the factor that attains the largest number of cycles
unique? All these questions will be considered and answered in this section.

So far, states were denoted with lowercase letters, and their entries with low-
ercase letters with subscripts. Sometimes, as in this section, subscripts will be
required also for states and they will be denoted by uppercase letters. There will
be other places where uppercase letters will be required to denote states and this
should be understood from the context.

We will now present a proof that the number of cycles in the FSRn which
has the largest number of cycles in its state diagram is Z(n). The proof will
be obtained by coloring the vertices in Gn. Each digit of any given state
Z = (z0, z1, · · · , zn−1) is placed on the unit circle of the two-dimensional plane,
where z0 is placed on the point (x, y) = (0,1) and the other digits are evenly
spaced on the unit circle written in increasing order of indices clockwise. The
coordinates of the digit zi are

(x, y) =
(

sin
2πi

n
, cos

2πi

n

)
, i = 0,1, . . . n − 1.

Consider each zi to be a mass of weight zi , which is either 0 or 1, and find the
center of mass (denoted by CM) of these weights. The state Z is colored with
an L if its CM is to the left of the y-axis, colored with an I if its CM is on the
y-axis, and colored with an R if its CM is to the right of the y-axis. Examples
of states from G5 and G6 are given in Fig. 3.1.

The next few lemmas prove a few properties of this coloring associated with
the cycles in Gn and in particular with the PCRn cycles.

Lemma 3.23. Either all the states on a cycle from the PCRn have color I, or
the cycle contains exactly one block of consecutive Ls and one block of consec-
utive Rs, and at most two Is separating these two blocks, i.e., each color I that
exists is exactly after one of these two blocks.
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Proof. The colors of the states associated with a cycle C from the PCRn are
obtained by rotating the circle that represents the states of C in a way that the
first bit of each state will be in the coordinates (x, y) = (0,1). This implies that
the CM will move around in a circle with its center at the origin. If the CM in
one of the states is at the origin (0,0), then by this rotation the CM of all the
states is at the origin and the colors of all the states will be I. If the CM is not
at the origin, then the CM will move in a circle and will cross the y-axis exactly
twice, once from right to left and once from left to right. Only in these two
times can the CM be on the y-axis (either once or twice or none at all) and the
associated states will have the color I. In all the other rotations the same color L
or R is kept, as long the y-axis is not crossed.

Corollary 3.17. If one state, of a PCRn cycle C, has a CM at the origin, then
all the states of C have CM at the origin.

Lemma 3.24. Let C be a cycle from Gn that contains at least one state colored
with L, and at least one state that is not colored with L. Let Z be a state on C
that is colored by L, and that has a predecessor on C that is not colored by L.
Suppose that Z is on a cycle C′ from PCRn. Then, Z is the first state in the block
of states colored with L on C′.
Proof. Two conjugate states differ in their first bit and therefore they differ only
in the weight that is placed on the point (x, y) = (0,1) that is on the y-axis.
This implies that the CM of both conjugate states are either on the y-axis or on
the same side of the y-axis. Therefore two such conjugate states have the same
color. The two predecessors of Z are conjugate states and hence they have the
same color. The color of these two predecessors of Z is not L by the assumption.
Thus by Lemma 3.23 the state Z is the first state in a cycle C′ of the PCRn in
the block of states that are colored by L.

Lemma 3.25. If C is a cycle of Gn that does not contain both colors L and R (it
might contain a state colored by either L or R), then C is a cycle from the PCRn

for which all the states have a CM at the origin.

Proof. Define the moment MZ of a state Z = (z0, z1, . . . , zn−1) to be the total
moment about the y-axis of the weights zis. In other words

MZ =
n−1∑
i=0

zi · sin
2πi

n
.

The moment MZ of the state Z is negative, zero, or positive, respectively, ac-
cording to how the state Z is colored with L, I, or R, respectively. Since the
sum of all the n-roots of unity is 0, it follows that for a cycle C = [c0c1 . . . c�−1]
whose states are Z0,Z1, . . . ,Z�−1 we have that

�−1∑
t=0

MZt =
�−1∑
t=0

n−1∑
t ′=0

ct+t ′ · sin
2πt ′

n
=

�−1∑
t=0

ct

n−1∑
t ′=0

sin
2πt ′

n
= 0.
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Hence, C contains a state with a positive moment if and only if C contains a
state with a negative moment, i.e., C contains a state with the color R if and
only if C contains a state with the color L. However, since the cycle C does not
contain both colors L and R, it follows that all the states on C are colored with
the color I.

If one of the states X on the cycle C, whose states are colored with an I, is
not on a PCRn cycle for which the CM of its states is at the origin (see Corol-
lary 3.17), then by Lemma 3.23 one of the predecessors of X is colored by
either L or R and its second predecessor has the same color. However, all the
states on C are colored with I and hence this contradicts the fact that its prede-
cessor on C is colored with an I. Thus all the states of C are on PCRn cycles with
CM at the origin.

To complete the proof it is required to show that all the states of C are on one
PCRn cycle. If C is not one of the cycles from the PCRn with CM of all its states
at the origin, then there exists a τ and two cycles C1 and C2 from the PCRn such
that Zτ is a state on C1 and Zτ+1 is a state on C2, where both states are colored
with an I and their CM is at the origin. This implies, by Corollary 3.17, that all
the states of C1 and C2 have CM at the origin. The companion Z′

τ+1 of Zτ+1
must be on C1, and it is colored with an I, but its CM cannot be at the origin.
This contradicts the fact that if a PCRn cycle has one state with CM at the origin,
then all its states have CM at the origin (see Corollary 3.17).

Thus we have that C is a PCRn cycle for which all its states have CM at the
origin.

A V-set in a directed graph G is a set of vertices that will leave the graph
with no cycles when removed (with their incident edges) from G.

The definition of a V-set immediately implies the following result.

Lemma 3.26. A V-set contains at least one vertex from each cycle of any arbi-
trary factor.

Let ν(n) be the minimum number of vertices that should be removed
from Gn (with their incident edges) to leave the graph with no cycles. Let η(n)

be the maximum number of cycles in a factor of Gn.

Lemma 3.27. For each n ≥ 2 we have that ν(n) ≥ η(n).

Proof. Let 
 be a set with the minimum number of vertices in Gn that leave Gn

with no cycles when removed from the graph and let F be the factor in Gn with
the maximum number of cycles.

Clearly, 
 must contain a vertex from each cycle of F as otherwise if 
 is
removed from Gn, then at least one cycle of F will remain untouched. Therefore
ν(n) ≥ η(n).

Theorem 3.12. The minimum number of states that, if removed from Gn will
leave Gn with no cycles is at most Z(n), i.e., Z(n) ≥ ν(n).
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Proof. To leave Gn with no cycles it is required to remove at least one state
from each cycle of the PCRn. Let 
 be a set of Z(n) states that contains:

(1) An arbitrary state from each cycle in the PCRn whose states have CM at
the origin.

(2) The first state in the block of states colored with L from each other cycle of
the PCRn (see Lemma 3.23).

Let C be an arbitrary cycle in Gn.
If C does not contain a state colored by L, then by Lemma 3.25 we have

that C is a cycle from the PCRn whose states have CM at the origin. Therefore
by (1), we have that 
 contains a state from C.

If C contains a state colored by L, then by Lemma 3.24 and (2), we have that

 contains a state from C.

Thus 
 is a V-set and the claim of the theorem follows.

Corollary 3.18. The maximum number of cycles in a factor of Gn (a state dia-
gram of an FSRn) is Z(n), i.e., η(n) = Z(n).

Proof. In the PCRn there are Z(n) cycles and hence by definition, we have that
Z(n) ≤ η(n). By Lemma 3.27 and Theorem 3.12 we have that

η(n) ≤ ν(n) ≤ Z(n).

This implies that Z(n) ≥ η(n). Thus we have that Z(n) = η(n).

Corollary 3.19. For each n ≥ 2 we have that ν(n) = η(n) = Z(n).

The coloring technique used in this section is unique and we have the fol-
lowing question.

Problem 3.2. Can the coloring technique used in this section be used to solve
other problems associated with the de Bruijn graph?

Are there other FSRns, except for the PCRn, whose state diagrams (factors)
have Z(n) cycles? The answer is that there exist many such factors for each
n > 3. For n = 3, the PCRn has four cycles [0], [1], [001], and [011]. The fol-
lowing four cycles of the PSRn, [0], [1], [01], and [0011], form the only other
another state diagram in G3 with 4 cycles as in PCR3. Such factors can be found
for every n ≥ 3, by considering two PCRn cycles C1 and C2 in which there are
two pairs {x, x′} and {y, y′} of companion states, where x, y ∈ C1 and x′, y′ ∈ C2.
Two such cycles, not necessarily in the PCRn, with two pairs of companion
pairs, are called an adjacency pair. By applying the merge-or-split method on
{x, x′} the two cycles C1 and C2 are merged into one cycle C. By applying the
merge-or-split method on {y, y′}, which are now two states on C, the cycle C is
split into two cycles C3 and C4, which are different from C1 and C2. The newly
generated factor has Z(n) cycles and this factor is not the state diagram of the
PCRn.
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Example 3.2. Assume n ≥ 3 and the two PCRn cycles [0n−11] and [0n−211],
are both of length n. These two cycles have two pairs of companion states

{(0n−210), (0n−211)} and {(10n−1), (10n−21)}.
Now, if the merge-or-split method is applied on the pair of companion states
{(0n−210), (0n−211)}, then the cycle [0n−1110n−21] of length 2n is generated.
This cycle is split into two cycles by applying the merge-or-split method on the
pair of companion states {(10n−1), (10n−21)}. These two cycles are [0n−111] of
length n + 1 and [10n−2] of length n − 1. Note that if we start by applying the
merge-or-split method on the pair of companion states {(10n−1), (10n−21)}, the
cycle [0n−2110n−11] is generated. �

3.4 Notes

Although there has been more research on LFSRns, the research on NLFSRns
was carried out in parallel. NLFSRns were used to form span n de Bruijn se-
quences that are always nonlinear. Each sequence is generated by some LFSRn

and this will be considered in Chapter 5. The current chapter considered the
nonlinear theory only in three directions, properties of four interesting nonlin-
ear FSRns and in particular their cycle structure and the number of cycles in
their state diagrams, which is the second direction. Finally, the intriguing prob-
lem on the state diagram with the maximum number of cycles was solved. More
analysis from a few different directions of NLFSRns can be found in the book
of Golomb [12].

Section 3.1. Analysis of the cycles from the PCRn, the CCRn, the PSRn, and the
CSRn, was given first in the book of Golomb [12] who developed the various
formulas and was the first to consider these enumerations. An analysis of the
number of cycles in the state diagrams of these shift registers was presented
also in Etzion [8]. In particular, this work considered the enumeration of self-
dual sequences and their connection to the cycles of the PCRn, the CCRn, the
PSRn, and the CSRn. Self-dual sequences will appear also in other chapters
of the book, where some more properties of these sequences will be proved.
Sloane [36] observed a connection between the enumerations for Z(n), Z∗(n),
S(n), S∗(n) and single-deletion-correcting codes.

Necklaces were considered and used under different types of structures.
They were classified and categorized in different ways. For many applications,
it is required to choose one representative from each full-order necklace. This
will be done in some chapters of the book. One important set of representatives
was suggested by Lyndon [22] who took the word that is the least one in lexi-
cographic order. These words are called by his name, Lyndon words. Properties
and construction methods for all the necklaces and some of their classes were
extensively studied. In particular, one would like to have efficient algorithms
for their construction. For some work on such construction methods see Cattell,
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Ruskey, Sawada, and Serra [2], Fredricksen and Kessler [11], Ruskey, Miers,
and Sawada [31], Ruskey and Sawada [32], Sawada [33,34], and Sawada and
Ruskey [35].

Other nonlinear shift registers were also observed. For example, Coven and
Hedlund [5] determined all the possible periods of shift-register sequences for
nonlinear feedback functions of the form

f (x1, x2, . . . , xn) = x1 +
k∏

i=1

(xi + bi), m − 1 ≥ k ≥ 2, bi ∈ {0,1},

where the least period of [b1 · · · bk] is k, i.e., [b1 · · · bk] is a full-order
necklace. Other papers that consider the structure of sequences of nonlinear
shift-register sequences and also their decomposition into other cycles are, for
example, Cheng [3], Cohn and Lempel [4], Kjeldsen [16], Ma, Qi, and Tian [23],
Mykkeltveit, Siu, and Tong [29], Søreng [37], Søreng [38], and Zhang, Qi, Tian,
and Wang [41].

Problem 3.3. Find more types of nonlinear feedback functions for which the
number of generated cycles or their periods can be analyzed.

Self-dual sequences were defined only for binary sequences and it is natural
to ask whether there is a generalization for these sequences over larger alpha-
bets. Assume S is a sequence over Fq , q a prime power. We say that S is a
self-dual sequence over Fq if (α,α, . . . , α) + S = S for each element α ∈ F

∗
q .

The same definition applies also if we take Zm instead of Fq for every positive
integer m ≥ 2. The theory for non-binary self-dual sequences is less developed,
but such sequences will appear again in the book. Similarly, we can defined non-
binary shift registers over Fq and analog registers for the PCRn, the CCRn, the
PSRn, and the CSRn as follows:

f (x1, x2, . . . , xn) = x1,

f (x1, x2, . . . , xn) = x1 + α, α ∈ F
∗
q,

f (x1, x2, . . . , xn) =
n∑

i=1

xi

and

f (x1, x2, . . . , xn) = α −
n∑

i=1

xi, α ∈ F
∗
q,

respectively, where all computations are done in Fq .

Problem 3.4. Continue to develop the nonlinear theory of non-binary shift reg-
isters with comparison to the theory of the related binary shift registers.
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The structures of cycles from NLFSRns and in particular those that yield
complement sequences, reverse sequences, and self-dual sequences were dis-
cussed by Walker [39]. It was also proved in that paper that a de Bruijn se-
quence S cannot be a self-dual sequence. This will be also proved using a
simpler proof in Chapter 5. The parity of the number of cycles of length k in
Gn was given by Duvall and Kibler [6].

Theorem 3.13. If n ≥ 2, then the number of simple cycles of length k in Gn is
odd if and only if

k = 1

3

(
2n+1 ± 3 + (−1)n

)
.

Section 3.2. Some of the enumeration results in this section can be found in the
book of Golomb [12] and also in Etzion [8]. The enumeration for the number of
full-order necklaces in Theorem 3.5 (Theorem 3.6 for the binary case) is much
older and can be attributed to MacMahon [24]. Some of the enumerations are
also associated with elements in coding theory and can be found in the excellent
book of MacWilliams and Sloane [25] on coding theory. In this section, we enu-
merated the number of cycles in some FSRns and also the number of cycles of
specific structures like self-dual sequences. A different enumeration problem is
to find the number of cycles of any given length in Gσ,n. The number of cycles
of short length in Gn was computed by Bryant and Christensen [1] and Wan,
Xiong, and Yu [40]. Asymptotic results on the number of cycles of any given
length were presented by Maurer in [26] who also provided many tables and
computer-search enumerations. Li, Jiang, and Lin [21] studied the properties of
all the cycles in the PCRn which contain only states of weight at most k. They
also considered cycles of larger length that contain these states. Constructions
of cycles that contain these states were considered before by Fredricksen [10].
Asymptotic enumerations for the number of full-length necklaces and the num-
ber of degenerate necklaces were carried out by Prasad and Iyengar [30]. Finally,
the function N(n, ε) and Lemma 3.21 were defined and proved by Etzion [7].
Further analysis of the number of cycles associated with this function was pre-
sented in Etzion [8]. As noted in Section 2.5 it was proved by Lempel [19]
that in Gσ,n there exists a cycle of length k for each 1 ≤ k ≤ σn. Hemmati and
Costello [14] suggested an algebraic construction for such sequences when σ

is a power of a prime. Etzion [7] gave an efficient algorithm to construct such
binary sequences. The same ideas can be used to construct such sequences over
any alphabet.

Section 3.3. The proof that Z(n) is the maximum number of cycles in a state
diagram of an FSRn was presented by Mykkeltveit in [27]. The idea to use the
concept of V-set in the proof was suggested by Lempel [18]. Adjacency pairs in
the PCRn were considered by van Lantschoot [17] and Mykkeltveit [28]. They
illustrated many pairs of PCRn cycles with two pairs of companion states. Each
such pair of PCRn cycles can be used to form new factors of Gn with Z(n)
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cycles. In many cases, a few pairs of companion states in pairs of PCRn cycles
can be used to form different factors of Gn with Z(n) cycles. Adjacency pairs in
other states diagrams were considered, for example, by Hauge [13], Hemmati,
Schilling, and Eichmann [15], and Li, Jiang, and Lin [20]. Adjacency pairs such
as those considered in Hemmati, Schilling, and Eichmann [15] were used and
considered in parallel by Etzion and Lempel [9].
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Chapter 4

Constructions of full cycles
Full cycles, enumeration, D-morphism, algorithms

Full cycles, known also as de Bruijn cycles, are the most important family of
cycles in the de Bruijn graph. During the years since de Bruijn found their num-
ber, many algorithms were developed to construct either all these cycles or a
large subset of these cycles. There were a few goals in mind when algorithms
to construct these cycles were developed. The first one is to construct all of
them, the second one was to construct these cycles with an efficient algorithm.
Next, it was required to construct a subset of these cycles with desired prop-
erties. Algorithms are usually implemented via associated software, but it was
also important to construct these cycles via hardware. Span n M-sequences can
be constructed with LFSRn via their feedback function associated with a corre-
sponding primitive polynomial. However, also to find a primitive polynomial of
a large degree is not an easy task. Hence, designing span n full cycles via their
associated FSRn is also a goal in the construction of full cycles. All these goals
will be addressed in this chapter.

Constructions of all span n de Bruijn sequences as Eulerian cycles can be
carried out with a reverse spanning tree algorithm that can be used to construct
all Eulerian cycles in any directed graph that satisfies the Euler criteria (see
Theorem 1.15). This algorithm is discussed in Section 4.1. This algorithm, i.e.,
implementing the one-to-one correspondence between the number of reverse-
spanning trees and the number of Eulerian cycles in Gn implies an enumeration
method to find the number of span n + 1 de Bruijn sequences. This method will
be considered in this section and will be also used in some later chapters. In
this section, we will also discuss the method of de Bruijn to find the number
of full cycles in Gn. His method is more general to find the number of Eulerian
cycles in a connected directed graph, where each vertex has in-degree 2 and out-
degree 2. It can be generalized to a directed graph in which the in-degree equals
the out-degree for each vertex. Finally, the first known algorithm to construct
full cycles will be presented.

Section 4.2 is devoted to recursive constructions for de Bruijn sequences. An
important tool in these constructions is the operator D, which will be called the
D-morphism in this section. This operator induces a homomorphism between
de Bruijn graphs of consecutive orders. This operator was already mentioned in
Section 1.2, where it is also called the derivative. It was also used in Sections 2.3

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00010-X
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and 3.1. It will be also used in various chapters of our exposition and it has an
important role in analyzing the properties of words, sequences, and codes.

The merge-or-split method introduced in Section 1.3 is the main tool in ef-
ficient constructions of many full cycles in Gn. The method requires a factor (a
state diagram) with a set of cycles and a method to find bridging states to apply
the merge-or-split method to merge all the cycles of the factor. In Section 4.3 the
state diagrams of the most celebrated FSRn discussed in Chapter 3, the PCRn,
the CCRn, the PSRn, and the CSRn, will be considered for this purpose.

4.1 Enumeration of all Eulerian cycles

Theorems 1.17 and 1.18 imply that an Eulerian cycle in Gn is associated with a
span n+ 1 de Bruijn sequence and a Hamiltonian cycle in Gn is associated with
a span n de Bruijn sequence. While in general there are efficient algorithms to
generate Eulerian cycles in a graph and finding a Hamiltonian cycle is a diffi-
cult problem, in specific graphs, like the de Bruijn graph, it is not difficult to
find an efficient algorithm to generate a Hamiltonian cycle. It is more difficult
to generate all the de Bruijn sequences of order n efficiently. In the following
sections, we will exhibit several efficient algorithms to generate a large class
of de Bruijn sequences. The most interesting method to generate all of them is
based on the reverse spanning tree algorithm that in general yields Eulerian cy-
cles in each directed graph in which for each vertex the in-degree is equal to the
out-degree. In this section, we concentrate on the algorithm only for in-degree 2
and out-degree 2 for each vertex.

A reverse spanning tree in a directed graph G = (V ,E) is a subgraph of G

whose set of vertices is V , one vertex r with out-degree zero and from each other
vertex v ∈ V there is a unique directed path from v to r . Note that T is a reverse
spanning tree in G if and only if T R is a tree in GR . The following lemma is a
simple observation.

Lemma 4.1. The out-degree of each vertex, excluding the root, in a reverse
spanning tree is one.

By Lemma 1.17, Gn and GR
n are isomorphic graphs. This implies the fol-

lowing theorem that is proved again for completeness.

Theorem 4.1. The number of reverse spanning trees in Gn = (Vn,En) whose
root r is the all-zeros word is equal to the number of spanning trees in Gn whose
root r is the all-zeros word.

Proof. Assume T = (Vn,E) is a spanning tree in Gn whose root r is the all-
zeros word. We construct the following subgraph T ′ = (Vn,E

′) of Gn, where

E′ � {x → y : yR → xR ∈ E}
= {(x0, . . . , xn−1) → (x1, . . . , xn) : (xn, . . . , x1) → (xn−1, . . . , x0) ∈ E}.
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By the definition of the edges in Gn we have that

(x0, x1, . . . , xn−1) → (x1, . . . , xn−1, xn) ∈ En

if and only if

(xn, xn−1, . . . , x1) → (xn−1, . . . , x1, x0) ∈ En

and hence E′ ⊂ En. This also implies that the number of edges in E is equal
to the number of edges in E′. Therefore to complete the proof it is sufficient to
show that from each vertex v ∈ Vn, v �= r , there is a directed path from v to r

in T ′. Let

r → v1 → v2 → ·· · → v�−1 → v� → vR

be the path from r to vR in T . Then, the reverse path

v → vR
� → vR

�−1 → ·· · → vR
2 → vR

1 → r

is a path from v to r is T ′.

A reverse spanning tree in G4 and its associated spanning tree in G4 are
depicted in Fig. 4.1.

FIGURE 4.1 A tree and its associated reverse tree in G4.

For a connected directed graph G = (V ,E), in which the in-degree is equal
to the out-degree at each vertex, by Theorem 1.15 we have that there exists an
Eulerian cycle in G. From each reverse spanning tree of G, one can construct
some Eulerian cycles. For the de Bruijn graph Gn, it can be proven that there
exists a one-to-one correspondence between the set of reverse spanning trees
rooted at one of the self-loops (e.g., (0n)) and the set of de Bruijn sequences
of length 2n+1 (Eulerian cycles in Gn). We will first show that each reverse
spanning tree in Gn yields a distinct span n + 1 de Bruijn sequence.
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The reverse spanning tree algorithm:

Let T be a reverse spanning tree in Gn rooted at the vertex r = (0n). Each
edge of T is starred in Gn. All the edges of Gn are set to be unmarked. Set the
current vertex v to be r . Mark the self-loop edge r → r .

(T1) If the only unmarked out-edge of v is the starred edge v → u1, then mark
the edge v → u1 and set the current vertex to v := u1; otherwise, mark the
un-starred edge v → u2 and set v := u2.

(T2) If v �= r then go to (T1); otherwise stop. �
Starting with n consecutive zeros and continuing with the sequence of (last)

bits in the traversed edges (in the order in which they were marked) we obtain
a sequence S from the algorithm. Similarly, we can consider the consecutive
edges represented as (n + 1)-tuples as a path P in Gn. Every n + 1 consecutive
bits of S are associated with an edge in Gn. Every n + 2 consecutive bits are
associated with two consecutive edges being traversed by the algorithm. These
two edges are connected by a vertex whose n bits form the suffix of length n of
the first edge and the prefix of length n of the second edge.

Lemma 4.2. When the reverse spanning tree algorithm terminates, the current
vertex is v = r and all the in-edges and out-edges of r were traversed.

Proof. At each step of the algorithm when a vertex is left on one of its out-edges,
the number of unmarked in-edges and the number of unmarked out-edges at
each vertex, except for the self-loop r , is equal. Hence, when a vertex v, v �= r , is
visited there are unmarked out-edges on which it can be left. The only exception
is the root r that immediately after the first step has exactly one unmarked in-
edge and no unmarked out-edge. Hence, the algorithm terminates at the self-
loop r and all the in-edges and out-edges of r were traversed.

Lemma 4.3. When the reverse spanning tree algorithm terminates, all the edges
of Gn are marked.

Proof. Assume, on the contrary, an edge v1 → v2 is not marked when the al-
gorithm stops. Since the starred edge is the second one to be traversed at each
vertex v �= r , w.l.o.g. assume that v1 → v2 is a starred edge, i.e., an edge of
the reverse spanning tree. Let v2 → v3 be the starred out-edge of v2. Since v2
was visited at most once and v2 → v3 is a starred edge, it follows that also
v2 → v3 is unmarked. Continue by induction implies that the starred edge u → r

is unmarked too, contradicting Lemma 4.2 that the algorithm terminates at the
self-loop r and all the in-edges and out-edges of r were traversed.

Theorem 4.2. The sequence S obtained by the reverse spanning tree algorithm
is a span n + 1 de Bruijn sequence.

Proof. By Lemma 4.3, when the algorithm terminates all the edges were vis-
ited, and hence the sequence of the visited edges forms an Eulerian cycle. By
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the discussion in Section 1.3 the written sequence is a span n + 1 de Bruijn
sequence.

Lemma 4.4. Any two distinct reverse spanning trees yield two distinct de Bruijn
sequences.

Proof. Let T1 and T2 be two distinct reverse spanning trees of Gn. Two copies of
the algorithm can be applied; one on T1 and the second on T2. As long as the two
copies of that algorithm visit the same vertices and the same out-edges, from Gn,
of these visited vertices, the generated subsequences are the same. Since T1 and
T2 are distinct spanning trees, it follows that at one point the applied copies of
the algorithm arrive for the first time at a vertex v that has different out-edges
that are not edges of the tree, v → v1 for T1 and v → v2 for T2. At this point, the
algorithm generates a different bit (the last bit of either v1 or v2, respectively)
for the two sequences and hence the two generated de Bruijn sequences are
distinct.

Lemma 4.5. Each span n+ 1 de Bruijn sequence is generated by the algorithm
using exactly one reverse spanning tree of Gn.

Proof. By Lemma 4.4 any span n + 1 de Bruijn sequence can be generated by
at most one reverse spanning tree.

Let S be a span n + 1 de Bruijn sequence, where the (n + 1)-tuples are or-
dered in a way that S starts with n+1 zeros. Let T = (Vn,E) be a graph defined
as follows. Each nonzero n-tuple x = (x1, x2, . . . , xn) is contained exactly twice
in S. If (x1, x2, . . . , xn, xn+1) is the second (n + 1)-tuple whose prefix is x, then
(x1, x2, . . . , xn) → (x2, . . . , xn, xn+1) is an edge in E. Clearly, by this definition,
the number of edges in T is 2n − 1 and each vertex in T , except the all-zeros
vertex, has an out-degree equal to one.

Now, we exhibit a path from each vertex to the all-zeros vertex. Assume,
on the contrary, that from some vertex y = (y1, y2, . . . , yn) there is no directed
path in T to the all-zeros vertex. Assume further that y is the last n-tuple in S

with this property. Let (y1, y2, . . . , yn, yn+1) be the second appearance of y as a
prefix of an (n + 1)-tuple in S. By definition, y → (y2, . . . , yn, yn+1) is an edge
in T . Hence, since there is no path from y to the all-zeros vertex, it follows that
there is no path from (y2, . . . , yn, yn+1) to the all-zeros vertex, a contradiction to
the assumption that y was the last n-tuple in S with this property. Therefore the
definition of T implies that the algorithm generates S using the reverse spanning
tree T .

Thus each span n+1 de Bruijn sequence is generated by the algorithm using
exactly one reverse spanning tree of Gn.

Corollary 4.1. There is a one-to-one correspondence between the Eulerian cy-
cles in Gn and the reverse spanning trees in Gn.
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Theorem 4.3. Let G be a strongly connected directed graph with m vertices for
which each vertex has in-degree 2 and out-degree 2. If G has � Eulerian cycles,
then its line graph L(G) has 2m−1� Eulerian cycles, where it is assumed that
� = 1 for a graph with one vertex.

Proof. The proof is by induction on m.
The basis for the induction is m = 1. In this case, the graph G has one ver-

tex v and two self-loops e1 and e2 from v to v. The line graph L(G) has two
vertices e1 and e2 and four edges (e1, e1), (e1, e2), (e2, e1), and (e2, e2), i.e., it
is the de Bruijn graph of order 1, G1. This graph has exactly one Eulerian cycle
as in G and the proof of the basis is complete.

Assume now that the claim is true for all strongly connected directed graphs
with m − 1 vertices and in-degree 2 and out-degree 2 for each vertex, i.e., for
such a strongly directed graph G with m − 1 vertices and � distinct Eulerian
cycles, in L(G) there are 2m−2� distinct Eulerian cycles.

For the induction step, we are given a strongly connected graph G with
m vertices, in-degree 2 and out-degree 2 for each vertex, for which G has � dis-
tinct Eulerian cycles.

Assume first that G has m vertices and all of them are self-loops. Since the
graph G is strongly connected and except for the self-loop each vertex has one
out-edge and one in-edge, it follows that there is a cycle going through the m

vertices,

v1 → v2 → ·· · → vm → v1.

Let ai be the vertex in L(G) that represents the edge (self-loop) vi → vi and bi

be the vertex in L(G) that represents the edge vi → vi+1. By the definition of
the line graph, L(G) is as depicted in Fig. 4.2.

FIGURE 4.2 Vertices and edges in L(G).

A cycle in L(G) that passes through bi must continue and pass through bi+1.
An Eulerian cycle in L(G) will start at b0, continue to b1 and after that to b2
until it reaches b0 and one round has finished. It will continue through all these
vertices of L(G) in the same order and when the second round is finished an
Eulerian cycle will be formed. Such a cycle has two ways of going from bi to
bi+1, either directly or through ai+1. It should be chosen, for each bi , which
option is taken in the first round and which one is taken in the second round.
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FIGURE 4.3 A local scenario in G and L(G).

The first edge in this process can be chosen arbitrarily and for the other edges
we have in total 2m−1 choices for 2m−1 Eulerian cycles in L(G) compared to one
Eulerian cycle in G. Therefore the number of distinct Eulerian cycles is 2m−1�

in this case.
Assume now that the graph G with m vertices has a vertex x that is not a

self-loop. The scenario is depicted in Fig. 4.3, where P , Q, R, S are different
edges of G (although some of the vertices a, b, c, and d may coincide).

From G we form another two graphs with m − 1 vertices, in which each
vertex has in-degree 2 and out-degree 2, where the vertex x is removed from the
graph G with all its incident edges. These two graphs are constructed as follows:

(G1) The graph G(1) is obtained by replacing the two edges P and R with one
edge from a to c, and replacing the two edges Q and S with one edge
from b to d .

(G2) The graph G(2) is obtained by replacing the two edges P and S with one
edge from a to d , and replacing the two edges Q and R with one edge
from b to c.

It is easy to verify that the number of Eulerian cycles in G is the sum of the
number of Eulerian cycles in G(1) and G(2).

By the induction hypothesis, the theorem applies to G(1) and also to G(2).
There are three different types of Eulerian cycles in L(G), depending on whether
the two paths, on the Eulerian cycle, leaving r and returning to p or q, both go
to p, both go to q, or one goes to p and one goes to q. This also determines the
structure of the paths from s to p and to q. We distinguish between these three
cases to be analyzed. For each case, the associated figure will be depicted.
Case 1: Assume first that the first path, P1, goes from r to p, the second
path, P2, goes from s to q, the third path, P3, goes from s to p, and the fourth
path, P4, goes from r to q. This scenario is depicted in Fig. 4.4.

FIGURE 4.4 The scenario of the paths in L(G) for Case 1.



126 Sequences and the de Bruijn Graph

These paths yield the following four Eulerian cycles in L(G):

P1 pr P4 qs P3 ps P2 qr

P1 ps P2 qr P4 qs P3 pr

P1 ps P3 pr P4 qs P2 qr

P1 ps P2 qs P3 pr P4 qr

.

In L(G(1)) and L(G(2)) these four paths are reduced to the scenario as
depicted in Fig. 4.5.

FIGURE 4.5 The scenario for the four paths of L(G(1)) and L(G(2)) in Case 1.

In L(G(1)), there is exactly one Eulerian cycle that will use the paths P1,
P2, P3, and P4. Similarly, in L(G(2)), there is exactly one Eulerian cycle that
will use the paths P1, P2, P3, and P4. These two Eulerian cycles are associated
with the four Eulerian cycles in L(G).
Case 2: Assume now that the first path, P5, goes from r to p, the second
path, P6, goes from r to p, the third path, P7, goes from s to q, and the fourth
path, P8, goes from s to q. This scenario is depicted in Fig. 4.6.

FIGURE 4.6 The scenario of the paths in L(G) for Case 2.

These paths yield the following four Eulerian cycles in L(G):

P5 pr P6 ps P7 qs P8 qr

P5 pr P6 ps P8 qs P7 qr

P5 ps P7 qs P8 qr P6 pr

P5 ps P8 qs P7 qr P6 pr

.
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In L(G(1)) and L(G(2)) these four paths are reduced to the scenario as
depicted in Fig. 4.7.

FIGURE 4.7 The scenario for the four paths in L(G(1)) and L(G(2)) in Case 2.

In L(G(1)) there is no Eulerian cycle that will use the paths P5, P6, P7,
and P8. In L(G(2)) there are exactly two Eulerian cycles that will use the paths
P5, P6, P7, and P8. These two Eulerian cycles in L(G(1)) and L(G(2)) are
associated with the four Eulerian cycles in L(G).
Case 3: Assume for the last scenario that the first path, P9, goes from r to q, the
second path, P10, goes from r to q, the third path, P11, goes from s to p, and the
fourth path, P12, goes from s to p. This is depicted in Fig. 4.8 and is handled
exactly as in Case 2, when the roles of r and s are exchanged.

FIGURE 4.8 The scenario of the paths in L(G) for Case 3.

Therefore the number of Eulerian cycles in L(G) (12 cycles in Cases 1, 2,
and 3) is twice the sum of the number of Eulerian cycles in L(G(1)) and
L(G(2)) (6 cycles in Cases 1, 2, and 3). On the other hand, the number of
Eulerian cycles in G is equal to the sum of the associated numbers of Eulerian
cycles in G(1) and G(2).

Thus the claim of the theorem is implied by the induction hypothesis.

Corollary 4.2. The number of Eulerian cycles in Gn−1 is 22n−1−n.

Proof. The proof is again by simple induction, with the basis being the unique
Eulerian cycle in G1. For the induction step we observe that by Theorem 1.16
we have that Gn = L(Gn−1) and hence we can apply Theorem 4.3 to obtain the
required result (stated also in Theorem 1.29).
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Corollary 4.3. The number of span n de Bruijn sequences is 22n−1−n.

Corollary 4.4. The number of reverse spanning trees in Gn (and the number of
spanning trees in Gn) is 22n−1−n.

After having enumerated the number of span n de Bruijn sequences, we turn
to constructions of such sequences. The reverse spanning tree algorithm can be
used to generate all span n de Bruijn sequences, but it is an inefficient algorithm.
First, it should find all the spanning trees of Gn and the algorithm also has to
store each one of them. Therefore we would like to have an efficient algorithm
that constructs a subset of these sequences. We start with the most celebrated
algorithm to construct one such sequence. The first known algorithm to form a
span n de Bruijn sequence is known as the prefer one algorithm. We start with
the all-zeros n-tuple as the first n bits (initial state) of the sequence. Given the
last n bits of the current sequence (current state), which was already generated,
(x1, x2, . . . , xn), examine whether the n-tuple (x2, . . . , xn,1) appeared as a win-
dow of length n in the sequence generated so far. If it did not appear, then add 1
to the current sequence; otherwise, add 0 to the current sequence. There is no
need to check if (x2, . . . , xn,0) already appeared in the sequence as it will be
proved in the following lemma that such a scenario cannot happen. Finally, the
algorithm stops when the n − 1 consecutive zeros appear again.

Lemma 4.6. The prefer one algorithm generates a span n de Bruijn sequence.

Proof. Assume first, on the contrary, that an n-tuple x1x2 · · ·xn−1xn appears
twice in the sequence. Clearly, xn = 0 (since an n-tuple that ends with a
one cannot appear twice by the definition) and it also implies that an n-tuple
zx1x2 · · ·xn−1 also appears twice in the sequence (since x1x2 · · ·xn−1 appears
at least three times), and using induction we have that the n-tuple 0n appears
twice in the sequence, a contradiction. Therefore each n-tuple is contained at
most once in the sequence. Next, we have to prove that the last n-tuple in the
sequence is 10 · · ·0. When a given nonzero (n − 1)-tuple x1x2 · · ·xn−1 appears
in the sequence for the first time it is associated with the edge

(b, x1, x2, . . . , xn−1) → (x1, x2, . . . , xn−11)

in Gn. It can appear a second time when it is associated with the edge
(b̄, x1, x2, . . . , xn−1) → (x1, x2, . . . , xn−10) in Gn. It cannot appear a third time
since both its predecessors bx1x2 · · ·xn−1 and b̄x1x2 · · ·xn−1 already appeared
in the sequence. This implies that for any nonzero n-tuple that does not end with
n−1 zeros we can add either 0 or 1 at any step of the algorithm. Hence, the only
n-tuple that can appear, for which we cannot add a 0 nor a 1, is (1,0, . . . ,0) since
the edge (0,0, . . . ,0) → (0, . . . ,0,1) already appeared (the first edge after the
self-loop at the all-zeros vertex), but the edge (1,0, . . . ,0) → (0, . . . ,0,0) (the
last edge in the sequence) did not appear. Hence, the last n-tuple in the sequence
is 10 · · ·0 and the algorithm stops.
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Assume now that the n-tuple x1x2 · · ·xn does not appear in the sequence,
which implies that also the n-tuples x2 · · ·xn0 and x3 · · ·xn00 were not con-
structed and by induction, we will have that the n-tuple 10 · · ·0 was not con-
structed, a contradiction.

Thus the prefer one algorithm generates a span n de Bruijn sequence.

Remark. There is a very clear similarity between the proof of Lemma 4.6 and
the proofs of Lemmas 4.2 and 4.3.

There are two main disadvantages of the prefer one algorithm. The first one
is that we have to store the whole sequence and search all of it to compute the
next bit of the sequence. The second one is that the algorithm generates exactly
one span n de Bruijn sequence. In Section 4.3 we will generate sequences that
overcome these two disadvantages.

4.2 The D-morphism and recursive constructions

One of the most important operators on sequences is the derivative, which
was already defined in Section 1.2, and was also analyzed in Sections 2.3
and 3.1. This operator D, when applied on acyclic sequences is a map-
ping D : Fn

2 → F
n−1
2 . In its definition, we distinguished between its appli-

cation on cyclic sequences and acyclic sequences. In this section, we start
by using its definition on acyclic sequences, continue with its application on
cyclic sequences associated with cycles in Gn, and conclude with its applica-
tions to generate de Bruijn sequences and factors in Gn. For a binary word
X = (x1, x2, . . . , xn−1, xn), the derivative (operator) DX was defined by

DX � (x1 + x2, x2 + x3, . . . , xn−1 + xn).

The following lemma is an immediate observation from the definition.

Lemma 4.7. The mapping D is a two-to-one mapping from F
n
2 to F

n−1
2 under

which DX = DX̄.

An equivalent statement of that in Lemma 4.7 is the following simple lemma.

Lemma 4.8. For X,Y ∈ F
n
2 , DX = DY if and only if Y = X or Y = X̄.

As a consequence of these properties, the mapping D will be also called the
D-morphism. The mapping D has many more interesting properties that will be
discussed in this section and throughout the book. The following result is also
very easy to verify from the definition of the operator D.

Lemma 4.9. If X → Y is an edge in Gn, then DX → DY is an edge in Gn−1.

Lemma 4.9 induces a mapping from cycles of Gn to cycles of Gn−1. If
C = [X1,X2, . . . ,Xk] is a cycle in Gn, where Xi , 1 ≤ i ≤ k, is a vertex in Gn,
then

DC � [DX1,DX2, . . . ,DXk],
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is a cycle in Gn−1, where DXi is a vertex in Gn−1, DXi → DXi+1, 1 ≤ i ≤
k − 1, and DXk → DX1 are edges in Gn−1.

If DC is a simple cycle, then also C is a simple cycle. For the other direction,
C might contain a pair of vertices X and X̄, and hence DC might not be a simple
cycle. Hence, if C is a simple cycle, we have a slightly different result, which is
also easy to verify by using Lemma 4.8.

Lemma 4.10.

• If DC is a simple cycle in Gn−1, then C is a simple cycle and for each state
(vertex) X in C we have that X̄ /∈ C.

• If the cycle C is a simple cycle and for each X ∈ C we have that X̄ /∈ C, then
DC is also a simple cycle.

Consider again the cycle C = [X1,X2, . . . ,Xk], where the Xis are the con-
secutive vertices of the cycle and each vertex is a binary word of length n. The
cycle DC can be described also by using the representation of the cycle as a bi-
nary sequence. If C = [c1, c2, . . . , ck], where ci is the first bit of Xi , 1 ≤ i ≤ k,
then DC = [c1 +c2, c2 +c3, . . . , ck−1 +ck, ck +c1] is the representation of DC as
a sequence. In this representation, each n consecutive bits of C = [c1, c2, . . . , ck]
is a corresponding vertex of C in Gn that is represented by n bits. Each n−1 con-
secutive bits of DC = [c1 + c2, c2 + c3, . . . , ck−1 + ck, ck + c1], which is a cycle
of length k, have an associated vertex of DC in Gn−1 which is represented by
n − 1 bits.

For the mapping D from the vertices of Gn to the vertices of Gn−1, i.e., from
F

n
2 to F

n−1
2 , we can also define an inverse mapping D−1 from F

n−1
2 to F

n
2 as

follows:

D−1
b (x1, x2, . . . , xn−1) � (b, b + x1, b + x1 + x2, . . . , b +

n−1∑
i=1

xi),

where b can be chosen as 0 or as 1. Clearly this is a one-to-two mapping,
where D−1

0 X is the complement of D−1
1 X for any X ∈ F

n−1
2 . It is now inter-

esting to see how this inverse mapping works on cycles and their associated
sequences. First, we would like to extend the definition D−1 for cycles and se-
quences. If the cycle C is represented by its consecutive vertices (states), i.e.,
C = [X1,X2, . . . ,Xk] then

D−1
b1

(C) = [D−1
b1

X1,D−1
b2

X2, . . .D−1
bm

Xm], bi ∈ {0,1},

where D−1
bi

Xi → D−1
bi+1

Xi+1, 1 ≤ i ≤ m − 1, D−1
bm

Xm → D−1
b1

X1, and either
m = k or m = 2k (as we will see later). If C is represented by a sequence, i.e.,
C = [c1, c2, · · · , ck], then for b ∈ {0,1}, we have

D−1
b (C) = [b, b1 + c1, b + c1 + c2, . . . , b +

k−1∑
i=1

ci] if
k∑

i=1

ci ≡ 0 (mod 2)
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since b + ∑k
i=1 ci = b; if

∑k
i=1 ci ≡ 1 (mod 2), then b + ∑k

i=1 ci = b̄ and

D−1
b (C) = [b, b + c1, . . . , b +

k−1∑
i=1

ci, b̄, b̄ + c1, . . . , b̄ +
k−1∑
i=1

ci].

The justification for these representations of D−1
b (C) is also a consequence of

the next few results.

Definition 4.1. A primitive cycle C in Gn is a simple cycle that does not contain
two complementary vertices.

Theorem 4.4. A simple k-cycle ϒ = [ς1, ς2, · · · , ςk] in Gn−1 is the D-morphic
image of a primitive k-cycle C = [c1, c2, . . . , ck] in Gn if and only if wt(ϒ) is
even.

Proof. If C is a primitive cycle in Gn, then by Definition 4.1 and Lemma 4.10
we have that ϒ = DC is a simple cycle in Gn−1 and

k∑
i=1

ςi =
k−1∑
i=1

(ci + ci+1) + (ck + c1) = 0.

Thus the modulo 2 sum of the ςis is zero and, hence, wt(ϒ) is even.
Now, let ϒ = [ς1, ς2, · · · , ςk] be a simple k-cycle of even weight in Gn−1.

Let c1 � b, where b can be either 0 or 1, and let

ci = b +
i−1∑
j=1

ςj , i = 2,3, . . . , k.

This definition implies that ςi = ci +ci+1 for 1 ≤ i ≤ k−1 and since C is a cycle
of length k, it follows that we must have ςk = ck + c1. Since wt(ϒ) = ∑k

i=1 ςi

is even, it follows that

ck = b +
k−1∑
i=1

ςi = c1 + ςk and b +
k∑

i=1

ςi = b = ck+1 = c1,

which implies that the definition of C is consistent and C has period k. Finally,
since ϒ = DC is a simple k-cycle, then by Lemma 4.8 there are no complemen-
tary states in C, and hence C is primitive.

Corollary 4.5. There exists a one-to-one correspondence between the simple
k-cycles ϒ of even weight in Gn−1 and the primitive pairs of k-cycles C and C̄
in Gn under which ϒ = DC = DC̄.

The next result provides a different proof of Lemma 3.5.



132 Sequences and the de Bruijn Graph

Lemma 4.11. A simple cycle C = [c1, c2, . . . , ck] in Gn is self-dual if and only
if it is of even period k = 2π and

ci+π = c̄i , i = 1,2, . . . , π.

Proof. Clearly, if C is self-dual then for each state X on C also X̄ is on C and
X → Y is an edge on C if and only if X̄ → Ȳ is an edge on C. Hence, each
such pair of vertices {X,X̄} must be at the same distance on C, i.e., C is of even
period k = 2π and ci+π = c̄i for 1 ≤ i ≤ π .

If C is of even period k = 2π and ci+π = c̄i for 1 ≤ i ≤ π , then this definition
immediately implies that C is a self-dual cycle.

The next lemma is also an immediate consequence of the definitions.

Lemma 4.12. The D-morphic image of a self-dual (2π)-cycle (not necessarily
simple) is a π-cycle. If C = [c1, c2, . . . , c2π ] is a self-dual (2π)-cycle in Gn,
then the π-cycle DC = ϒ = [ς1, ς2, · · · , ςπ ] in Gn−1 is given by

ςi = ci + ci+1, i = 1,2, . . . , π.

Theorem 4.5. A π-cycle ϒ in Gn−1 is the D-morphic image of a self-dual
(2π)-cycle C in Gn if and only if wt(ϒ) is odd.

Proof. The proof proceeds along the same line as the proof of Theorem 4.4,
where we have in the proof that since wt(ϒ) is odd, it follows that cπ+i = c̄i for
1 ≤ i ≤ π .

Corollary 4.6. There exists a one-to-one correspondence between the k-cycles ϒ

of odd weight in Gn−1 and the self-dual (2k)-cycles C in Gn under which
ϒ = DC.

Corollary 4.6 implies the claim in Lemma 3.14.

Corollary 4.7. The D-morphism forms a one-to-one mapping from the cycles
of the CCRn+1 to the cycles of the CSRn.

Given a simple cycle C we define D−1C as the two cycles D−1
0 C and D−1

1 C
if C has even weight. If C has odd weight, then D−1C is either D−1

0 C or D−1
1 C

(these two cycles are equivalent).
Finally, the inverse mapping can be applied to the cycles of a factor in Gn to

obtain the following result.

Theorem 4.6. If F is a factor in Gn, then D−1F is a factor in Gn+1, where

D−1F � {D−1C : C ∈ F}.
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This is the place to pay attention to some differences between sequences
and cycles in a graph. While in a cycle we are interested that the period of the
cycle will be also its length (it still might not be a simple cycle), in sequences
sometimes it is worthwhile to take a sequence of length k ·π whose period is π .
For example, to take the sequence [101010] rather than the sequence [10]. It
should be understood from the context which kind of sequence is considered.

The following lemma can be proved by several methods with the exposition
we had so far.

Lemma 4.13. If n > 1 and S is a span n de Bruijn sequence, then D−1
0 S and

D−1
1 S are two complementary sequences that form a factor in Gn+1 with exactly

two cycles.

Proof. A span n de Bruijn sequence is associated with a simple cycle in Gn and
it has even weight. Therefore the lemma follows directly from Corollary 4.5.

Note that in Lemma 4.13 we have that n > 1 since the span 1 de Bruijn
sequence is [01] and D−1

0 [01] = [0011]. [01] is the only de Bruijn sequence of
odd weight.

Corollary 4.8. Let n > 1, let C be a span n de Bruijn cycle, let X = (010101 · · · )
be a state in Gn+1, and let X′ be its companion state. The cycles D−1

0 C and

D−1
1 C contain all the states of Gn+1. If X is contained in D−1

b C, then X′ is

contained in D−1
b̄

C.

Proof. Clearly by Lemma 4.13 since D−1
0 C and D−1

1 C are two complementary
sequences in Gn+1, if follows that X and X̄ are not on the same cycle, i.e.,
X ∈ D−1

0 C if and only if X̄ ∈ D−1
1 C. W.l.o.g. assume that X ∈ D−1

0 C. Moreover,
both X and X′ are successors of X̄ = (101010 · · · ) in Gn+1 and therefore since
X ∈ D−1

0 C, it follows that X′ is the successor of X̄ = (101010 · · · ) on D−1
1 C.

Now, we can apply the merge-or-split method (see Lemma 1.19) to merge
the two cycles D−1

0 C and D−1
1 C into a span n + 1 de Bruijn cycle using the

companion states X and X′ (as defined in Corollary 4.8) as bridging states.
Assume first that C is generated via the feedback function

f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn).

Theorem 4.7. Let the cycle C and the state X be as in Corollary 4.8. After
merging the two cycles D−1

0 C and D−1
1 C via the companion states X and X′ the

feedback function h of the constructed span n + 1 de Bruijn sequence is

h(x0, x1, . . . , xn)

= f (x0 + x1, x1 + x2, . . . , xn−1 + xn) + xn + x̄1x2x̄3x4 · · · x̄n−1xn
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when n is even and

h(x0, x1, . . . , xn)

= f (x0 + x1, x1 + x2, . . . , xn−1 + xn) + xn + x̄1x2x̄3x4 · · · x̄n−2xn−1x̄n

when n is odd.

Proof. Given an (n + 1)-tuple X = (x0, x1, . . . , xn), either X is a state on the
cycle D−1

0 C or X is a state on the cycle D−1
1 C. We also have that

DX = (x0 + x1, x1 + x2, . . . , xn−1 + xn)

is a state on C. Since C was generated by the feedback function f , it follows that
the next state after DX on C is

DZ = (x1 + x2, . . . , xn−1 + xn,f (x0 + x1, x1 + x2, . . . , xn−1 + xn)).

Therefore by the definition of the operator D, the next state after X on either the
cycle D−1

0 C or the cycle D−1
1 C is

Z = (x1, . . . , xn, y),

where xn + y = f (x0 + x1, x1 + x2, . . . , xn−1 + xn). This implies that the feed-
back function γ (x0, x1, . . . , xn) of the state diagram whose cycles are D−1

0 C and
D−1

1 C is

γ (x0, x1, . . . , xn) = f (x0 + x1, x1 + x2, . . . , xn−1 + xn) + xn.

It remains to show that the defined function h(x0, x1, . . . , xn) is indeed the func-
tion of the feedback shift register that generates the de Bruijn sequence after
merging the cycles D−1

0 C and D−1
1 C via the bridging states X and X′. This is an

immediate consequence of Eq. (1.8), as explained for the merge-or-split method
in Section 1.3.

There are more pairs of companion states, one in D−1
0 C and its companion

pair in D−1
1 C. This implies that there are more ways to merge these cycles. Other

ways to merge cycles of a state diagram to form a de Bruijn sequence will be
demonstrated in the next section and also in Chapter 5.

Example 4.1. Consider the span 3 de Bruijn sequence S = [00011101]. Apply-
ing the operator D−1 on S we obtain the two sequences

D−1
0 S = [00001011] and D−1

1 S = [11110100].
Merging D−1

0 S and D−1
1 S via the companion pair (0101) and (0100) we obtain

the span 4 de Bruijn sequence

[1111010110000100].
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Merging D−1
0 S and D−1

1 S via the companion pair (0010) and (0011) we obtain
the span 4 de Bruijn sequence

[1110100101100001].
�

We will end this section with another class of sequences in Gn.

Definition 4.2. A span n half de Bruijn sequence is a (cyclic) sequence of
period 2n−1 that has the property that for each possible n-tuple X, either X or X̄

appears in the sequence exactly once as a subsequence.

There are many different ways to construct half de Bruijn sequences. Some
of the approaches to construct de Bruijn sequences can be used to construct
half de Bruijn sequences. There is a simple method, in which a half de Bruijn
sequence of length 2n−1 is generated from a span n − 1 de Bruijn sequence S.
The sequences D−1

0 S and D−1
1 S are half de Bruijn sequences of order n. Another

method is based on M-sequences, as given in the following theorem.

Theorem 4.8. If S is an M-sequence of order n − 1, then for each pair of
n-tuples X and X̄ either X or X̄ appears in S, except for the pair that consists
of the all-zeros and all-ones n-tuples.

Proof. Let g(x) be the characteristic polynomial of order n − 1 that generates
M-sequence S. By Lemma 2.5 the polynomial g(x)(x + 1) generates the se-
quences S and S̄.

Corollary 4.9. Let S be an M-sequence of order n−1 and let S′ be the sequence
obtained from S by adding another one to the unique run with n− 1 ones. Then,
S′ is a span n half de Bruijn sequence.

4.3 Merging cycles of large factors

One of the main disadvantages of the prefer one algorithm is that its straight-
forward implementation requires one to remember the subsequence that was
generated so far and this is highly inefficient. However, we can generate de
Bruijn sequences with more efficient algorithms.

A factor in Gn with exactly one cycle is associated with a span n de Bruijn
sequence. The unique cycle is a Hamiltonian cycle and hence a span n de Bruijn
sequence. Any factor in Gn can be used to form a span n de Bruijn sequence by
merging the cycles of the factor into one cycle using the merge-or-split method.
If the factor has � cycles, then by Theorem 1.20, the merge-or-split method
can be applied � − 1 times to generate a de Bruijn cycle. The merge-or-split
method, described in Section 1.3, is a basic method that can be used to merge
all the cycles of the factor into one cycle. It will be demonstrated how to produce
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efficiently a large set of de Bruijn cycles from the state diagrams of the most cel-
ebrated feedback shift registers that were considered in Chapter 3, namely, the
PCRn, the CCRn, the PSRn, and the CSRn. For this purpose, we store some bits
that indicate which full cycle will be constructed. These bits are associated with
the bridging states for the merge-or-split method. To have an efficient proce-
dure, it will be required that at each step of the algorithm, only the last n bits (or
slightly more) of the cycle will be known and the procedure will use these n bits
and the stored bits to generate the next bit of the cycle.

We will now describe a general method to combine the cycles of a state
diagram for any FSRn whose state diagram has � cycles. We choose a set of
� − 1 pairs of bridging states. From each pair, only one bridging state has to be
stored and w.l.o.g. assume this bridging state is a state whose last bit is a one.
If we form an undirected graph in which each vertex represents a cycle of the
state diagram and an edge between two vertices (cycles of the state diagram)
that share a pair of bridging states, then we can form a full cycle if the graph
is connected. Since � − 1 pairs of bridging states were taken and the graph has
� vertices, it follows that when the graph is connected it is a tree. We order the
cycles of the state diagram such that the first two cycles share a pair of bridging
states and each other cycle in this order shares a pair of bridging states with
a cycle that comes before it in this order. Moreover, we have to choose many
different sets with �− 1 pairs of bridging states that satisfy these requirements.
This will enable us to form many full cycles from the same state diagram. At
each step of the algorithm, we will have a main cycle that was created by a set
of say the first k − 1 cycles from this order. The kth cycle in this order is merged
with the main cycle to form a new main cycle. This is possible since it has a
bridging state whose pair is on the main cycle, as implied by this order. Initially,
the main cycle is the first cycle in this order.

We will apply now this idea to the specific FSRns that were mentioned in
Chapter 3.

Merging cycles from the PCRn:

We will describe a method to combine all the Z(n) PCRn cycles using
Z(n) − 1 bridging states. By Theorem 3.1, the constructed full cycle by such
a method is of a minimum weight function.

The following simple lemma will be used to form a set of bridging states.

Lemma 4.14. Each cycle of (extended) weight i > 0 in the state diagram of the
PCRn has a state ending with a one whose companion is a state ending with a
zero on a cycle of weigh i − 1 in the state diagram of the PCRn.

At each step, we have a main cycle obtained by joining a subset of the PCRn

cycles, and the remaining PCRn cycles. Initially, the main cycle is chosen to
be the unique PCRn cycle of weight zero. Next, the main cycle is extended by
joining to it the (unique) cycle of weight one. In general step i, we extend the
main cycle by joining to it all the PCRn cycles of weight i (in arbitrary order).



Constructions of full cycles Chapter | 4 137

This is always possible because the current main cycle contains all the states
whose weight is less than i and since each PCRn cycle of weight i > 1 has a
state ending in a one, it can be joined to the current main cycle as its companion
ends with a zero and has weight i − 1 and hence it is contained in the current
main cycle. This procedure ends when all the PCRn cycles have been joined
together.

We proceed now to a precise and detailed description of the proposed con-
struction.

Consider an ordered set V = {V (i)}k−1
i=0 of k states, 1 ≤ k ≤ 2(n−4)/2, con-

structed as follows (all the logarithms in this section are in base-2):

1. The first 	logk
 + 1 bits of each V (i) form the binary representation of i.
(note that the first bit in such a representation is always a zero).

2. The last �logk� + 1 bits of each V (i) are ones. Before these bits there is a
single zero.

3. In positions 	logk
 + 2 + (�logk� + 1)j , for integers j satisfying

0 ≤ j <

⌈
n − 	logk
 − �logk� − 3

�logk� + 1

⌉

each V (i) has a zero.
4. The remaining bits of each V (i) are chosen arbitrarily.

Example 4.2. Let n = 16 and k = 8. The set V for these values of n and k takes
the form

00000x
(0)
1 x

(0)
2 x

(0)
3 0x

(0)
4 x

(0)
5 01111

00010x
(1)
1 x

(1)
2 x

(1)
3 0x

(1)
4 x

(1)
5 01111

00100x
(2)
1 x

(2)
2 x

(2)
3 0x

(2)
4 x

(2)
5 01111

00110x
(3)
1 x

(3)
2 x

(3)
3 0x

(3)
4 x

(3)
5 01111

01000x
(4)
1 x

(4)
2 x

(4)
3 0x

(4)
4 x

(4)
5 01111

01010x
(5)
1 x

(5)
2 x

(5)
3 0x

(5)
4 x

(5)
5 01111

01100x
(6)
1 x

(6)
2 x

(6)
3 0x

(6)
4 x

(6)
5 01111

01110x
(7)
1 x

(7)
2 x

(7)
3 0x

(7)
4 x

(7)
5 01111

,

where the x
(i)
j are free parameters. �

It can be easily verified that the right-hand block of �logk�+ 1 ones, in each
state of V , forms the unique largest run of ones in each V (i), and that every pair
of states differ in their first 	logk
 + 1 bits. Therefore we have

Lemma 4.15. No two states of V belong to the same cycle of the PCRn.

The construction of a span n de Bruijn cycle from the PCRn cycles proceeds
by a sequence of joins where at each step a cycle of least weight among the
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remaining PCRn cycles is joined to the current main cycle. A join is performed
using a pair of companion states X and X′, with X on the next PCRn cycle C in
line and X′ on the current main cycle. The states X and X′ are the bridging states
of the join. The bridging state X on C is determined as follows: if C contains a
state from V , then it is chosen as the bridging state of C. Otherwise, the choice
of X is as follows. Let M be the state on C whose value |M| when viewed as
a number in base 2 is maximal. If |M| = � · 2r , where � is an odd integer and
r ≥ 0, then the state X such that |X| = � is also on C, and X is taken to be the
bridging state of C.

In any case, the chosen bridging state X for the current PCRn cycle C always
ends in a one. By Lemma 4.14, its companion X′ belongs to a PCRn cycle whose
weight is smaller than that of C. Therefore X′ must be on the current main cycle.
By Lemma 1.19, interchanging the predecessors of X and X′ will create the new
next main cycle by joining C to the current one.

A span n de Bruijn cycle obtained by joining the PCRn cycles as described
above can be generated bit-by-bit following a procedure based on the underline
rules for the joining of cycles. In this procedure, the (i +n)th bit bi+n of the full
cycle is determined from the preceding n-bit state βi = (bi, bi+1, . . . , bi+n−1).
If βi served as a predecessor of a bridging state (X or X′), then bi+n = bi + 1;
otherwise, bi+n = bi . The formal steps for determining bi+n are presented in the
following algorithm.

Algorithm merge PCRn:

Choose a constant k such that 1 ≤ k ≤ 2(n−4)/2. Choose and store an ordered
set of bridging states V = {V (i)}k−1

i=0 . Initially, β0 = (0,0, . . . ,0) = 0n. Given
βi = (bi, bi+1, . . . , bi+n−1), proceed to produce βi+1= (bi+1, . . . , bi+n−1, bi+n).

(A1) Examine the cyclic shifts of β∗
i = (bi+1, . . . , bi+n−1,1) for the existence

of a shift X that begins with a zero and ends with 1 + �log k� ones. If no
such X exists, then go to (A3).

(A2) Let X∗ be the first 1 + 	log k
 bits of X and let |X∗| = t be the binary
value of X∗. If t > k − 1, then go to (A3); otherwise, if X = V (t) = β∗

i ,
then go to (A5); if X = V (t) �= β∗

i , then go to (A4).
(A3) Let M be the cyclic shift of β∗

i with the largest binary value |M| = � · 2r ,
where � is odd and r ≥ 0. Let Y be the shift of β∗

i such that |Y | = �. If
Y = β∗

i , then go to (A5).
(A4) Set bi+n := bi and stop.
(A5) Set bi+n := bi + 1.

Theorem 4.9.

(a) For every choice of k, where 1 ≤ k ≤ 2(n−4)/2, and of the set V , algorithm
merge PCRn produces a full cycle of length 2n.
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(b) For a given choice of k there are 2k·g(n,k) distinct choices for the set V ,
where

g(n, k) = n − 3 − 	logk
 − �logk� −
⌈

n − 	logk
 − �logk� − 3

�logk� + 1

⌉
;

thus algorithm merge PCRn can be used to produce 2k·g(n,k) distinct full
cycles.

(c) The working space that algorithm merge PCRn requires to produce a full
cycle is 3n + k · g(n, k) bits and the work required to produce the next bit is
at most 2n cyclic shifts and about the same number of n-bits comparisons.

Proof.

(a) This follows from the discussion preceding algorithm merge PCRn.
(b) It is due to the fact that each V (i) is specified up to exactly g(n, k) free pa-

rameters and that no state except for (0n−α1α), where α = 1 +�log k�, may
serve as a bridging state via both of the two criteria: (i) by being a member
of the set V ; (ii) representing the odd part of a maximal shift. This, together
with Lemma 4.15, imply that distinct choices for the set V correspond to
distinct sets of bridging states and, hence, to distinct full cycles.

(c) It follows directly from algorithm merge PCRn. Note that only information
about members of the set V has to be stored and, there, only the g(n, k) free
bit-values of each V (i) require storage.

The big advantage of the method that we have presented for constructing full
cycles by merging the cycles of the PCRn is that we can control the number of
full cycles generated by the algorithm. If we store � bits for the bridging states,
then we generate 2� full cycles, which is the largest number of full cycles that
can be generated with storage of � bits. The disadvantage is that for a large �,
the value of n should be very large. The next construction will yield a much
larger number of full cycles for a relatively smaller n. However, for a very large n

the number of full cycles generated by algorithm merge PCRn is much larger.

Merging cycles from the CSRn:

We continue and apply the merge-or-split method on the CSRn cycles. The
following lemma is an immediate result of the definition of extended weight.

Lemma 4.16. For a cycle C from the CSRn we have that wtE(C) = 2k + 1 for
some 0 ≤ k ≤ �n/2� and for each state X of C we have 2k ≤ wt(X) ≤ 2k + 1.

A CSRn cycle C is called a run-cycle if all the ones in C form a cyclic run.
For each cycle C of the CSRn, with wtE(C) = 2k + 1 < n + 1, we define

a unique preferred state P(C). For a run-cycle P(C) = (12k+10n−2k−1); for a
cycle with more than one (cyclic) run of ones the preferred state is defined as
follows.

Let E∗(C) = [0r1t0b1 · · ·bn−t−r−210] be the unique extended representa-
tion of C that satisfies the following properties:
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1. r ≥ 0;
2. t is the longest run of ones;
3. among all the extended representations of this form, with the same maxi-

mal t , E∗(C) is the largest when viewed as a binary number.

Then, the preferred state of C is P(C) = (0r1t0b1 · · ·bn−t−r−21).

Lemma 4.17. Let C1 be a nonrun-cycle from the CSRn and with a
preferred state P(C1) = (0r1t10b1 · · ·bn−t1−r−21). This implies that the state
B = (10r1t10b1 · · ·bn−t1−r−2) and the companion of P(C1) are two states on the
same cycle C2 �= C1, with wtE(C2) = wtE(C1). Furthermore, if t2 is the longest
run of ones in P(C2), then either t2 = t1 + 1 or t2 = t1 and |P(C2)| > |P(C1)|.
Proof. Clearly, wt(B) = wt(P(C1)) = wtE(C1) = 2k + 1 for some k. Hence,
by Lemma 4.16 we have that wtE(C2) = 2k + 1 = wtE(C1). It is also clear
that E(C2) = [10r1t10b1 · · ·bn−t1−r−20]. Hence, if r = 0, then t2 = t1 + 1;
and if r > 0, then an alternate extended representation of C2 is given by
E′(C2) = [0r−11t10b1 · · ·bn−t1−r−2010].

This implies that

|P(C2)| ≥
∣∣∣(0r−11t10b1 · · ·bn−t1−r−201)

∣∣∣ > |P(C1)| .

Thus in any case C1 �= C2, and, since the two possible successors of B

are P(C1) and the companion of P(C1), it follows that the companion of P(C1)

is the successor of B on C2.

Lemma 4.18. Let U = (u1, . . . , un−1,1) be a state on a cycle C1 of the CSRn

with wt(U)+ 1 = wtE(C1) = 2k + 1 for some k ≥ 1. Then, the companion U ′ of
U is on a CSRn cycle C2 with wtE(C2) = 2k − 1.

Proof. The claim of the lemma is an immediate consequence of the definition
of a companion state and from Lemma 4.16.

Lemmas 4.16, 4.17, and 4.18 lead to a construction of a large class of full
cycles by joining the cycles of the CSRn. Lemma 4.17 suggests a way of joining
all the CSRn cycles with the same extended weight. For each extended weight
of 2k + 1, we start with the run-cycle of this weight as the main cycle. In each
step, the current main cycle is expanded by joining to it the CSRn cycle of
extended weight 2k + 1 with the longest run of ones; if there are two or more
cycles with the same longest run of ones, join the one with the largest preferred
state. Once all the CSRn cycles of extended weight 2k + 1 are joined together
into a corresponding main cycle MCk , 0 ≤ k ≤ �n/2�, we apply Lemma 4.18 to
join these �n/2� + 1 MCk cycles, in order of increasing k, to form a full cycle.

We proceed now to describe an algorithm for producing the (i + n)th
bit, bi+n, of the resulting full cycle from the following inputs:

1. the preceding n-bit state βi = (bi, bi+1, . . . , bi+n−1);
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2. the parity pi of βi , i.e., pi = ∑n−1
j=0 bi+j ;

3. the weight of βi , wt(βi).

The production of bi+n from the above inputs is based on the fact that when
(x1, . . . , xn−1, xn) is the successor of (x0, x1, . . . , xn−1) then

∑n
i=0 xi is odd if

and only if both states are on the same CSRn cycle.
In the algorithm, for merging the CSRn cycles, given below, we first check

whether the state βi serves as a predecessor of a bridging state (X or X′). If
it does, then we set bi+n := pi and pi+1 := bi . If βi is not a predecessor of a
bridging, then we set bi+n := pi ⊕ 1 and pi+1 := bi ⊕ 1. In both cases we set
wi+1 := wi − bi + bi+n

Algorithm merge CSRn:

For every k such that 1 ≤ k ≤ n
2 choose and store a bridging state U(2k)

of the form U(2k) = (uk
1, u

k
2, · · · , uk

n−1,1) with wt(U(2k)) = 2k. Initially, set
β0 = (0,0, . . . ,0) = 0n, p0 = 0, and w0 = wt(β0) = 0. Given the current state
βi = (bi, bi+1, . . . , bi+n−1), pi , and wi = wt(βi), proceed to produce the next
state βi+1 = (bi+1, . . . , bi+n−1, bi+n), pi+1, and wi+1, as follows:

(B1) If pi + bi = 0, then go to (B3).
(B2) If (bi+1, . . . , bi+n−1,1) = U(wi−bi+1), then go to (B6); otherwise go to

(B5).
(B3) If β∗

i = [bi+1, . . . , bi+n−110] is a run-cycle, then go to (B5); otherwise,
find the cyclic shift E∗

i = [0r1t0bs · · ·bn−t−r+s−310] of β∗
i whose first

n bits form a preferred state.
(B4) If E∗

i = β∗
i , then go to (B6).

(B5) Set bi+n := pi ⊕ 1, pi+1 := bi ⊕ 1, wi+1 := wi − bi + bi+n, and stop.
(B6) Set bi+n := pi , pi+1 := bi , wi+1 := wi − bi + bi+n.

Theorem 4.10.

(a) For every choice of the set of states {U(2k)}�n/2�
k=1 algorithm merge CSRn

produces a full cycle of length 2n.
(b) Algorithm merge CSRn can be used to produce

�n/2�∏
k=1

(
n − 1

2k − 1

)

distinct full cycles.
(c) The working space that algorithm merge CSRn requires to produce a full

cycle is about n2

2 bits and the work required to produce the next bit is n

cyclic shifts and about the same number of n-bits comparisons.

Proof.

(a) It follows directly from the discussion preceding algorithm merge CSRn.
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(b) It is because different sets of bridging states produce different full cycles.
The number of ways to choose the set {U(2k)} is

�n/2�∏
k=1

(
n − 1

2k − 1

)
.

(c) It follows directly from algorithm merge CSRn. It is clear that most of the
work consists of finding the preferred state and

β∗
i = [bi+1, . . . , bi+n−110] = [0r11t1X110]

in (B3). Let E∗
i be the shift of β∗

i whose first n bits form a preferred state.
Initially, E∗

i = β∗
i . Given E∗

i = [0r21t2X210] and a shift E+
i = [0r31t3X310]

of β∗
i , set E∗

i = E+
i if either t3 > t2, or t2 = t3 and

∣∣E+
i

∣∣ >
∣∣E∗

i

∣∣. After n

shifts E∗
i will have the required form.

Merging the cycles of the PSRn is carried out in the same way as the pro-
cedure for the cycles of the CSRn with the only exception that the extended
weight of any cycle will be even instead of odd for the CSRn. This distinction
will dictate appropriate changes in the algorithm.

Merging cycles from the CCRn:

The last FSRn that will be considered for the construction of span n de Bruijn
sequences is the CCRn. We will describe a method to combine all the Z∗(n)

CCRn cycles using Z∗(n) − 1 bridging states. By Theorem 3.2 the constructed
full cycle by such a method is of a maximum weight function.

Recall that by Corollary 4.7, D is a one-to-one mapping from the cy-
cles of the set of CCRn+1 cycles to the cycles of the set of CSRn cycles. If
the states X and X′ are bridging states for the construction of the full cy-
cle from the CSRn cycles, then we can choose D−1

0 X (or D−1
1 X) and its

companion as bridging states for the construction of a full cycle C from the
CCRn+1 cycles. If δi = (di, di+1, . . . , di+n) is a state C, then (di+1, . . . , di+n,1)

serves as a bridging state for the CCRn+1 cycles if and only if di+1 = 0 and
(bi+1, . . . , bi+n−1,1), for bi+j = di+j + di+j+1, 1 ≤ j ≤ n − 1, serves as
a bridging state for the CSRn cycles. If δi serves as a bridging state, then
di+n+1 = di ; otherwise di+n+1 = di + 1. The formal steps for the production
of the next bit in the full cycle of span n + 1, di+n+1, are given in algorithm
merge CCRn+1.

Algorithm merge CCRn+1:

For every k such that 1 ≤ k ≤ n
2 choose and store a bridging state U(2k) (for

the CSRn) of the form U(2k) = (uk
1, u

k
2, · · · , uk

n−1,1) with wt(U(2k)) = 2k. Ini-
tially, set δ0 = (0,0, . . . ,0) = 0n+1, β0 = (0,0, . . . ,0) = 0n, p0 = 0, w0 = 0.
Given δi = (di, di+1, . . . , di+n) βi = (bi, bi+1, . . . , bi+n−1), the parity pi

of βi , and wi = wt(βi) proceed to produce δi+1 = (di+1, . . . , di+n, di+n+1),
βi+1 = (bi+1, . . . , bi+n−1, bi+n), pi+1, and wi+1, as follows:
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(C1) If di+1 = 1, then go to (C6).
(C2) If pi + bi = 0, then go to (C4).
(C3) If (bi+1, . . . , bi+n−1,1) = U(wi−bi+1), then go to (C7); otherwise go to

(C6).
(C4) If β∗

i = [bi+1, . . . , bi+n−110] is a run-cycle, then go to (C6); otherwise,
find the cyclic shift E∗

i = [0r1t0bs · · ·bn−t−r+s−310] of β∗
i whose first

n bits form a preferred state.
(C5) If E∗

i = β∗
i , then go to (C7).

(C6) Set di+n+1 := di ⊕ 1 and go to (C8).
(C7) Set di+n+1 := di .
(C8) Set the following: bi+n := di+n ⊕ di+n+1, pi+1 := pi ⊕ bi ⊕ bi+n, and

wi+1 := wi − bi + bi+n.

Theorem 4.11. Algorithm merge CCRn+1 produces the same number of full
cycles of span n + 1 as the number of full cycles of span n that algorithm merge
CSRn produces. The working space and the time complexity of algorithm merge
CCRn+1 is about the same as those of algorithm merge CSRn.

Proof. The claim follows directly from the discussion preceding algorithm
merge CCRn+1 since there is only some more constant number of additions
in algorithm merge CCRn+1 compared to those in algorithm merge CSRn.

Let FC(FSRn) be the number of full cycles obtained by merging all the � cy-
cles of a given FSRn, using exactly � − 1 steps of the merge-or-split method.

Lemma 4.19. For each positive integer n,

FC(CCRn+1) = FC(CSRn) · 2Z∗(n+1)−1 = FC(CSRn) · 2S∗(n)−1.

Proof. By Corollary 4.7, D is a one-to-one mapping from the cycles of the
set of CCRn+1 cycles to the cycles of the set of CSRn cycles. Given a set of
bridging states for joining the CSRn cycles, then since for each pair of bridging
states X and X′ in F

n
2, D−1

b X and D−1
b X′, where b ∈ {0,1}, yield two pairs

of companion states, it follows that we can choose one of the two pairs of
states ({D−1

0 X,D−1
0 X′} or {D−1

1 X,D−1
1 X′}) as bridging states for the join of

the CCRn+1 cycles. Also, since there are S∗(n) = Z∗(n + 1) CSRn cycles we
have that there are Z∗(n + 1) − 1 states in the set of bridging states (pairs).
Hence, FC(CCRn+1)≥FC(CSRn)·2Z∗(n+1)−1.

Assume now that we have a set of Z∗(n + 1) − 1 bridging states (pairs)
from the CCRn+1, where the representatives of each pair come from a different
cycle of the Z∗(n+ 1) cycles of the CCRn+1. In other words, only one CCRn+1
cycle does not have a representative in this set (note that there must be at least
one bridging state from this cycle, but it is not taken as the representative).
The complement pair {X̄, X̄′} of each pair {X,X′} of bridging states can be
used as a pair of bridging states and since for a CCRn+1 cycle C, X ∈ C if and
only if X̄ ∈ C, the two pairs join the same two cycles (but differently) during
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the merging process. Each such two pairs {X̄, X̄′} and {X,X′} are associated
with one pair of bridging states {DX,DX′} for joining the cycles of the CSRn.
Therefore FC(CCRn+1)≤FC(CSRn)·2Z∗(n+1)−1.

Thus FC(CCRn+1)=FC(CSRn)·2Z∗(n+1)−1=FC(CSRn)·2S∗(n)−1.

Lemma 4.19 can be also used to construct a larger set of full cycles from the
CCRn, where the number of such constructed cycles can be chosen in advance.

The full cycles produced in the algorithm merge PCRn have minimum
weight function, while the full cycles produced by the algorithm merge CCRn+1
have maximum weight function. It is also important to note that the order that
was suggested to merge cycles might be different. For example, concerning the
PCRn cycles, it is possible that a cycle with extended weight i would be merged
to the main cycle only after some cycle of extended weight i + 1 was joined.
However, this different order will not change the minimum weight function of
the full cycle.

4.4 Notes

Constructing de Bruijn sequences and various algorithms for their construction
is probably the most researched topic on de Bruijn sequences.

Section 4.1. Finding the number of Eulerian cycles in a directed graph for which
each vertex has the same in-degree as out-degree is known as the BEST theorem
for Nicholas de Bruijn and Tatyana van Aardenne-Ehrenfest [1], and Cedric
Smith, and Bill Tutte [63]. The first work to find the number of Eulerian cycles
in Gn was done by de Bruijn [10]. He proved Theorem 4.3 and Corollary 4.2 in
his paper. The proof that was given in this section for Theorem 4.3 is based on
the proof given by de Bruijn [10]. It was not known that the number of cycles
in Gσ,n was found much earlier in the work of Flye-Sainte Marie [25]. Flye-
Sainte Marie solved in his work a question that was asked by Rivière [60]. van
Aardenne-Ehrenfest and de Bruijn [1] proved the following result.

Theorem 4.12. The number of Eulerian cycles in Gσ,n is (σ −1)!σn−1 ·σσn−1−n,

The reverse spanning algorithm and generating the de Bruijn sequences with
this algorithm was presented by Mowle [53,54]. The reverse spanning tree algo-
rithm can be adapted with almost no change to Gσ,n and Corollary 4.1. The only
change in the algorithm is that the order in which the σ −1 un-starred out-edges
of a vertex v are chosen is arbitrary. This will be also done in another variant of
the algorithm that will be presented in Section 6.3.

Corollary 4.10. There is a one-to-one correspondence between the Eulerian
cycles in Gσ,n and the reverse spanning trees in Gσ,n.

Section 4.2. The D-morphism and its properties when applied to the de Bruijn
graph, its cycles, factors, and words, was considered first in Lempel [44]. Merg-
ing the two sequences D−1

0 S and D−1
1 S in various ways, where S is a span n
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de Bruijn sequence, was considered and analyzed by Games [37]. The operator
was defined in parallel by Goka [38] as an operator on binary sequences. It was
applied also on infinite sequences by Nathanson [56] who called it the deriva-
tive. The operator was used later for analyzing words and sequences, but most
of the time these two papers were not credited for their original first work. In
connection to de Bruijn sequences the D-morphism and its inverse were heav-
ily used, as will be mentioned in the following chapters. Theorem 4.8 was also
proved differently by Arazi [7].

An efficient way to implement the D-morphism for the construction of
2n−2 span n de Bruijn sequences was given by Annexstein [6]. Another efficient
way to implement the D-morphism for the construction of de Bruijn sequences
was presented by Chang, Park, Kim, and Song [13].

In general, the operator D was used in many applications, some of which will
be demonstrated in the following chapters throughout the whole book. There
are applications for the operator that were not mentioned, e.g., see Repke and
Rytter [59].

The operator D was generalized also to non-binary words and sequences.
Given a word w = (w1,w2, . . . ,wn) over Fq or Zm, its derivative Dw was de-
fined by Dw � (w2 − w1,w3 − w2, . . . ,wn − wn−1). For two words X and Y

of length n we have that DX = DY if and only if Y = X + (γ n), where γ is an
element either in Fq or Zm.

Alhakim and Akinwande [3] generalized the D-morphism to a non-binary
alphabet (not necessarily a prime power) and show how to use it to obtain span
n de Bruijn sequences from a span n − 1 de Bruijn sequence. They also demon-
strated how to generalize the efficient implementation given by Annexstein [6]
for the non-binary case. The D-morphism was further generalized and devel-
oped to obtain a much more efficient recursive construction by Alhakim and
Nouiehed [4]. The operator D is associated with the polynomial x −1 (or E−1)
since we have that for a cyclic sequence S, DS = (E−1)S = ES−S. In the same
way, we defined in Section 2.3 the operator Dg on a span n sequence S for each
irreducible polynomial g(x), over Fq , of degree k less than n. The operator Dg

is a qk-to-one mapping from F
n
q onto F

n−k
q , where it operates on q-ary n-tuples.

In the same way that D−1 is a mapping of the n-tuple states of Gn onto the
(n + 1)-tuple states of Gn+1, we have that D−1

g is a mapping from the n-tuple

states of Gq,n onto the (n + k)-tuple states of Gq,n+k . Similarly, D−1
g maps

cyclic sequences of Gq,n into cyclic sequences of Gq,n+k . If S is a span n de
Bruijn sequence over Fq , then D−1

g S yields some sequences in Gq,n+k . Alhakim
and Nouiehed [4] presented a method to merge these sequences into a span n+k

de Bruijn sequence. This makes the recursive construction much more efficient
when we want to obtain de Bruijn sequences with a large span. Other recursive
constructions for de Bruijn sequences were given, for example, by Zhao, Tian,
and Qi [66]. The operator Dg , where g(x) = x − 1, was heavily used, as will be
demonstrated in some of the following chapters. Much less is known for other
polynomials. Hence, we have the following problem.



146 Sequences and the de Bruijn Graph

Problem 4.1. Develop the theory for the operator Dg , over F2, and its inverse,
where g(x) = xk −1, k �= 2m, m ≥ 0. Find applications for the theory. The same
is asked for other polynomials and the first one over F2 that is of special interest
is g(x) = x2 + x + 1. Extend the theory for the operator Dg over other finite
fields.

Section 4.3. The prefer one algorithm was suggested first by Martin [50]. It
was rediscovered several more times, e.g., by Ungar [64] and by Ford [26],
and its sequence is sometimes called the Ford sequence. The behavior of the
Ford sequence was examined many times. It was shown that the sequence is
generated by merging the cycles of the PCRn by Fredricksen [27] who called
this sequence the lexicographically least de Bruijn cycle. The truth table of the
sequence was analyzed by Mossige [52]. Fredricksen presented an efficient al-
gorithm to generate this sequence in [28] and generalized it to construct 22n−5

full cycles in [29]. The construction was further generalized in this section to
obtain more full cycles from the PCRn and it was presented by Etzion and Lem-
pel [23]. The efficiency of the construction that requires the minimum amount
of space per number of generated sequences and having a minimum required
time to compute each bit, makes this algorithm of practical use. The method
was generalized to m-ary de Bruijn sequences in another paper by Etzion [21].
The construction of full cycles from the CSRn was introduced by Etzion [22]
based on the ideas of their construction from the PSRn presented in Etzion and
Lempel [23]. The algorithm to form full cycles from the CCRn was given by Et-
zion [22]. An old survey for constructions and properties of full cycles was given
by Fredricksen [30]. At the same time, a survey for the algorithmic approach to
the construction problem was presented by Ralston [58].

As mentioned by Etzion and Lempel [23], any choice of a state ending in a
one and its companion as bridging states will lead to another de Bruijn sequence.
The states that were chosen, for this purpose, in the prefer one algorithm are the
same as those chosen in step (A4) of algorithm merge PCRn. In order of consis-
tency between the algorithms, this was also the choice in the algorithm merge
PCRn, although a choice like the Lyndon word for each PCRn cycle would have
made it more efficient. Sawada, Williams, and Wong [61] chose the states with
the least value in binary representation for each PCRn cycle (Lyndon words) to
be the states ending in a one. This implies a simpler algorithm for implementa-
tion than the algorithm for the prefer one method, i.e., a simpler rule to check
the next bit, given the current n bits of the sequence. Sawada, Williams, and
Wong [62] generalized this rule for m-ary de Bruijn sequences.

There are other beautiful methods to construct de Bruijn sequences, some of
which look rather surprising. If we order the necklaces (PCRn cycles) with beads
having m colors in a way that the first state is the maximum one as a number in
base m, and concatenate them by the order of this state from the largest one to the
smallest one, then the sequence obtained will be an m-ary de Bruijn sequence.
This construction was suggested by Fredricksen and Maiorana [32], see also
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Moreno [51]. Using Lyndon words Sawada, Williams, and Wong [61] also used
the same idea. Since the Lyndon words have the smallest value in the necklace,
the sequence was called the least lexicographic de Bruijn sequence.

Example 4.3. If n = 5 and m = 2, then the span 5 binary de Bruijn sequence is

1,11110,11100,11010,11000,10100,10000,0,

where the commas separate between the different necklaces.
If n = 4 and m = 3, then the span 4 ternary de Bruijn sequence is

2,2221,2220,2211,2210,2201,2200,21,2120,2111,2110,

2101,2100,20,2011,2010,2001,2000,1,1110,1100,10,1000,0.

The last 16 bits of this sequence form an associated span 4 binary de Bruijn
sequence. �

Similarly, each span n de Bruijn sequence, over an alphabet of size less
than m, is a suffix of the sequence over an alphabet of size m. Moreover, this
sequence is identical to the prefer one sequence for the binary alphabet and also
to the sequence obtained by preferring always the largest possible symbol in the
alphabet of size m.

Fredricksen and Kessler [31] suggested considering all partitions of an in-
teger n and their lexicographic ordering to form the necklaces with beads in
two colors and use their concatenation to form a span n + 1 binary de Bruijn
sequence. Fredricksen [30] suggested a prefer same algorithm that prefers to re-
peat the previous symbol subject to some conditions. Alhakim [2] suggested a
prefer opposite algorithm, where if possible you add to the current sequence
the complement of the last bit unless it creates an n-tuple that already ap-
peared. Alhakim, Sala, and Sawada [5] analyzed the sequences obtained from
the prefer same and prefer opposite algorithms and found that the resulting se-
quences have some unique extremal properties. The prefer opposite is associated
with the cycles of the CCRn. Gabric, Sawada, Williams, and Wong [35] sug-
gested a framework for a successor rule to generate de Bruijn sequences. Their
method leads to a few constructions that can be applied to various state dia-
grams of FSRn. Their framework was generalized in Gabric, Sawada, Williams,
and Wong [36] for a larger alphabet. It should be noted that the proof for the
correctness of all these algorithms is very similar.

There are many interesting strategies to combine cycles from different FSRn.
However, there are other different interesting methods to construct span n de
Bruijn sequences. The merge-or-split method is usually used by starting with a
state diagram and merging all its cycles. Hence, there is no split in the method.
A completely different approach is to start with a known de Bruijn sequence S.
This de Bruijn sequence can be further modified by first splitting the sequence S

into two sequences S1 and S2 using a pair P1 of bridging states and after that



148 Sequences and the de Bruijn Graph

merging S1 and S2 into a span n de Bruijn sequence S′ via another pair P2 of
bridging states. The pair {P1,P2} is called a cross-join pair. The method of split-
ting the de Bruijn sequences into two cycles and merging these two cycles again
by using a cross-join pair is called the cross-join method. It is straightforward to
see that adding a zero to the longest run of zeros in a span n M-sequence yields
a span n de Bruijn sequence S. However, it was conjectured by Chang, Song,

Cho [14] that for each span n M-sequence, there exists (2n−1−1)(2n−1−2)
6 distinct

cross-join pairs. The conjecture was proved by Helleseth and Kløve [40]. Con-
structions of de Bruijn sequences by using the cross-join method based on such
M-sequences were given by Dubrova [19]. Mykkeltveit and Szmidt [55] proved
that any span n de Bruijn sequence can be obtained from any other span n de
Bruijn sequence by a sequence of cross-join operations.

Merging cycles of the state diagram of an FSRn using bridging states (either
a pair of conjugate states or a pair of companion states) is the most common
method to generate a full cycle. Therefore it is desirable to learn the structure
of the cycles and to find the possible bridging states. For this purpose, we can
define the adjacency graph of the state diagram. The adjacency graph is an
undirected graph whose vertices are the cycles of the state diagram. Two ver-
tices are connected by an edge if the associated cycles have a pair of companion
states. The tree (using the bridging states for edges) that was described at the
beginning of the section is a subgraph of the adjacency graph. Li, Zeng, Li, and
Helleseth [48] studied the cycle structure of the state diagram obtained from the
characteristic polynomial (1+x3)g(x), where g(x) is a primitive polynomial of
degree at least 3. Based on the cycle structure they have generated a class of de
Bruijn sequences. Li, Zeng, Li, Helleseth, and Li [49] considered a character-
istic polynomial that is a multiplication of distinct primitive polynomials with
distinct degrees that are pairwise co-primes. They studied the structure of the
state diagram and the adjacency graph for the associated LFSR. When one of
the polynomials is x + 1 they gave an efficient time and space algorithm to gen-
erate many de Bruijn sequences by merging the cycles of the associated state
diagram. Chang, Ezerman, Ling, and Wang [11] studied the adjacency graph
of the LFSRn whose characteristic polynomial is g(x)f (x), where g(x) and
f (x) are distinct irreducible polynomials. Using the structure of the adjacency
graph they constructed a class of de Bruijn cycles. Chang, Ezerman, Ling, and
Wang [12] suggested an efficient way to find the conjugate pairs between any
two cycles of an LFSRn that induces the adjacency graph. Using this method
they designed an efficient algorithm to produce de Bruijn cycles.

Hauge and Helleseth [39] suggested, using the merge-or-split method, how
to generate de Bruijn sequences from irreducible cyclic codes. The number
of sequences obtained by their method is related to the cyclotomic num-
bers. More constructions of de Bruijn sequences (each construction has some
specific uniqueness) are given by Cooper and Heitsch [15,16], Dong and
Pei [17], Dragon, Hernandez, Sawada, Williams, and Wong [18], Dubrova [20],
Gabric and Sawada [33,34], Hsieh, Sohn, and Bricker [41], Hsieh, Sohn, and
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Bricker [41], Jansen, Franx, and Boekee [42], Li and Lin [45,46], Li, Zeng,
Helleseth, Li, and Hu [47], Ralston [57], and Yang, Mandal, Aagaard, and
Gong [65].

There are many other construction problems. For example, one might ask if
a span n de Bruijn sequence can be extended to a span n+1 de Bruijn sequence.
In other words, can we write the entries of the span n de Bruijn sequence and
continue it to obtain a span n+ 1 de Bruijn sequence? The problem was consid-
ered by Flaxman, Harrow, and Sorkin [24] and Leach [43]. When σ > 2, a span
n de Bruijn sequence is a Hamiltonian cycle in Gσ,n. If the edges of the cycle
are removed from the graph, we obtain a new strongly connected graph G′ in
which each vertex has in-degree σ − 1 ≥ 2 and out-degree σ − 1 ≥ 2. Hence,
G′ has an Eulerian cycle that can be attached to the Hamiltonian cycle (the last
vertex of the Hamiltonian cycle coincides with the first vertex of the Eulerian
cycle). The new sequence contains each edge of Gσ,n exactly once, and hence it
is a span n+1 de Bruijn sequence over an alphabet of size σ > 2. For σ = 2 this
process does not work as G′ will not be a connected graph. These ideas were
used by Becher and Heiber [9] who also proved that a span n binary de Bruijn
sequence can be extended to a span n + 2 binary de Bruijn sequence. Another
way to extend a de Bruijn sequence is by adding a symbol to the alphabet. This
question is solved with the construction by Fredricksen and Maiorana [32] that
was mentioned earlier. Another construction was given by Becher and Cortés [8]
who used graph theory and a network flow problem.

Since the number of span n de Bruijn sequences is super-exponential, it fol-
lows that we cannot design an efficient algorithm to generate all the sequences.
However, we might be able to do something in this direction i.e., enumerate
these sequences. For this, we end this chapter with the following research prob-
lems.

Problem 4.2. Enumerate all span n de Bruijn sequences in some order. Design
an efficient algorithm to generate the kth sequence in this order. Design an ef-
ficient algorithm that generates the (k + 1)th de Bruijn sequence from the kth
sequence.

Problem 4.2 seems to be extremely difficult, so we ease this research prob-
lem with the following problem.

Problem 4.3. Partition the set of span n de Bruijn sequences into equivalence
classes, possibly exponential (or even super-exponential, but as small as possi-
ble) number of classes. Design an efficient algorithm to generate the sequences
of each class.
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Chapter 5

Linear complexity of sequences
Algorithms, complexity of de Bruijn sequences

The linear complexity c(S) of a sequence S, is the minimum degree n of an
LFSRn (equivalently, a linear recurrence) that generates S. The linear complex-
ity of S is one of the measures of its predictability – S is completely determined
by 2c(S) consecutive bits. Writing c(S) equations, each one based on c(S) + 1
consecutive bits, for the linear recurrence is enough to solve it, i.e., recover the
c(S) coefficients of the linear recurrence. Although high complexity does not
necessarily mean low predictability, the converse is always true: low complex-
ity implies high predictability. In many applications, it is therefore important to
know the linear complexity and to use appropriate sequences with high linear
complexity. In this chapter, we are mainly interested in the linear complexity
of sequences whose length and alphabet size are powers of the same prime. In
particular, we are interested in the linear complexity of de Bruijn sequences.

Section 5.1 starts with some general definitions and results on the complex-
ity of general sequences. It continues with properties of binary sequences of
length 2n with some prescribed linear complexities. An algorithm to compute
the linear complexity of such sequences is also given. Finally, the set �g(n) for
g(x) = x + 1 is analyzed (see Section 2.3).

Section 5.2 is devoted to the linear complexities of binary de Bruijn se-
quences. If S is a span n de Bruijn sequence, then 2n−1 + n ≤ c(S) ≤ 2n − 1.
The lower and the upper bounds are attained and constructions for sequences
that attain these bounds are presented. It is also proved that there is no span n

de Bruijn sequence whose linear complexity is 2n−1 + n + 1.
Section 5.3 considers the linear complexities of sequences whose length and

alphabet size (that is larger than 2) are powers of the same prime. Several prop-
erties of these sequences are discussed and an efficient algorithm is given to
compute their linear complexities. Note that we regard the field F2m as non-
binary although the characteristic of the field is 2.

Section 5.4 is devoted to the linear complexity of non-binary de Bruijn se-
quences. Surprisingly, the bounds that will be derived are not generalizations for
the bounds of the binary case.
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5.1 Binary sequences whose length is 2n

Recall that every sequence S = [s0, s1, . . . , sk−1], over Fq , satisfies a linear re-
cursion

si+m +
m∑

j=1

aj si+m−j = 0, i ≥ 0, aj ∈ Fq,

where m, the degree of the recursion, is less than or equal to k.
In terms of the shift operator E (Esi = si+1) the linear recursion takes the

form

f (E)S =
⎛
⎝Em +

m∑
j=1

aj Em−j

⎞
⎠S = [0k] .

In other words,
(

Em + ∑m
j=1 aj Em−j

)
si = 0 for all i ≥ 0.

Definition 5.1. The linear complexity (or just complexity) c(S) of a sequence
S = [s0, s1, . . . , sk−1] is the least integer m for which there exists a polyno-
mial f (E) of degree m such that f (E)S = [0k]. It is also the linear recurrence
of the smallest degree that generates the sequence, i.e., if the linear com-
plexity is c, then there exist c coefficients, bi ∈ Fq , 0 ≤ i ≤ c − 1, such that
sj+c = ∑c−1

i=0 bisj+i .

Definition 5.1 implies that the linear complexity of a sequence S is the degree
of the minimal polynomial that generates the sequence as defined in Defini-
tion 2.3. The following lemma is an immediate result.

Lemma 5.1. If S is a sequence of length k, over Fq , then c(S) ≤ k.

Lemma 5.2. Let S be a sequence of length k and f (E) be the polynomial
with the least degree such that f (E)S = [0k]. If g(E)S = [0k], then f (E) di-
vides g(E).

Proof. We can write g(E) = α(E)f (E) + β(E), where degβ(E) < degf (E).
Hence, we have

[0k] = g(E)S = (α(E)f (E) + β(E))S = α(E)f (E)S + β(E)S = β(E)S.

Since β(E)S = [0k] and degβ(E) < degf (E), it follows that β(E) is the zero
polynomial and hence g(E) = α(E)f (E), i.e., f (E) divides g(E).

Corollary 5.1. The polynomial g(x) of the smallest degree that generates a
sequence S = [s0, s1, . . . , sk−1] divides the polynomial xk − 1.

This leads to the following two observations.
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Lemma 5.3. Let S = [s0s1 · · · sk−1] be a sequence of length k, over Fq , and let

S(x) =
k−1∑
i=0

six
i

be its generating function. Then, the linear complexity c(S) of S is

min{deg f (x) : f (x) �≡ 0 (mod xk − 1), f (x) · S(x) ≡ 0 (mod xk − 1)}.
Corollary 5.2. Let S be a sequence of length k = p�1 over Fq , where q = p�2

and p is a prime. The linear complexity of S is c if and only if

(x − 1)c−1S(x) ≡ γ (1 + x + x2 + · · ·xk−1) (mod xk − 1) (5.1)

for some γ ∈ Fq \ {0}.
Lemma 5.3 implies another equivalent definition for a sequence’s linear

complexity, which will be useful in some applications.

Definition 5.2. Let S be a sequence of length k over Fq and S(x) be its gener-
ating function. The linear complexity of S is defined as

c(S) � min{deg f (x) : f (x) �≡ 0 (mod xk −1), f (x) ·S(x) ≡ 0 (mod xk −1)}.
We continue to examine now only binary sequences whose length (and as a

consequence also their period) is a power of two. We make use of the simple
fact that in the binary case E − 1 = E + 1. The following lemma is the binary
analog to Corollary 5.2.

Lemma 5.4. A binary sequence S of length 2n has linear complexity c if and
only if (E + 1)c−1S = [12n ].
Proof. First, note that

(E + 1)2n

S = (E2n + 1)S = E2n

S + S = [02n].
Therefore by Lemma 5.2 we have that c(S) = c if and only if c is the least
integer such that (E + 1)cS = [02n ] and hence (E + 1)c−1S = [12n] if and only
if c(S) = c.

Corollary 5.3. A sequence S, whose length is a power of 2, has least period 2n

if and only if 2n−1 + 1 ≤ c(S) ≤ 2n.

Corollary 5.4.

• For a nonzero sequence S of length 2n we have that c(DS) = c(S) − 1.
• For a nonzero sequence S of length 2n we have that c(D−1

0 S) = c(S) + 1 and

c(D−1
1 S) = c(S) + 1.
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Corollary 5.5. Let S be a sequence of least period 2n and linear complexity c.

• D−1S contains two sequences, D−1
0 and D−1

1 of least period 2n with complex-
ity c + 1 if and only if 2n−1 < c < 2n.

• D−1S contains one sequence of least period 2n+1 with complexity c + 1 if
and only if c = 2n.

Lemma 5.5. Let S1 and S2 be two binary sequences of length 2n.

• If c(S1) = c(S2), then c(S1 + S2) < c(S1).
• If c(S1) < c(S2), then c(S1 + S2) = c(S2).

Proof. Let S1 and S2 be two binary sequences of length 2n.

• If c = c(S1) = c(S2), then (E + 1)c−1S1 = (E + 1)c−1S2 = [12n ], which im-
plies that

(E + 1)c−1(S1 + S2) = (E + 1)c−1S1 + (E + 1)c−1S2 = [02n ].

Thus c(S1 + S2) ≤ c − 1 < c(S1).
• If c1 = C(S1) < c2 = C(S2), then (E + 1)c1−1S1 = (E + 1)c2−1S2 = [12n]

and (E + 1)c2−1S1 = [02n ], which implies that

(E+1)c2−1(S1+S2) = (E+1)c2−1S1+(E+1)c2−1S2 = [02n ]+[12n ] = [12n ].

Thus c(S1 + S2) = c2 = c(S2).

Lemma 5.6. A binary sequence S of length 2n has linear complexity 2n if and
only if the weight of S is odd.

Proof. By Lemma 5.4 we have that c(S) = c if and only if (E + 1)c−1S = [12n ].
Clearly,

(E + 1)2n−1 = (E + 1)2n

E + 1
= E2n + 1

E + 1
= E2n−1 + · · ·E2 + E + 1 =

2n−1∑
i=0

Ei

and hence c(S) = 2n if and only is

2n−1∑
i=0

EiS = [12n ] ⇔
2n−1∑
i=0

si = 1,

i.e., c(S) = 2n if and only if the weight of S is odd.

Lemma 5.7. A binary sequence S of length 2n has linear complexity 2n−1 + 1
if and only if S = [XX̄], i.e., S is a self-dual sequence.
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Proof. If c(S) = 2n−1 + 1, then by Corollary 5.4 we have that c(DS) = 2n−1

and hence since the length of S is 2n, it follows by Corollary 5.3 that DS has
period 2n−1. In other words, DS = [Y Y ], which by Lemma 5.6 implies that
wt(Y ) is odd. Therefore by Corollary 4.6 we have that S = D−1DS is a self-
dual sequence, i.e., S = [XX̄].

If S = [XX̄], then (E + 1)2n−1
S = (E2n−1 + 1)S = E2n−1

S + S = [12n] and
hence, by Lemma 5.4, we have that c(S) = 2n−1 + 1.

An important factor in computing the linear complexity of a sequence is an
efficient algorithm that computes the linear complexity of a given sequence S of
length 2n. This is done in the following algorithm.

The Games–Chan algorithm:

The input for the algorithm is a binary sequence S of length 2n. If S = [02n],
then c(S) = 0. If S �= [02n ], then set cn := 0 and An := S. The algorithm starts
at step n.

At general step k of the algorithm there is a sequence Ak of length 2k and the
accumulated linear complexity is ck . The sequence Ak is partitioned into its left
half L(Ak) = [a0, . . . , a2k−1−1] and its right half R(Ak) = [a2k−1 , . . . , a2k−1].
Let Bk := L(Ak) + R(Ak).

1. If Bk = [02k−1 ], then set Ak−1 := L(Ak) and ck−1 := ck .
2. If Bk �= [02k−1 ], then set Ak−1 := Bk and ck−1 := ck + 2k−1.

We continue with step k − 1 and stop at step 0 with c0. The output is
c(S) = c0 + 1. �

Theorem 5.1. Given a sequence S of length 2n, the Games–Chan algorithm
finds the linear complexity of S, c(S).

Proof. Let c = c(S) and assume c − 1 = ∑n−1
i=0 ai2i , where ai ∈ {0,1}. Clearly,

(E + 1)c−1S =
⎛
⎝ ∏

ai=1

(E + 1)2i

⎞
⎠S =

⎛
⎝ ∏

ai=1

(E2i + 1)

⎞
⎠S.

The Games–Chan algorithm terminates when the final sequence consists only
of ones. This relates to the equation (E + 1)c−1S = [12n ], i.e., c − 1 consecu-
tive applications of ES + S, but since (E + 1)2k = E2k + 1, we can speed the
process, as is done in the algorithm. Moreover, the algorithm only performs(∏

ai=1(E
2i + 1)

)
S, since whenever the two halves of the sequence are equal

we have ai = 0, we continue with one half of the sequence, and the accumulated
linear complexity remained unchanged.

Consider now the set of all sequences whose period is a power of 2. Let
�(n) denote the subset of these sequences that are generated by the polynomial
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(x + 1)n+1 (i.e., (E + 1)n+1S = 0) and are not generated by the polynomial
(x + 1)n (i.e., (E + 1)nS �= 0), where n ≥ −1. This implies that these sequences
have linear complexity n + 1. Note that this definition is slightly different from
that of �g(n), where �(n) = �g(n + 1) when g(x) = x + 1.

Example 5.1. The following sets contain the sequences in �(i), for −1 ≤ i ≤ 7:

�(−1) ={[0]},
�(0) ={[1]},
�(1) ={[01]},
�(2) ={[0011]},
�(3) ={[0001], [0111]},
�(4) ={[00001111], [00101101]},
�(5) ={[00000101], [11111010], [00011011], [11100100]},
�(6) ={[00000011], [01010110], [00001001], [01011100]

[11111100], [10101001], [11110110], [10100011]},
�(7) ={[00000001], [00110010], [00000111], [00110100]

[01010100], [01100111], [01010010], [01100001]
[11111110], [11001101], [11111000], [11001011]
[10101011], [10011000], [10101101], [10011110]}

and �(8) contains exactly all the 16 distinct self-dual sequences of period 16.
�

By the observations we have made so far, the following claims can be easily
verified.

Lemma 5.8. The set �(n) can be defined recursively by the operator D as
follows:

�(n) � {S : S = D−1
0 S′, S′ ∈ �(n − 1)}

⋃
{S : S = D−1

1 S′, S′ ∈ �(n − 1)},

where �g(−1) = {[0]}.

Lemma 5.9. The sequences in
⋃n−1

i=−1 �(i) are formed by a linear feedback
shift register whose characteristic polynomial is (x + 1)n.

Lemma 5.10. The sequences in
⋃n−1

i=−1 �(i), where n ≥ 1, contain each n-tuple
exactly once as a window in one of the sequences.
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Lemma 5.11. The sequences in �(n), where n ≥ 1, contain each n-tuple ex-
actly once.

Proof. This follows immediately from the following two facts:

• The sequences in
⋃n−1

i=−1 �(i) contain each n-tuple exactly once.
• The sequences in

⋃n
i=−1 �(i) contain each (n + 1)-tuple exactly once.

Corollary 5.6. If f (x1, x2, . . . , xn) is the feedback function for the state dia-
gram of the sequences in

⋃n−1
i=−1 �(i), then

h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + 1

is the feedback function for the state diagram of the sequences in �(n).

Corollary 2.25 can be adapted for the polynomial g(x) = x + 1 as follows.

Lemma 5.12. The number of sequences in �(n), n ≥ 1, is 2n−	logn
−1 and the
length of each sequence in �(n) is 2	logn
+1.

Proof. First, note that Lemma 5.11 implies that if all the sequences in �(n)

are of length 2	logn
+1, then the number of sequences in �(n) is 2n−	logn
−1.
Hence, we only have to prove the claim for the length of the sequences.

The proof is by induction. The basis is n = 1, 2, and 3, with trivial claims.
Assume the claim is true for n, where the length of a sequence is 2	logn
+1.

As for the step of the induction, we distinguish between two cases depending
on whether n is one less than a power of 2 or not.
Case 1: If n is one less than a power of 2, then by the definition of �(n) the
linear complexity of all the sequences in �(n) is a power of 2. This implies by
Lemma 5.6 that the weight of all the sequences in �(n) is odd. Therefore by
Corollary 4.6 we have that �(n + 1) contains the same number of sequences as
in �(n) whose length is doubled. Thus the claim is proved.
Case 2: If n is not one less than a power of 2, then again by the definition
of �(n) the weight of all the sequences in �(n) is even. Therefore by Corol-
lary 4.5 we have that |�(n + 1)| = 2 · |�(n)| and the length of the sequences in
�(n) is the same as their length in �(n). Thus the claim is proved.

Corollary 5.7. The factor �(n), of Gn, contains 2n−k cycles of length 2k for
each n, where 2k−1 ≤ n < 2k .

5.2 Complexity of binary de Bruijn sequences

de Bruijn sequences are of special interest throughout the book; hence, we
would like to find the possible linear complexities of these sequences. The an-
swer for binary de Bruijn sequences will be given in this section.
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Theorem 5.2. If S is a span n de Bruijn sequence, n ≥ 3, then

2n−1 + n ≤ c(S) ≤ 2n − 1 .

Proof. Let S be a de Bruijn sequence of length 2n.
Since the length of S is 2n, it follows by Lemma 5.1 that c(S) ≤ 2n. The

weight of S is 2n−1 and hence by Lemma 5.6 we have that c(S) �= 2n, which
implies that c(S) ≤ 2n − 1.

Since S is a span n de Bruijn sequence of length 2n, it follows that the period
of S is 2n and hence 2n−1 < c(S).

Since each n-tuple is contained exactly once in S, it follows by Lemma 4.7
that each (n − 1)-tuple is contained exactly twice in DS. Similarly, in D2S each
(n − 2)-tuple is contained exactly 22 times. If we continue by induction, then
we have that in DiS, 1 ≤ i ≤ n − 1, each (n − i)-tuple is contained exactly
2i times. Hence, the weight of DiS, 1 ≤ i ≤ n − 1, is 2n−1. Assume now, on the
contrary, that 2n−1 + 1 ≤ c(S) = 2n−1 + r < 2n−1 + n. Since r < n, it follows
that wt(DrS) = 2n−1.

Now, we also use the fact obtained in Corollary 5.4 that c(DS) = c(S) − 1.
This implies that c(DrS) = 2n−1. However, by Corollary 5.3 we have that the
period of DrS is 2n−1, i.e., DrS = [XX], and by Lemma 5.6 we have that the
weight of X is odd, i.e., wt(DrS) is twice an odd integer, a contradiction to the
fact that DrS is of weight 2n−1. Thus r ≥ n, c(S) ≥ 2n−1 + n, and hence for
n ≥ 3 we have that

2n−1 + n ≤ c(S) ≤ 2n − 1.

Up to a certain complexity, the distribution of the linear complexities among
de Bruijn sequences can be relatively easily found by a computer search. Some
of the results of such a search are as follows. There are two de Bruijn sequences
of length 8 derived from the two M-sequences of length 7. By Theorem 5.2
their linear complexity is 7. There are sixteen de Bruijn sequences of length 16.
Four of these sequences have linear complexity 12, four have complexity 14,
and eight have complexity 15. Let γ (c,n) be the number of span n de Bruijn
sequences with linear complexity c. The complexity distribution of span 5 de
Bruijn sequences is given in the following table:

c γ (c,5) c γ (c,5) c γ (c,5)

21 8 25 32 29 224
22 0 26 36 30 448
23 12 27 64 31 1024
24 20 28 180
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The complexity distribution of span 6 de Bruijn sequences is given in the
following table:

c γ (c,6) c γ (c,6) c γ (c,6)

38 448 47 1168 56 259320
39 0 48 2772 57 519752
40 32 49 2352 58 1041252
41 96 50 5224 59 2090716
42 160 51 8704 60 4162352
43 80 52 18096 61 8342176
44 432 53 34224 62 16692832
45 288 54 67700 63 33731200
46 896 55 126592

The number of span 7 de Bruijn sequences is 257. This number is too
large, which makes it impossible to compute the linear complexity of all
span 7 de Bruijn sequences. Nevertheless, it was possible to find the num-
ber of span 7 de Bruijn sequences that have relatively low linear complex-
ity, close to the minimal linear complexity 2n−1 + n. The first few val-
ues for span 7 de Bruijn sequences are γ (71,7) = 477240, γ (72,7) = 0,
γ (73,7) = 688, γ (74,7) = 696, γ (75,7) = 5760, γ (76,7) = 1232, γ (77,7) =
12432, γ (78,7) = 4868, γ (79,7) = 10040, γ (80,7) = 7764, γ (81,7) = 8276,
γ (82,7) = 7496, γ (83,7) = 18840, and γ (84,7) = 26964.

Problem 5.1. Continue with the computation of γ (c,7) for c > 84. Find con-
sequences from the current data regarding the linear complexity of de Bruijn
sequences and their complexity distribution.

The complexity distribution that was found raises several conjectures and
questions. First, the number of span n de Bruijn sequences of minimal com-
plexity is much higher than the number of sequences with even relatively much
higher complexity. This phenomenon is not difficult to explain and construc-
tions for a large number of such sequences will be given. Next, we have that
it appears that there are no span n de Bruijn sequences with linear complexity
2n−1 + n + 1. This fact will be proved later for all n ≥ 3. The number of span n

de Bruijn sequences with complexity c > 7 is divisible by 4. This is not correct
for some larger complexities, as will be explained in Section 5.5. Finally, we ask
the following question.

Problem 5.2. Is the number of span n de Bruijn sequences with linear complex-
ity 2n − 1 at least half of the total number of span n de Bruijn sequences?

We continue and provide proof that the lower bound on the minimum com-
plexity of de Bruijn sequences is attained for all parameters.
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Theorem 5.3. If the sufficient condition, stated below, holds for a given n, then
there exists a de Bruijn sequence S of order n with c(S) = 2n−1 + n.
The sufficient condition:

Consider the set �(n). Then, it is possible to choose one state (of size n) in
each of the sequences of �(n), designated as the first state of the sequence,
and it is possible to arrange the members of �(n) in pairs Pi = (Ai,Bi),
1 ≤ i ≤ 2n−	logn
−2, so that Property 1 through Property 4 hold.
Property 1: For each pair Pi , the first state of Ai is the companion of the first
state of Bi .
Property 2: For each i, Ai + Bi = A1 + B1.
Property 3: c(A1 + B1) = n.
Property 4: The graph (V (n),E(n)), where V (n) = {vi : 1 ≤ i ≤ 2n−	logn
−2}
and {vi, vj } ∈ E(n) if and only if Ai and Aj have a pair of companion states in
the same position (relative to their respective first states), is a connected graph.

Proof. Given an arrangement of the set �(n) that satisfies Property 1 through
Property 4, let (V (n), T ) denote a spanning tree of (V (n),E(n)). We join the
members of �(n) to form a single sequence S by applying Lemma 1.19 as
follows.

First, we form S1, by joining all the Ai sequences via the companion pairs
that define the edges of (V (n), T ). Then, we form S2, by joining all the Bi

sequences via the corresponding companion pairs whose existence is guaranteed
by Property 2. We designate the first states of A1 and B1 to be the first states
of S1 and S2, respectively. It is easy to verify that under this convention the
following hold:

1. Two states occupying the same position in an (Ai,Bi) pair are also located
opposite each other (same position modulo 2n−1) in S1 and S2.

2. The position of each state in S1 (S2, respectively) is congruent to its original
Ai-position (Bi-position, respectively) modulo 2	logn
+1 (which is the length
of the Ais and the length of the Bis).

As a result, it follows that

S1 + S2 = (A1 + B1)
k,

where k = 2n−	logn
−2 and Sk is a concatenation of k occurrences of S. Also,
by Property 3, c(S1 + S2) = n. Finally, we join S1 and S2 via their respective
first states to form a de Bruijn sequence

S = [S1 S2].
Because of this form of S and the fact that c(S1 + S2) = n, it follows directly
from the Games–Chan algorithm that c(S) = 2n−1 + n.

Note that we can choose many companion pairs to merge the sequences S1
and S2 in Theorem 5.3 (and not just the first states of A1 and B1) and obtain
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a span n de Bruijn sequence with minimal complexity. This will imply the ex-
istence of many de Bruijn sequences with minimal complexity. Moreover, as n

becomes larger, there will be many choices of edges for the tree (V (n), T ) that
will imply more such de Bruijn sequences.

Example 5.2. Let n = 8, where |�(8)| = 16, so that there are 16 inequivalent
sequences of length 16 with complexity 9. These sequences are listed below in
eight pairs that satisfy Property 1 through Property 4. It is easy to verify that
this arrangement satisfies Property 1 through Property 3. To check Property 4,
let POC(i, j) denote a position in Ai and Aj that implies {vi, vj } ∈ E(n) ac-
cording to Property 4. It is easy to see now that the seven edges implied by
POC(1,2) = 4, POC(2,3) = 1, POC(3,4) = 5, POC(2,5) = 3, POC(5,6) = 6,
POC(3,7) = 2, and POC(5,8) = 7 form a tree of (V (8),E(8)), thus validating
Property 4.

(A1,B1) = ([0111111110000000], [0111111010000001]),
(A2,B2) = ([0110111110010000], [0110111010010001]),
(A3,B3) = ([1110111100010000], [1110111000010001]),
(A4,B4) = ([1110011100011000], [1110011000011001]),
(A5,B5) = ([0100111110110000], [0100111010110001]),
(A6,B6) = ([0100101110110100], [0100101010110101]),
(A7,B7) = ([1010111101010000], [1010111001010001]),
(A8,B8) = ([0100110110110010], [0100110010110011]).

We continue and merge the sequences A1 and A2 via the companion states
{(00000110), (00000111)} defined by POC(1,2) = 4 and similarly we merge the
sequences B1 and B2 via the associated companions {(00010110), (00010111)}
guaranteed by Property 2. The merged sequences are

[0110111110010000 [0110111010010001

0111111110000000] 0111111010000001].
We continue and merge the sequences A3 and B3 via the two pairs of compan-
ion states {(00100000), (001000001)} and {(00100010), (001000011)}, respec-
tively, defined by POC(2,3) = 1. The merged sequences are

[0111111110000000 [0111111010000001

0110111110010000 0110111010010001

1110111100010000] 1110111000010001].
We continue and merge the sequences A4 and B4 via the two pairs of companion
states {(00011100), (00011101)} and {(00111100), (00111101)}, respectively,
defined by POC(3,4) = 5. The merged sequences are
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[0111111110000000 [0111111010000001

0110111110010000 0110111010010001

1110011100011000 1110011000011001

1110111100010000] 1110111000010001].
We continue and merge the sequences A5 and B5 via the two pairs of companion
states {(10000010), (10000011)} and {(10001010), (10010011)}, respectively,
defined by POC(2,5) = 3. The merged sequences are

[0100111110010000 [0100111010010001

1110011100011000 1110011000011001

1110111100010000 1110111000010001

0111111110000000 0111111010000001

0110111110110000] 0110111010110001].
We continue and merge the sequences A6 and B6 via the two pairs of companion
states {(00010010), (00010011)} and {(01010010), (01010011)}, respectively,
defined by POC(5,6) = 6. The merged sequences are

[0100101110110000 [0100101010110001

0100111110010000 0100111010010001

1110011100011000 1110011000011001

1110111100010000 1110111000010001

0111111110000000 0111111010000001

0110111110110100] 0110111010110101].
We continue and merge the sequences A7 and B7 via the two pairs of companion
states {(01000010), (01000011)} and {(01000110), (01000111)}, respectively,
defined by POC(3,7) = 2. The merged sequences are

[0100101110110000 [0100101010110001

0100111110010000 0100111010010001

1110011100011000 1110011000011001

1110111100010000 1110111001010001

1010111101010000 1010111000010001

0111111110000000 0111111010000001

0110111110110100] 0110111010110101].
We continue and merge the sequences A8 and B8 via the two pairs of companion
states {(00100110), (00100111)} and {(10100110), (10100111)}, respectively,
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defined by POC(5,8) = 7, to obtain the merged sequences S1 and S2 as follows:

S1 =[0100110110110000 S2 =[0100110010110001

0100111110010000 0100111010010001

1110011100011000 1110011000011001

1110111100010000 1110111001010001

1010111101010000 1010111000010001

0111111110000000 0111111010000001

0110111110110100 0110111010110101

0100101110110010] 0100101010110011].
Finally, we merge the sequences S1 and S2 via one of the 16 companion pairs
defined by Property 1 through Property 3. From these pairs, we chose the first
pair to obtain the following span 8 de Bruijn sequence with minimal linear com-
plexity 136.

[0100110110110000 0100111110010000 1110011100011000 1110111100010000

1010111101010000 0111111110000000 0110111110110100 0100101110110010

0100110010110001 0100111010010001 1110011000011001 1110111001010001

1010111000010001 0111111010000001 0110111010110101 0100101010110011].
�

We continue with the construction of de Bruijn sequences with minimal
complexity 2n−1 + n, where n = 2m and m ≥ 3. For this purpose, we will order
the sequences in the set �(2m) and show that they can be arranged in a way that
can satisfy Property 1 through Property 4.

Construction 5.1. Starting with the set �(8) arranged in Example 5.2. Given
such an arrangement for �(2m), construct a set �′(2m+1). Let Y(m) denote
the set of 22m−1 elements consisting of the 22m−1 − 1 elements of the form
(0, y1, y2, . . . , y2m−1), where at least one of the yis is not zero, and the all-ones
word of length 2m. For each S = [X X̄] ∈ �(2m) and for every Y ∈ Y(m), let

SY = [Y X + Y Ȳ X + Ȳ ].
Let

�′(2m+1) =
⋃

S∈�(2m)

S(m),

where

S(m) �
⋃

Y∈Y(m)

SY .

�
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By the properties of the operator D we have the following immediate conse-
quence.

Lemma 5.13. The set �′(2m+1) obtained from �(2m) as defined in Construc-
tion 5.1 is the set �(2m+1).

Proof. The proof will be done iteratively. Assume we are given the set �(2m)

and apply Construction 5.1. Let S = [X X̄] be a sequence in �(2m) whose
length is 2m+1.

By the definition, we have that SY = [Y X + Y Ȳ X + Ȳ ]. Now, we
apply D2m

on SY and obtain

D2m

SY = (E + 1)2m

SY = (E2m + 1)SY = (E2m + 1)[Y X + Y Ȳ X + Ȳ ]
= [Y + X + Y X + Y + Ȳ Ȳ + X + Ȳ X + Ȳ + Y ] = [X X̄ X X̄].

This implies that SY ∈ D−2m
S. Since all the sequences in �(2m) were inequiv-

alent, it follows that the sequences in �′(2m+1) are also inequivalent.
By Lemma 5.12 we have that |�(2m)| = 22m−m−1 and by the construction

of S(m) we have that |S(m)| = |Y(m)| = 22m−1 and therefore we have that∣∣�′(2m+1)
∣∣ = 22m−m−1 · 22m−1 = 22m+1−(m+1)−1, which implies that �′(2m+1)

have the same number of sequences as in �(2m+1).
Thus the set �′(2m+1) defined in Construction 5.1 is the set �(2m+1).

We proceed to show that the defined set �′(2m+1) can be arranged so that
Property 1 through Property 4 are satisfied. To this end, we add Property 5 to be
satisfied only when n = 2m.

For an arrangement of the set �(2m) and Ai,Aj ∈ �(2m), let d(Ai,Aj )

denote the first position in which Ai differs from Aj , and let

dm = {d(Ai,Aj ) = POC(i, j) − 1 : {vi, vj } ∈ T (2m)},

where T (2m) is a spanning tree of (V (2m),E(2m)) for �(2m).
Property 5: dm = {0,1,2, . . . ,2m − 2}.
Example 5.3. For the set of Example 5.2 we have

d(A1,A2) = 3, d(A2,A3) = 0, d(A3,A4) = 4, d(A2,A5) = 2,

d(A5,A6) = 5, d(A3,A7) = 1, d(A5,A8) = 6.

Hence, d3 = {0,1,2,3,4,5,6}. �

Lemma 5.14. If �(2m+1) = �′(2m+1) is obtained via Construction 5.1 from an
ordered set �(2m) satisfying Property 1 through Property 5, then �(2m+1) can
be arranged to satisfy Property 1 through Property 5.
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Proof. Consider the pairs Pi = (Ai,Bi) of �(2m) and let Ai = [Xi X̄i].
Since Xi is the first state of Ai , it follows from Property 1 that Bi = [X′

i X̄′
i]

(X′ is the companion of X) and therefore Ai + Bi = (02m−1102m−11). For each
Pi of �(2m) and for every Y ∈ Y(m), we form the pair PiY = (AiY ,BiY ) as
described in Construction 5.1. Therefore, AiY + BiY = (02m+1−1102m+1−11),
which immediately implies Property 1 through Property 3 for �(2m+1).

To complete the proof we have to show that given a spanning tree T (2m) of
the set �(2m) with dm = {0,1,2, . . . ,2m − 2}, the graph (V (2m+1),E(2m+1))

for the set �(2m+1) is connected and it has a spanning tree T (2m+1) for which
dm+1 = {0,1,2, . . . ,2m+1 − 2}.

Consider two sequences Ai,Aj ∈ �(2m) such that {vi, vj } ∈ T (2m). Since
both Ai and Aj are self-dual sequences and Aj �= Ai , it follows from Property 4

that Ai +Aj = (0k102m−1102m−1−k
), where k = d(Ai,Aj ) = POC(i, j)−1 (see

Example 5.2).
For every Y ∈ Y(m) let G(Y) be the subgraph of (V (2m+1),E(2m+1)) that

is spanned by the vertices viY corresponding to the sequences AiY , where
1 ≤ i ≤ 22m−m−2. It can be easily verified that {vi, vj } ∈ T (2m) implies
that {viY , vjY } ∈ E(2m+1) with d(AiY ,AjY ) = 2m + d(Ai,Aj ) and therefore
POC(iY, jY ) = 2m + POC(i, j). Hence, the set

Tm+1(Y ) � {{viY , vjY } : {vi, vj } ∈ T (2m)}
forms a tree of G(Y), isomorphic to T (2m), and

dm+1(Y ) � {d(AiY ,AjY ) : {vi, vj } ∈ T (2m)} = {2m,2m + 1, . . . ,2m+1 − 2}.

We now show that the 22m−1 trees, Tm+1(Y ), Y ∈ Y(m), can be em-
bedded in a tree T (2m+1) of (V (2m+1),E(2m+1)) so that the correspond-
ing set dm+1 will include the set {0,1, . . . ,2m − 1} along with dm+1(Y ). To
this end, consider 2m − 1 pairs (Ai,Aj )k , one for each k ∈ dm such that
Ai,Aj ∈ �(2m), {vi, vj } ∈ T (2m) and d(Ai,Aj ) = k. For each such pair
(Ai,Aj ) we form the pair (AiYk

,AjYk+1), where Yr = (0r12m−r ), r ∈ dm. As be-
fore, it is easy to see that {vi, vj } ∈ T (2m) implies that {viYk

, vjYk+1} ∈ E(2m+1)

with d(AiYk
,AjYk+1) = k. Moreover, the union G∗

m+1 of these 2m − 1 members

of E(2m+1) and of the 22m−1 trees Tm+1(Y ), Y ∈ Y(m) contains no cycle.
For k = 2m − 1 we take any pair Pi = (Ai,Bi) and we form the pair

(AiY ,BiY ′), where AiY ,BiY ′ ∈ �(2m+1), Y = (02m−211), and Y ′ = (02m−210).
Since we have that Ai + Bi = (02m−1102m−11), it follows that we also have
AiY + BiY ′ = (02m−1102m+1−1102m

), which implies {viY , viY ′ }∈E(2m+1) with
d(AiY ,BiY ′) = 2m − 1. Adding {viY , viY ′ } to G∗

m+1 creates the cycle-free graph
G∗ and completes the construction of dm+1 = {0,1, . . . ,2m+1 − 2}. Since we
have used a B-sequence (rather than an A-sequence) with Y ′, we have to in-

terchange AjY ′ with BjY ′ for every j = 1, . . . ,222m−m−2. That is, the original
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pairs (A1Y ′ ,B1Y ′), (A2Y ′ ,B2Y ′), etc. associated with Y ′ now become the pairs
(B1Y ′ ,A1Y ′), (B2Y ′ ,A2Y ′), etc. (It is easy to verify that the graph G(Y ′) obtained
from the BjY ′s is isomorphic to the one obtained from the AjY ′s.)

So far, we have shown that G(Y ′) and G(Yk), for each k ∈ dm, form a
connected graph G∗. To see that the rest of the G(Y)s are connected to G∗,
consider the subgraph G(Y1) of G∗ and any maximum weight Y (starts with a
zero and weight 2m − 2) such that G(Y) is not in G∗. Then, wt(Y + Y1) = 1,
i.e., Y + Y1 = (0r102m−r−1) for some 1 ≤ r ≤ 2m − 1. Let Ai,Aj ∈ �(2m)

be two sequences such that {vi, vj } ∈ T (2m) and d(Ai,Aj ) = r . Then, as be-
fore, it follows that {viY , vjY1} ∈ E(2m+1). This procedure can be repeated until
all of the vertices of G(Y)s are shown to be connected by considering at each
step, the current proven connected piece G∗ and a maximum weight Y such that
G(Y) is not in G∗. For any such Y there exists Ŷ such that G(Ŷ ) is in G∗ and
wt(Y + Ŷ ) = 1. As before, this proves that G(Y) is also connected to G∗.

We continue to show that the sufficient condition is satisfied for any given n

if it is satisfied for 2	logn
 and 2�logn
, as was already proved in Lemma 5.14.

Construction 5.2. Given a positive integer n ≥ 8 that is not a power of 2, con-
struct the set �(n) by repeatedly applying the recursion

�′(k + 1) = D−1
0 �(k) ∪ D−1

1 �(k),

where

D−1
b �(k) =

⋃
S∈�(k)

D−1
b S, b = 0,1,

beginning with the set �(2	logn
) obtained by Construction 5.1. �

By Lemma 5.8 we have the following conclusion.

Lemma 5.15. Construction 5.2 yields the set �(k + 1) (defined as �′(k + 1))
from the set �(k).

The validity of the following three lemmas can be easily verified.

Lemma 5.16. If the first states of S1 and S2 are companions, then the first states
of D−1

b S1 and D−1
b S1 are companions, where b ∈ {0,1}.

Lemma 5.17. The mth state of D−1
b S1 is the companion of either the mth state

of D−1
b S2 or the mth state of D−1

1−bS2, b ∈ {0,1} if and only if the mth states of
S1 and S2 are companions.

Lemma 5.18. If S1 and S2 are sequences of the same length and the same parity,
then D−1

0 (S1 + S2) = D−1
b S1 + D−1

b S2, where b ∈ {0,1}.
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Given the pair Pi = (Ai,Bi) of �(k − 1), it follows, by Lemma 5.16,
that the pairs Pi0 = (D−1

0 Ai,D−1
0 Bi) and Pi1 = (D−1

1 Ai,D−1
1 Bi) of �(k),

2	logn
 < k ≤ n, satisfy Property 1. By Lemma 5.18, Construction 5.2 preserves
Property 2 and, by Corollary 5.4 and Lemma 5.18, we have that Construction 5.2
preserves Property 3.

By Lemma 5.17 and Construction 5.2, the existence of a tree T (k − 1) for
�(k − 1), where 2	logn
 < k ≤ n, implies the existence of a corresponding pair
of trees T1(k) and T2(k), isomorphic to T (k − 1), which form subtrees of the
graph (V (k),E(k)) for �(k). T1(k) and T2(k) are disjoint and together include
every element of V (k). Thus all we need to complete the proof that Construc-
tion 5.2 yields a set �(k) that satisfies Properties 1 through 4 is to demonstrate
the existence of an edge in E(k) that connects T1(k) with T2(k), 2	logn
 < k ≤ n.
That is, we have to show that it is possible to find two sequences, D−1

i Ar and
D−1

j As , i, j ∈ {0,1}, such that D−1
i Ar , corresponds to a vertex of T1(k), D−1

j As

corresponds to a vertex of T2(k), and the mth state of D−1
i Ar is the compan-

ion of the mth state of D−1
j As , for some positive integer m. Assume, on the

contrary, that k0 ≥ 2	logn
 + 1 is the least integer for which there is no edge in
E(k0) that connects T1(k) and T2(k). Then, by Lemma 5.17, none of the sets
�(k0) through �(2�logn
 − 1), obtained from �(k0 − 1) via Construction 5.2,
correspond to a connected graph. Consider the set � � �(2�logn
 − 1). This set

can be partitioned into �0 and �∗, where �0 = D−(2	logn
−1)
0 �(2	logn
) (apply-

ing D−1
0 on the sequences 2	logn
 − 1 times, where D−i

0 S = D−1
0 (D−i+1

0 S)) and
�∗ = � \ �0. Given that the graph (V ,E) for � is not connected, it follows
that the graph (V̂ , Ê) for �̂ � D−1

0 �0 ∪ D−1
0 �∗ is not connected. However, it is

easy to verify that the set �̂ is identical to the set �(2m+1) of Construction 5.1
for m = 	logn
. Since by Lemma 5.14 the graph (V̂ , Ê) of �(2m+1) = �̂

is connected (the commutation of some of the (Ai,Bi) pairs in the proof of
Lemma 5.14 does not affect connectivity), we have a contradiction. This inval-
idates our assumption regarding k0 and completes the proof of the following
result.

Theorem 5.4. For every n ≥ 3 there exists a span n de Bruijn sequence whose
linear complexity is 2n−1 + n.

Theorem 5.4 implies that the lower bound of Theorem 5.2 is attained for all
n ≥ 3. Now, we will prove that the upper bound is also attained for any n ≥ 3.

Theorem 5.5. For every n ≥ 2 there exists a span n de Bruijn sequence with
linear complexity 2n − 1.

Proof. The proof will be given by induction. The basis is n = 2, where the only
de Bruijn sequence of length 4, [0011] has linear complexity 3. Assume that the
claim holds for some n ≥ 2.

Let S be a span n de Bruijn sequence with linear complexity 2n −1. Consider
the two sequences D−1

0 S and D−1
1 S. By Corollary 5.4 we have that the linear
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complexity of D−1
0 S is 2n and the linear complexity of D−1

1 S is 2n. Let R be the
sequence in {D−1

0 S,D−1
1 S} that contains the n-tuple (state) X = (0101 · · · ) and

w.l.o.g. assume it is the first n-tuple in R. The second sequence in {D−1
0 S,D−1

1 S}
is R̄ and it starts with the n-tuple X̄ = (1010 · · · ). The next n-tuple of R̄ is the
companion of X, X′, and we can apply Lemma 1.19 on the cycles R and R̄

with the pair of bridging states X and X′ and obtain the span n + 1 de Bruijn
sequence [R ER̄]. If

R = [x1, x2, x3, . . . , x2n],
then

R + ER̄ = [x1 + x̄2, x2 + x̄3, · · · , x2n + x̄1] = [x1 + x2 + 1, x2 + x3 + 1, · · · , x2n + x1 + 1].

This implies that

c(R + ER̄) = c(R + ER +[12n ]) = c((DR)+[12n ]) = c(DR) = c(S) = 2n − 1.

Now, by the Games–Chan algorithm, we have that

c([R ER̄]) = 2n + c(R + ER̄) = 2n + 2n − 1 = 2n+1 − 1,

which completes the proof of the theorem.

After we saw that the lower bound of Theorem 5.2 is attained and also that
the upper bound of Theorem 5.2 is attained, we can observe from the complexity
distribution of span n de Bruijn sequences, where n ≤ 7, that there are no span n

de Bruijn sequences with linear complexity 2n−1 + n + 1. It will be proved now
that indeed there are no span n de Bruijn sequences with this linear complexity
for every n ≥ 3.

Theorem 5.6. For n ≥ 3, there is no span n de Bruijn sequence with linear
complexity 2n−1 + n + 1.

Proof. By Corollary 3.10, a Boolean function of a span n de Bruijn sequence,
where n ≥ 3, has an odd weight.

Assume, on the contrary, that S is a de Bruijn with linear complexity
2n−1 + n + 1. As in the proof of Theorem 5.2, we apply the operator D on S

a few times, i.e., we consider DiS, 1 ≤ i ≤ n. By Corollary 5.4, the linear com-
plexity of DnS is 2n−1 +1. By Lemma 5.7 this implies that DnS is a self-dual se-
quence. Since D = E + 1, it follows that DnS = (E + 1)nS = (En +g(E)+ 1)S,
where g(E) is a polynomial of degree at most n − 1 whose smallest power is at
least one. By rearranging we have

(En + g(E) + 1)S = EnS + S + g(E)S

and we can write it as

Ensi + si + g(E)si = si + si+n + g(E)si
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for each i. It is important to note that the sequence (En + g(E) + 1)S has the
same weight as the function that is associated with Ensi + si +g(E)si computed
for each row of the truth table. The sequence g(E)S has weight 2n−1 as it sums
some columns from columns 2 through n, of the truth table, for the values of
the variables in the truth table (for each row). Performing the addition si + si+n

(or equivalently EnS + S) on all the associated bits is equivalent to adding the
first column with the function column in the truth table. The addition of these
two columns is a column of length 2n and weight 2δ, where δ is the weight
of the function associated with the de Bruijn sequence S. By Corollary 3.10
we have that δ is an odd integer. Moreover, the two halves of the column in
this summation are identical. The summation of some columns from columns 2
through n yields a column whose weight is 2n−1, with identical top and bottom
halves. Therefore the addition of this subset of n + 1 columns is a column of
length 2n whose two identical halves have odd weight γ . This implies that the
weight of DnS is 2γ , where γ is an odd integer. This is a contradiction to the
fact that DnS is a self-dual sequence whose weight is 2n−1.

Thus for n ≥ 3, there is no span n de Bruijn sequence with linear complexity
2n−1 + n + 1.

5.3 Sequences over pm whose length is pn, p prime

We continue now with the non-binary case and with the same direction as in the
previous sections. First, we want to know what is the linear complexity (min-
imum degree polynomial) that generates a sequence of length pn over Fpm ,
where p is a prime. In particular, we are interested in de Bruijn sequences of
length pn over Fpm and they will be the topic of the next section. Many claims
regarding non-binary sequences are straightforward generalizations of the bi-
nary case. However, some results are quite different. Moreover, the proofs for
the binary case are less complicated. For these reasons, we make almost a com-
plete separation between the two cases. Nevertheless, some of the results in this
section hold also in the binary case.

Theorem 5.7. A sequence S over Fpm has period pn for some n and linear
complexity c(S) if and only if the minimum polynomial of S is (E − 1)c(S). Fur-
thermore, if S is a nonzero sequence that has period pn, then

pn−1 + 1 ≤ c(S) ≤ pn,

unless n = 0, in which case c(S) = 1.

Proof. Suppose S is a sequence of period pn over Fpm , with minimal poly-
nomial g(x). Then, g(E)S is the all-zeros sequence and from Lemma 5.2 and
Corollary 5.1, g(x) divides xpn − 1. Over a field with characteristic p, we
have xpn − 1 = (x − 1)p

n
since the binomial coefficients

(
pn

i

)
are zero for

1 ≤ i ≤ pn − 1. Thus the minimal polynomial of S is simply (x − 1)c(S) and
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S satisfies the linear recurrence

(E − 1)c(S)S = [0pn].
This implies that

(Epn − 1)S = (E − 1)p
n−c(S)(E − 1)c(S)S = [0pn]

for any n such that pn ≥ c(S).
Suppose now that S has a period that is a power of p and suppose further that

S is a nonzero sequence so that S has minimal polynomial (x − 1)c(S), where
c(S) ≥ 1. The case c(S) = 1 is trivial, so we may assume that c = c(S) ≥ 2.
Then, there is a unique integer n such that pn−1 ≤ c(S) ≤ pn. Now,

(Epn −1)S = (E−1)p
n

S = (E−1)p
n−c(E−1)cS = (E−1)p

n−c[0pn] = [0pn],
while

(Epn−1 − 1)S = (E − 1)p
n−1

S �= [0pn],
for otherwise S would have linear complexity at most pn−1. Hence, S has pe-
riod pn.

The following lemma is the analog of Lemma 5.4. It was also given with the
polynomial definition of linear complexity (see Corollary 5.2) and it is proved
similarly.

Lemma 5.19. A sequence S of length pn over Fpm has linear complexity c if
and only if (E − 1)c−1S = [γ pn], where γ is a nonzero element in Fpm

Similarly, the following lemma is the analog of Corollary 5.4 and it is ob-
served from the proof of Theorem 5.7.

Corollary 5.8. The linear complexity of sequence S of length pn over Fpm is c

if and only if c((E − 1)S) = c − 1.

As in the binary case, to compute the linear complexity of a sequence whose
period is pn we used and will use the following simple equation:

(E − 1)p
r = Epr − 1. (5.2)

Again, this equation follows immediately from the fact that all the binomial
coefficients

(
pr

i

)
, 1 ≤ i ≤ pr − 1, are equal to 0 over Fpm . Similarly to the

Games–Chan algorithm, the idea in computing the linear complexity is to re-
duce the linear complexity of the given sequence S by the largest possible pr

until we reach a sequence whose linear complexity is 1. The following algorithm
is a generalization of the Games–Chan algorithm.
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The non-binary linear complexity algorithm:

The input for the algorithm is a sequence S = [A1 A2 · · · Ap], over Fpm ,
of length pn, where each Ai has length pn−1. If S = [02n], then c(S) = 0. If
S �= [02n ], then set cn := 0 and Bn := S. The algorithm starts at step n.

At general step k of the algorithm there is a sequence Bk of length pk and
the accumulated linear complexity is ck . The sequence Bk is partitioned into p

equal parts Ai(Bk), 1 ≤ i ≤ p, i.e., Bk = [A1(Bk) A2(Bk) · · · Ap(Bk)], and let

Dk = [A2(Bk) − A1(Bk), · · · ,Ap(Bk) − Ap−1(Bk),A1(Bk) − Ap(Bk)].

1. If Dk = [0pk ], then set Bk−1 := A1(Bk) and ck−1 := ck; continue to
step k − 1.

2. If Dk �= [0pk−1 ], then set Bk := Dk and ck := ck + pk−1; apply step k again.

We stop at step 0 with c0. The output is c(S) = c0 + 1. �

The correctness of the algorithm is implied by the simple observation that

Dk = Epk−1
Bk − Bk = (E − 1)p

k−1
Bk

and hence each iteration at step k, which does not result in the all-zeros se-
quence, reduces the linear complexity of the sequence by pk−1, and therefore
we add pk−1 to the accumulated linear complexity. If the iteration results in
the all-zeros sequence, then Bk is periodic and we continue with a sequence of
length pk−1, whose linear complexity is at most pk−1, rather than a sequence of
length pk . This implies the following theorem.

Theorem 5.8. Given a sequence S, over Fpm , of length pn, the non-binary
linear complexity algorithm finds the linear complexity of S, c(S).

Lemma 5.20. A sequence S of length pn, n ≥ 2, over Fpm has linear complexity
pn−1 + 1 if and only if S = [X X + Y X + 2Y · · · X + (p − 1)Y ], where Y

is a nonzero constant sequence, i.e., Y = γ pn−1
and γ ∈ F

∗
pm .

Proof. Assume first that

S = [X X + Y X + 2Y · · · X + (p − 1)Y ],
where Y = γ pn−1

. Hence,

(E − 1)p
n−1

S = (Epn−1 − 1)[X X + Y X + 2Y · · · X + (p − 1)Y ] = [Y Y Y · · · Y ].

Since the complexity of [Y Y · · · Y ] is 1, it follows that c(S) = pn−1 + 1.
On the other hand, assume that c(S) = pm−1 + 1. The only sequence

with complexity 1 is a nonzero constant sequence Y . Assume further that
S = [X1 X2 X3 · · · Xp], where Xi is a sequence of length pn−1. Since
c(S) = pn−1 + 1, it follows that

(E − 1)p
n−1

S = [X2 − X1 X3 − X2 · · · X1 − Xp] = [Y Y · · · Y ],
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which implies that S = [X X + Y X + 2Y · · · X + (p − 1)Y ], i.e., Xi = X +
(i − 1)Y , where 1 ≤ i ≤ p.

Sequences over Fpm and period pn, whose sum of elements is zero or
nonzero over Fpm , can be distinguished by their linear complexities.

Lemma 5.21. If a sequence S = [s0, s1, . . . , spn−1] over Fpm has linear com-
plexity between pn−1 + 1 and pn − 1, then

pn−1∑
i=0

si = 0.

Proof. Let S be a sequence over Fpm of length pn. By Theorem 5.7 we have
that pn−1 + 1 ≤ c(S) ≤ pn.

If pn−1 + 1 ≤ c(S) ≤ pn − 1, then there exists a sequence T for which
c(T ) = c(S) + 1 such that S = (E − 1)T . Therefore pn−1 + 2 ≤ c(T ) ≤ pn

and hence the period of T is pn. Let T = [t0, t1, . . . , tpn−1], which implies that
S = [t1 − t0, t2 − t1, . . . , tpn−1 − tpn−2, t0 − tpn−1], where the computation is
performed in Fpm . It is easy to verify that the sum of the elements in S is 0
in Fpm .

Corollary 5.9. For every sequence over Fpm of length pn and complexity less
than pn the sum of its elements is 0 in Fpm .

By carefully considering the sequence (E − 1)S, where c(S) = pn + 1, we
will infer the following consequence.

Corollary 5.10. If S = [s0, s1, . . . , spn−1] is a sequence over Fpm of length pn

and linear complexity pn, then

pm−1∑
i=0

si �= 0.

Proof. If S is a sequence over Fpm of length pn and complexity pn, then there
exists a sequence T such that S = (E−1)T and c(T ) = pn +1. The sequence T

must have the following form:

T = [X X + Y X + 2Y · · · X + (p − 1)Y ],
where X is any sequence of length pn over Fpm and Y is a constant nonzero
sequence over Fpm , i.e., Y = γ · · · γ , where γ ∈ F

∗
pm . This implies by

Lemma 5.20 that c(T ) = pn + 1 and hence by Corollary 5.8 c((E − 1)T ) = pn.
By the structure of T , we have that

S = (E − 1)T = [(E − 1)X + 0pn−1γ, (E − 1)X + 0pn−1γ, . . . , (E − 1)X + 0pn−1γ ].
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Therefore the period of S is pn and S = [(E − 1)X + 0pn−1γ ]. The sequence
(E−1)X is of length pn and complexity less than pn and hence by Corollary 5.9
the sum of its elements is 0 in Fpm . This implies that the sum of elements in
S = (E − 1)T = [(E − 1)X + 0pn−1γ ] is not 0 in Fpm .

Corollary 5.10 can be proved by enumeration of the number of sequences of
a given period and complexity with even weights and those with odd weights.
Let N (pm, c) denote the number of sequences over Fpm whose period is a power
of p and linear complexity c, where each sequence is counted for all its cyclic
shifts.

Lemma 5.22. For every prime p, a positive integer m, and c ≥ 1, we have

N (pm, c) = (pm − 1)pm(c−1).

Proof. Consider the set of sequences having a period that is a power of p and
linear complexity at most c ≥ 1. It follows from Theorem 5.7 that a sequence S

is in this set if and only if (E − 1)c is the minimal polynomial of S. Thus each of
these sequences is uniquely determined by its first c terms, using the recursion
implied by (E − 1)csi = 0 for each i of a sequence s0s1 · · · spk−1. Hence, there
are exactly pmc sequences in this set and pm(c−1) sequences that satisfy the
recursion (E − 1)c−1si = 0. Hence, there are pmc −pm(c−1) = (pm −1)pm(c−1)

sequences of linear complexity exactly c and having a period that is a power
of p. It follows that

N (pm, c) = (pm − 1)pm(c−1).

Corollary 5.11. For a prime p and k > 0, let pk−1 + 1 ≤ c ≤ pk . Then, there
are exactly (pm−1)pmc−m−k nonequivalent sequences over Fpm with period pk

and linear complexity c.

Proof. If the linear complexity of a sequence is between pk−1 + 1 and pk , then
by Theorem 5.7 the period of the sequence is pk . Each nonequivalent sequence
in Lemma 5.22 was counted pk times, once for any initial c terms. Hence, the
claim follows.

Note that the proofs of Lemma 5.22 and Corollary 5.11 can be used as al-
ternatives for the computation of the number of sequences of �(n) for each
positive integer n.

5.4 Complexity of non-binary de Bruijn sequences

After analyzing the linear complexity and complexity distribution of non-binary
sequences whose length is a power of a prime p and its alphabet size is a power
of the same prime, we turn our attention to the related de Bruijn sequences. As
in the binary case, we provide some computer-search results for some of the
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complexity distribution of non-binary de Bruijn sequences. Let γq(c, n) be the
number of span n de Bruijn sequences over Fq with linear complexity c. For
example γ3(7,2) = 12 and γ3(8,2) = 12. The following tables provide some of
the complexity distributions.

The first table is for span 2 de Bruijn sequences over F4:

c γ4(c,2) c γ4(c,2) c γ4(c,2)

10 96 12 336 14 3312
11 144 13 1200 15 15648

.

The second table is for span 2 de Bruijn sequences over F5:

c γ5(c,2) c γ5(c,2) c γ5(c,2)

11 240 16 1920 21 6430280
12 0 17 10080 22 31677520
13 0 18 54800 23 159523800
14 0 19 256360 24 796064720
15 760 20 1307520

.

The third table is for span 3 de Bruijn sequences over F3:

c γ3(c,3) c γ3(c,3) c γ3(c,3)

17 48 21 1620 25 82920
18 60 22 3096 26 246144
19 60 23 9240
20 504 24 29556

.

As we can see from the tables, in these examples, the maximum complexity
of sequences of length qn, where q is a prime power, is qn − 1. As for a lower
bound, no general formula is seen from these examples. Some of the bounds for
the minimum complexity will be discussed in the rest of this section.

Theorem 5.9. If S is a span n de Bruijn sequence over Fpm , where m > 1 if
p = 2, then

pmn−1 + n ≤ c(S) ≤ pmn − 1.

Proof. The upper bound is an immediate consequence of Corollary 5.10.
The lower bound is proved similarly to the proof of Theorem 5.2. By The-

orem 5.7 we have that pmn−1 + 1 ≤ c(S). If S is a span n de Bruijn sequence
over Fpm , then each n-tuple over Fpm is contained exactly once in S. In the se-
quence (E − 1)S we have that each (n − 1)-tuple over Fpm is contained exactly
pm times. Similarly, in the sequence (E − 1)iS, 1 ≤ i ≤ n − 1, we have that
each (n − i)-tuple over Fpm is contained exactly pmi times. Assume now, on
the contrary, that pmn−1 + 1 ≤ c(S) = pmn−1 + r < pmn−1 + n. Since r < n,
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it follows that each element of Fpm is contained the same number of times in
(E − 1)rS.

Now, we also use the fact that c((E − 1)S) = c(S) − 1. This implies that
c((E − 1)rS) = pmn−1. However, by Theorem 5.7 we have that the period of
(E − 1)rS is pmn−1, i.e., (E − 1)rS = [X X · · · X], and by Corollary 5.10
we have that the sum of the elements in X is not 0 in Fpm , i.e., each ele-
ment of Fpm is not contained the same number of times in X. The sequence
(E − 1)rS = [X X · · · X] has the same property, a contradiction to the fact that
we proved in the previous paragraph that in (E − 1)rS each element of Fpm is
contained the same number of times. Thus r ≥ n, c(S) ≥ pmn−1 + n, and hence
the claim of the theorem follows.

Theorem 5.10. If S is a span 2 de Bruijn sequence over Fp, p an odd prime,
then

c(S) ≥ 2p + 1.

Proof. Let S be a span 2 de Bruijn sequence over Fp given as

S = [s0s1 · · · sp2−1].

W.l.o.g., we can assume that s0 = 0 (adding a constant sequence of length p2

will not change the linear complexity). By Theorem 5.7, Lemma 5.20, and
Corollary 5.10, we have that p + 2 ≤ c(S) ≤ p2 − 1. Assume, on the contrary,
that p + 2 ≤ c(S) ≤ 2p. By Corollary 5.8 this implies that 2 ≤ c((E− 1)pS) ≤ p

and hence by Theorem 5.7, (E − 1)pS has period p. If X = (E − 1)pS,
we can write X = [x0x1 · · ·xp−1] by considering the period p of X. Since
(Ep − 1)S = (E − 1)pS = X, it follows that

S = [Ŝ, Ŝ + X, Ŝ + 2X, . . . , Ŝ + (p − 1)X]
for Ŝ = s0s1 · · · sp−1. Note that sp = x0 since the first bit of Ŝ is s0 = 0. Let

di =
{

si+1 − si for 0 ≤ i ≤ p − 2

x0 − sp−1 for i = p − 1

and

ei = xi+1 − xi for 0 ≤ i ≤ p − 1,

where xp = x0. In the sequence

T = [(s0, s1 − s0), (s1, s2 − s1), . . . , (sp2−1, s0 − sp2−1)]
every ordered pair of elements of Fp appears exactly once since every ordered
pair of Fp appears exactly once in the span 2 de Bruijn sequence S (note that
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T is combined from S and (E − 1)S). However, T may be written in the form

[(s0, d0), (s1, d1), . . . , (sp−1, dp−1),

(s0 + x0, d0 + e0), (s1 + x1, d1 + e1), . . . , (sp−1 + xp−1, dp−1 + ep−1),

(s0 + 2x0, d0 + 2e0), (s1 + 2x1, d1 + 2e1), . . . , (sp−1 + 2xp−1, dp−1 + 2ep−1),

...

(s0 + (p − 1)x0, d0 + (p − 1)e0), (s1 + (p − 1)x1, d1 + (p − 1)e1), . . . ,

(sp−1 + (p − 1)xp−1, dp−1 + (p − 1)ep−1)].

Note that since S has period p2, it follows that not all the terms of X

are zeros (for otherwise we will have that c(X) = 0 and c(S) = p). We
claim that no xi is zero. Suppose, on the contrary, that xk = 0 and xr �= 0.
Since X = (Ep − 1)S, it implies that sk, sk+p, . . . , sk+(p−1)p are all equal but
sr , sr+p, sr+2p, . . . , sr+(p−1)p are all distinct, so that some element of Fp ap-
pears more than p times in a period of s. This contradicts the fact that by the
span 2 property, each element of Fp appears p times in the span 2 de Bruijn
sequence S. Hence, there are two terms of X that are equal, say xk = xr . All the
2p pairs

(sk, dk), (sk + xk, dk + ek), . . . , (sk + (p − 1)xk, dk + (p − 1)ek),

(sr , dr ), (sr + xr , dr + er), . . . , (sr + (p − 1)xr , dk + (p − 1)er )

are distinct. Hence, the set of the following two equations

sk + ixk = sr + jxr , dk + iek = dr + jer ,

does not have a solution. However, since xk = xr and all the other variables
(except for i and j ) are given, it follows that ek = er . However, from the fact
that ek = er and since xk = xr , it follows that xk+1 = xr+1. Repeatedly applying
the argument above, we quickly find that all the xis are equal. However, this
implies that c(X) = 1 and consequently c(S) = p + 1, a contradiction. Thus
c(s) ≥ 2p + 1.

The computational results presented in the tables (such as γ3(c,3) = 0 for
c < 17) suggest that the lower bounds presented in Theorems 5.9 and 5.10 can
be improved in some cases. Moreover, other computational results (such as
γ3(12,2) = γ3(13,2) = γ3(14,2) = 0) suggest there might be a related result
to that of Theorem 5.6. Therefore we suggest the following research problem.

Problem 5.3. Improve the lower bounds on the minimal complexity of span
n de Bruijn sequences over Fq . This is most appealing when q is a prime
and n > 2.

Problem 5.4. Find more values of γ , c, and n, for which γq(c, n) = 0
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Problem 5.5. Extend the complexity-distribution tables and try to find more
interesting properties associated with the complexity distribution of non-binary
de Bruijn sequences.

Construction 5.3. Let p be an odd prime. We generate a sequence S over Fp

as follows. For 0 ≤ i, j ≤ p − 1, we define

sjp+i =
{

i + 1
2 (j − 1)j for i even

i + 1
2 (j + 1)j for i odd,

where the computation is performed modulo p, and let S = [s0s1 · · · sp2−1]. �
Example 5.4. For p = 3, the sequence S is [012022110].

For p = 5, the sequence S is [0123402244143103204211330]. �
Theorem 5.11. Construction 5.3 generates a span 2 de Bruijn sequence of lin-
ear complexity 2p + 1.

Proof. We start by calculating c(S). Let

T = (E − 1)pS = (Ep − 1) = [t0t1 · · · tp2−1]
and by simple algebraic calculations, we have that for 0 ≤ i, j ≤ p − 1,

tjp+i =
{

j for i even

j + 1 for i odd.

For example, when p = 5, T = [0101012121232323434340404]. From this, it
is easy to see that (E − 1)2pS = (Ep − 1)(Ep − 1)S = [1p2] and hence by the
linear complexity algorithm, we have that c(S) = 2p + 1.

Next, we show that for all k, d ∈ Fp, the pair (k, k + d) appears as a pair of
consecutive elements in S, so that S is a span 2 de Bruijn sequence. We consider
a period of S as being built up from p blocks, the elements in the j th block
being sjp, sjp+1, . . . , sjp+p−1. It is easy to check from the definition of S that
if i is even, then the difference between sjp+i and sjp+i+1 is 1 + j , while if
i is odd, then the difference is 1 − j , where the arithmetic is done modulo p. It
follows that to find all pairs (k, k + d) in S, we need to show that the elements
s(d−1)p+i in block d − 1 with i even and the elements s(1−d)p+i in block 1 − d

with i odd together comprise Fp. From the definition of S, these elements are

i + 1

2
(d − 2)(d − 1) (mod p), i even

and

i + 1

2
(2 − d)(1 − d) (mod p), i odd.

These p elements have the desired property and so the theorem is proved.
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It is interesting to note that Construction 5.3 and the proof of Theorem 5.11
on the span of the sequences are still valid if p is any odd integer p > 1, so that
Construction 5.3 still produces p-ary span 2 de Bruijn sequences. However, of
course, the linear complexity is defined only when p is prime for this construc-
tion.

Problem 5.6. Define a measure for the linear complexity of de Bruijn sequences
over the ring Zm and perform a comprehensive analysis for this topic.

Construction 5.4. Let m ≥ 2 and let S be a span 2 de Bruijn sequence of
length p2m−2 over Fpm−1 . Let T be the following sequence of p2m−1 elements:

T � [
p2m−2 times︷ ︸︸ ︷
0,0, . . . ,0,

p2m−2 times︷ ︸︸ ︷
1,1, . . . ,1, . . . ,

p2m−2 times︷ ︸︸ ︷
p − 1,p − 1, . . . , p − 1],

consisting of p2m−2 copies of each element of Fp. Let A be the sequence of
length p2m−1:

A � [0,1, . . . , p − 1,0,1, . . . , p − 1, . . . ,0,1, . . . , p − 1],
consisting of p2m−2 copies of the sequence 0,1, . . . , p − 1. Furthermore, define

Q = [T ,T + A,T + 2A, . . . , T + (p − 1)A],
so that Q is a sequence over Fp with period p2m. Let R be the sequence of
period p2m over Fpm , where the elements of Fpm are represented by m-tuples
over Fp. The first m − 1 components of each m-tuple are the components of an
element of S and the last component of each m-tuple is the associated element
of Q. In other words, let S′ be a sequence of length p2m that consists of p2 con-
secutive copies of S. If S′ = [s′

1, s
′
2, . . . , s

′
p2m ] and Q = [q1, q2, . . . , qp2m], then

define

R � [(s′
1, q1), (s

′
2, q2), . . . , (s

′
p2m, qp2m)] .

�

Theorem 5.12. The sequence R constructed in Construction 5.4 is a span 2 de
Bruijn sequence over Fpm with linear complexity p2m−1 + 2, where m ≥ 2.

Proof. We begin by calculating the linear complexities of the component se-
quences of R. The first m − 1 components in an element from R come from
an element of S, a sequence of period p2m−2. Hence, these components (ignor-
ing the elements from Q) have linear complexity at most p2m−2 − 1. The last
component sequence of R is Q, and it is easy to see that (E − 1)p

2m−1
Q = [A],

a sequence of linear complexity 2. Hence, c(Q) = p2m−1 + 2 and by using
Lemma 5.19 we have that c(R) = p2m−1 + 2.
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Next, we show that R is a span 2 de Bruijn sequence. Let α and β be two
arbitrary elements of Fpm . We can write α = (α0, α1) and β = (β0, β1), where
α0, β0 ∈ Fpm−1 and α1, β1 ∈ Fp. We will show that α and β appear consecu-
tively as terms in the sequence R. First, since S is a span 2 de Bruijn sequence
over Fpm−1 , it follows that there exists a unique j with 0 ≤ j < p2m−2 such that
(s′

j+kp2m−2 , s
′
j+1+kp2m−2) = (α0, β0) for every k. Therefore we need only show

that for some k, we have (qj+kp2m−2 , qj+1+kp2m−2) = (α1, β1). This claim is a
simple consequence of the construction of Q from T and A.

5.5 Notes

The linear complexity of sequences is important in the design of stream ci-
phers. Some important research in this direction was reported in Menezes, van
Oorschot, and Vanstone [35] and Rueppel [39]. Computing the linear com-
plexity of a sequence, i.e., the length of the shortest linear shift register that
generates the sequence is performed by the well-known Berlkamp–Massey al-
gorithm [1,31]. This algorithm is better known as the algorithm for the decoding
of BCH codes that form an important family of error-correcting codes.

Section 5.1. The Games–Chan algorithm was presented first in [24]. The proof
that was given in this section was presented by Etzion, Kalouptsidis, Kolokotro-
nis, Limniotis, and Paterson [17]. Another algorithm to compute the linear
complexity of a binary sequence whose period is 2n was presented by Rob-
shaw [38]. While in the Games–Chan algorithm, the linear complexity of the
sequence is accumulated in steps, in the Robshaw algorithm the amount that has
to be subtracted from 2n to obtain the linear complexity is calculated.

Implementation of the Games–Chan algorithm requires N = 2n bit oper-
ations on the sequence S and another n bit operations reduced from integer
operations to compute the complexity c. In the following two decades, a few
algorithms were suggested to generalize this algorithm for binary sequences
with other periods and also for periodic sequences over Fq . The complexity of
these algorithms for sequences with period N was kept as low as βN for some
constant β, but relatively much higher than the N + logN bit operations re-
quired for The Games–Chan algorithm. The generalization for sequence with
period pn over Fpt was given by Ding [12]. Wei, Xiao, and Chen [43] and
Xiao, Wei, Lam, and Imamura [44] gave an algorithm to compute the linear
complexity of sequences with period N ∈ {pt ,2pt } over Fq , when q is a prim-
itive root modulo p2. Chen [9] gave an algorithm for sequences over Fpt with
period � · 2n, where 2n divides pt − 1 and g.c.d.(�,pt − 1) = 1. Chen [10] gen-
eralized this algorithm to determine the linear complexity of sequences with
period � · n over Fpt , where � divides pt − 1 and g.c.d.(n,pt − 1) = 1. The
main idea in Chen [10] is to reduce the calculation for the linear complexity of
a sequence with period � · n over Fpt to the calculation for the linear complex-
ity of � sequences with period n over Fpt . The algorithms in Chen [9,10], Wei,
Xiao, and Chen [43], and Xiao, Wei, Lam, and Imamura [44] are designed for
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sequences over a field of odd order. The ideas given by Chen [9,10] are gen-
eralized in Meidl [33] for binary sequences. In [33] Meidl presents the most
efficient algorithm for computing the linear complexities of binary sequences of
period � ·2n. To apply Meidl’s algorithm on a sequence S, one forms a family of
sequences of length 2n from S and applies the Games–Chan algorithm to each
of these sequences. Then, for specific values of �, Meidl showed that the algo-
rithm requires βN bit operation, where β is a small constant. The algorithm in
Meidl [33] is of interest for large N , a small odd integer � such that the smallest
k for which � divides 2k − 1 is not large. Chee, Chrisnata, Etzion, and Kiah [8]
also generalized the Games–Chan algorithm and applied it efficiently for several
families of binary sequences. Their algorithm is very simple and requires βN

bit operations for a small constant β, where N is the period of the sequence.
There are related concepts for linear complexity. These concepts were

mainly introduced as part of the importance of high linear complexity for cryp-
tographic applications. If a sequence has large linear complexity, and during
transmission a small number of changes to its terms greatly reduces its linear
complexity, then the resulting keystream is also cryptographically weak: knowl-
edge of the first few bits allows the efficient generation of a sequence that closely
approximates the original one. Hence, the linear complexity of a sequence S

should also remain high even if some of its terms are altered. This observation
led to the definition of the k-error linear complexity ck(S) given by Stamp and
Martin [41] that was first introduced by Ding [11,12] as sphere complexity. The
error linear complexity spectrum, defined by analogy to the linear complexity
spectrum, indicates how linear complexity decreases as the number k of bits al-
lowed to be modified increases. It is called the k-error linear complexity profile
in Stamp and Martin [41] by analogy with the linear complexity profile intro-
duced by Rueppel [39]. We note that Niederreiter in [36] has given an alternative
definition of the k-error linear complexity profile: it is defined there as a mea-
sure of how the linear complexity of S changes when considering an increasing
number of initial bits of S but a fixed number of errors. An efficient algorithm
to compute, for fixed k, the value of ck(S) for binary sequences with period 2n

was presented by Stamp and Martin [41]. Lauder and Paterson [30] general-
ized this algorithm to compute the entire error linear complexity spectrum of
such sequences. A formula relating the minimum number of bits that need to
be altered in a sequence S to reduce the linear complexity of a sequence S to a
given value c(S)− ε was given by Kurosawa, Sato, Sakata, and Kishimoto [29].
Sălăgean [40] presented an algorithmic method, based on the Lauder–Paterson
algorithm [30], which computes the minimum number of bits, as well as their
positions, that should be modified to reduce the linear complexity below any
given constant c. Furthermore, exact formulas for the counting function and the
expected value for the 1-error linear complexity of binary sequences that have
period 2n, as well as the corresponding bounds for the expected value for the
k-error linear complexity for k ≥ 2, were given by Meidl [32]. Generalization
of these results to sequences that have period pm over the finite field Fp, where
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p is prime, is presented by Meidl and Venkateswarlu [34]. The case of binary se-
quences that have period pn is studied by Han, Chung, and Yang [25], whereas
the 1-error linear complexity of binary sequences with period 2n −1 was treated
by Kolokotronis, Rizomiliotis, and Kalouptsidis [28]. Finally, Etzion, Kaloupt-
sidis, Kolokotronis, Limniotis, and Paterson [17] examined the points in which
the linear complexity of the sequence decreases and categorized the sequences
that have exactly two such distinct points in their spectrums. They analyzed the
related sequences and also sequences that have more than two such points.

Section 5.2. A comprehensive study on the complexity of de Bruijn sequences
was first carried out by Chan, Games, and Key [7]. They proved the lower and
upper bounds on the linear complexity of span n de Bruijn sequence. Based
on the Berlkamp–Massey algorithm to find the linear complexity of general
binary sequence [1,31] they found that when a zero is added to the run with
n− 1 zeros in a span n M-sequence, the outcome is a span n de Bruijn sequence
with maximum linear complexity 2n − 1. They also computed the complex-
ity distribution of de Bruijn sequences up to span 6, which are tabled in this
section, and based on the obtained data they offered Problem 5.2. Games [23]
considered the linear complexity of the sequence obtained by merging the two
sequences D−1

0 S and D−1
1 S, where S is a span n de Bruijn sequence. The nonex-

istence of span n de Bruijn sequences with linear complexity 2n−1 + n + 1 was
proved by Games [22]. The linear complexities of span n de Bruijn sequences
with linear complexity between 2n−1 + n and 2n−1 + 2n−2 were considered
by Etzion [13]. The construction of span n de Bruijn sequences with minimal
complexity 2n−1 + n was given in detail by Etzion and Lempel [19]. These se-
quences have importance not only in their theoretical value but they are also
used in constructions of a two-dimensional de Bruijn array by Etzion [15] that
will be discussed in Section 9.1 (see Theorem 9.2). The complexity of de Bruijn
sequences is also important in recursive constructions of such arrays presented
by Fan, Fan, Ma, and Siu [20] and analyzed by Paterson [37] (see Section 9.4).

All the span 6 de Bruijn sequences with minimal complexity 38 can be con-
structed via the construction using the sufficient condition of Theorem 5.3. For
span 7, 447,184 of the de Bruijn sequences with minimal complexity 71 have
the form S = [S1 S2], where c(S1 +S2) = 7 and (S1 +S2) = (00000011)8. They
can be constructed using the sufficient condition. However, there exist 56 span 7
de Bruijn sequences for which (S1 + S2) = (11111100)8 and they cannot be
constructed using the sufficient condition.

Problem 5.7. What are the possible sequences obtained by S1 + S2, where
[S1 S2] is a de Bruijn sequence of minimal complexity?

The construction of de Bruijn sequences with minimal complexity was gen-
eralized by Etzion [16] where the following theorem is proved.
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Theorem 5.13. For every n ≥ 4 there exists a de Bruijn sequence of order n

and linear complexity

2n−1 + n +
n−3∑

i=	logn
+1

αi2
i

for any selected αi ∈ {0,1}, 1 ≤ i ≤ 	logn
 + 1.

Problem 5.8. For n ≥ 7, are all the linear complexities between 2n−1 + n + 2
and 2n − 2 attainable by span n de Bruijn sequences?

It seems by the search results that for n ≥ 4, the number of span n de Bruijn
sequences with linear complexity c is divisible 4. A possible proof was to con-
sider each span n de Bruijn sequence S = [s1, s2, . . . , s2n ], its complement S̄,
and its reverse SR . The fourth sequence to be considered is the reverse of the
complement of S, i.e., S̄R . These four sequences have the same linear com-
plexity. If n is even or the complexity of S is even, then the four sequences
S, S̄, SR , and S̄R are distinct sequences and hence in these cases we have that
γ (c,n) ≡ 0 (mod 4) [18]. However, when n is odd and c is odd, S might be a CR
sequence, i.e., S = S̄R and hence S̄ = SR . Let δ(c, n) be the number of span n de
Bruijn CR sequences. The complexity distribution of these sequences for n = 7
that was computed by Etzion [14] is presented in the following table. Clearly,
δ(c, n) is not divisible by 4 for c = 99, 101, 105, 109, 117, 119, and 121. For all
these complexities we will have that γ (c,n) is not divisible by 4.

c δ(c,7) c δ(c,7) c δ(c,7)

71 448 91 1620 111 559216
73 8 93 2560 113 1102220
75 168 95 6424 115 2116456
77 24 97 7488 117 4210074
79 88 99 11802 119 8328830
81 40 101 20258 121 16875998
83 224 103 31144 123 33706580
85 326 105 72250 125 67480984
87 284 107 143238 127 131815424
89 844 109 285742

Section 5.3. As was mentioned before, the linear complexity of a sequence S

of length N over a finite field Fq can be determined with the well-known
Berlkamp–Massey algorithm, see Berlkamp [1] and Massey [31], in O(N2) sym-
bol field operations. This algorithm was implemented over the years in var-
ious ways, e.g., see Fitzpatrick [21] and Sugiyama, Kasahara, Hirasawa,
and Namekawa [42]. The complexity of this algorithm was improved to
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O(N(logN)2 log logN) and this can be read in the papers of Blackburn [2,3]
and the books of Blahut [5,6]. All these algorithms are considered acyclic se-
quences of any length over any finite field Fq . However, in many applications,
only periodic sequences are considered and hence the algorithm to find the linear
complexity of such sequences can be considerably improved. Another measure
that is similar to the linear complexity, called the depth of a sequence, will be
discussed in Section 6.4 when this concept will be used to classify words and
codes.

Section 5.4. A comprehensive study on the complexity of non-binary de Bruijn
sequences was carried out by Blackburn, Etzion, and Paterson [4]. They also
considered complexities of span 1 de Bruijn sequences over Fp, p prime. These
de Bruijn sequences are just permutations of the elements in Fp. Nevertheless,
they yield some interesting properties. They are associated with permutation
polynomials and these properties can be applied to obtain results on the linear
complexities of de Bruijn sequences with higher spans. The work of Blackburn,
Etzion, and Paterson [4] was largely devoted to the complexity of permutation
polynomials. Follow-up research on the permutation polynomial was performed
by Hines [26,27]. Blackburn, Etzion, and Paterson [4] obtained Theorem 5.9
using permutation polynomials. The lower bound of Theorem 5.9 was attained
for Fpm , where m ≥ 2, in Theorem 5.12 for n = 2. The lower bound was also
attained in other cases and the upper bound of Theorem 5.9 can be also attained.
These results and also the following theorem can be found in Blackburn, Etzion,
and Paterson [4].

Theorem 5.14. Let S be an M-sequences of length pmn − 1 over Fpm and
suppose that s0 = s1 = · · · = sn−2 = 0. Let T denote the span n de Bruijn
sequence attained by adding a zero into this run of n − 1 zeros. Then, T is a
span n de Bruijn sequence, where c(T ) = pmn − 1, unless p = 2, m = 1, and
n = 1, in which case c(T ) = 2.

Similarly to the binary case, we can consider now the set of all sequences
whose period is a power of a prime p. Let �(p,n) denote the subset of these
sequences whose linear complexity is n + 1, where n ≥ −1. This definition is a
generalization of the definition of �(n). There are many properties similar for
all primes, but there are also many essential differences.

Problem 5.9. Can the sets in the set {�(p,n)} be used to form span n de Bruijn
sequences over Fp as the sets in the set {�(n)} in the binary case?
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Chapter 6

Classification of sequences
Balanced sequences, the depth of a sequence

This chapter is devoted to several methods to classify sequences of the same
length, particularly binary sequences of the same length n and weight

⌈
n
2

⌉
.

These sequences are called balanced sequences. The families of de Bruijn se-
quences and M-sequences form the most important classes of sequences in
these classifications and they will deserve special consideration. The linear com-
plexity of a sequence defined and discussed in Chapter 5 can be a criterion
to distinguish between sequences of the same length over the same alphabet.
The importance of this classification will be demonstrated for example in the
rotating-table game presented in Section 7.4. However, of course, this is not the
only motivation to classify sequences. Classification of elements is a very natu-
ral requirement in many areas of our life. In this chapter, we will discuss several
methods to classify sequences and in particular binary sequences, sequences of
length 2n − 1 or 2n, balanced sequences, and de Bruijn sequences.

Section 6.1 is devoted to a hierarchy of inclusions of binary sequences of
length 2n − 1 with exactly 2n−1 ones. This hierarchy is presented by a lattice,
where A −→ B in the lattice implies that the set A contains the set B. At the top
of the hierarchy, we have all these sequences. At the bottom of this hierarchy,
we have the M-sequences of this length. Sequences satisfying property R-2 or
property R-3 (see Section 2.2) form two important classes of the hierarchy.

In Section 6.2 we will concentrate only on the classification of de Bruijn
sequences or shortened de Bruijn sequences. These classifications will be based
on the linear complexity of the shortened de Bruijn sequences or the weight of
the truth table of the de Bruijn sequences.

Section 6.3 is devoted to binary sequences of even length n in which exactly
half of the entries are ones. Two types of hierarchies will be presented in this
set of sequences. In the first hierarchy, all these sequences are contained at the
top of the hierarchy. If n = μ · 2�, where μ is an odd integer and � ≥ 1, then
at the bottom of the hierarchy we have all the sequences of length n in which
each �-tuple appears exactly μ times as a window of length � in the sequence.
When n is a power of two, de Bruijn sequences form the bottom of this hierar-
chy. The second hierarchy is based on the derivatives of the sequence, where in
the �th level of the hierarchy we have those sequences for which all their first
� derivatives are balanced.
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The classification in Section 6.4 is very similar to classification by the lin-
ear complexity for binary sequences and coincides with it for sequences whose
length is a power of 2. It will be interesting to note that this classification, called
the depth, in which the sequences are acyclic, can be also used to classify and
characterize linear codes.

6.1 Classification of sequences with length 2n − 1

Let U be the set of all binary sequences of period π = 2n − 1 that contains
2n−1 ones and 2n−1 − 1 zeros (property R-1). Let PN be the subset of U that
contains the M-sequences of length 2n − 1. Let R be the subset of U with the
“run property”, i.e., in each sequence, there are 2n−i−2 runs of exactly i ones
and 2n−i−2 runs of exactly i zeros, 1 ≤ i ≤ n− 2, one run of exactly n− 1 zeros
and one run of exactly n ones (property R-2).

Let S be the subset of R consisting of those sequences that have span n. In
other words, in these sequences each nonzero n-tuple appears exactly once in
a window of length n in the sequence, i.e., these are the shortened de Bruijn
sequences.

Let C be the subset of U consisting of the sequences that satisfy the auto-cor-
relation property (property R-3). Denote a sequence by A0 = (a0, a1, . . . , aπ−1),
and its kth cyclic shifts by Ak = (ak, ak+1, . . . , aπ−1, a0, . . . , ak−1), then
A0 ∈ C if and only if Ai + Aj ∈ U for all i �= j . The sequences in C are in
natural correspondence with Hadamard difference sets (see Section 2.4).

Let M be a subset of U consisting of those sequences that have 2 as a
“multiplier”. In other words, for some cyclic shift A′ = (a′

0, a
′
1, . . . , a

′
π−1) of

A = (a0, a1, . . . , aπ−1), we have a′
2i = a′

i for each i, 0 ≤ i ≤ π − 1, where all
the subscripts are taken modulo π . Since, by Theorem 2.17, 2 is a multiplier for
all the Hadamard difference sets we have that C ⊂ M .

The hierarchy of inclusions among these sets of sequences is shown in lattice
form and as a Venn diagram in Fig. 6.1. The intersection between the different
classes is investigated for the rest of this section.

FIGURE 6.1 A lattice of the hierarchy on the left and its Venn diagram on the right.

We would like first to consider whether R ∩ M contains sequences that are
not contained in S ∪C. Such sequences have the run property and the multiplier
by 2 property, but do not have the span n property and do not have the correlation
property. If π = 31, then by using a computer search it was found that there are
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eight sequences in R ∩ M as follows:

1111101110001010110100001100100
1110110011100001101010010001011
1110100010010101100001110011011
1001011001111100011011101010000
1000010101110110001111100110100
1001001100001011010100011101111
1111101010011100110001101010000
1000010101100011001110010101111

.

The first six sequences are the only M-sequences of order 5. The last two
sequences are neither in S nor in C. Specifically, the span of these sequences
is 9.

There are also sequences in S ∩M that are not contained in C. The first such
example is of period 127 and it is constructed in the following way for every odd
n for which there exists a primitive polynomial of the form xn + x + 1 (a poly-
nomial of the form xn + xk + 1 is called a trinomial). Let f (x) = xn + x + 1
be a primitive trinomial over F2, and let π = 2n − 1, where n > 4 is odd. Con-
sider the associated M-sequence, having the linear recurrence xn = xn−1 + x0.
If the sequence starts with n − 1 zeros followed by a one, then the following
n − 1 bits are ones. Hence, we can consider a cyclic shift of the M-sequence
as starting with the longest run of ones (n ones) and ending with the longest
run of zeros (n − 1 zeros). As an M-sequence, the sequence has the multiplier
property and the span n property. If we now complement all the terms of the
sequence except for the term at position 0, we preserve the multiplier property
and the span n property. However, the correlation property of the set C is no
longer maintained. Since the reverse of the sequence {bi} = {aπ−i} preserves
all the discussed properties, it follows that there are at least two examples of
sequences in S ∩ M that are not in C for each period π = 2n − 1 corresponding
to the existence of primitive trinomials f (x) = xn + x + 1, where n is odd.

Problem 6.1. Are there infinitely many primitive polynomials (primitive trino-
mials) of the form xn + xk + 1, and in particular infinitely many such polyno-
mials where n is odd, and the same question for odd n and k = 1?

Next, we ask whether R ∩ C = PN. A counterexample has been found with
n = 7, i.e., with period 127. The related sequence is

1111101111001111111001001011101010111100011000001001101110011000
110110111010010001101000010101001101001010001110110000101000000

.

Based on the examples that were given in this section we have a more del-
icate hierarchy than the one depicted in Fig. 6.1. This delicate hierarchy is
depicted in Fig. 6.2.
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FIGURE 6.2 A lattice of the updated hierarchy.

It should be clear that the sequences that were found in R ∩ M , in S ∩ M ,
and in R ∩ C, which are not M-sequences in PN, were not found for all peri-
ods 2n − 1, and hence we have the following problems.

Problem 6.2.

• Characterize all values of n for which R ∩M �= PN and find constructions for
sequences of length 2n − 1 in R ∩ M that are not M-sequences.

• Characterize all values of n for which S ∩M �= PN and find constructions for
sequences of length 2n − 1 in S ∩ M that are not M-sequences.

• Characterize all values of n for which R ∩ C �= PN and find constructions for
sequences of length 2n − 1 in R ∩ C that are not M-sequences.

Finally, up to n = 8, it was found by a computer search that all sequences in
S ∩C are M-sequences, which are all the sequences in PN. However, in general,
we have the following problem.

Problem 6.3. Does S ∩ C = PN?

6.2 Classification of de Bruijn sequences

In this section, we will concentrate only on de Bruijn sequences and shortened
de Bruijn sequences. We have already classified de Bruijn sequences by their lin-
ear complexity in Chapter 5. Other measures can classify de Bruijn sequences,
like the weight of their FSRn function or the maximum number of terms of a
product in their feedback function represented by a sum of products.

What is the linear complexity distribution of shortened de Bruijn sequences
that form the set S defined in the hierarchy of the previous section? Using a com-
puter search the complexity distribution of spans 4, 5, and 6, shortened de Bruijn
sequences can be found. There are two span 4 shortened de Bruijn sequences
with linear complexity 4 (the M-sequences), four with linear complexity 12, and
ten with linear complexity 14. For span 5, there are six M-sequences, ten short-
ened de Bruijn sequences with complexity 15, four with complexity 20, 306 with
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complexity 25, and 1722 with complexity 30. The distribution for span 6 short-
ened de Bruijn sequences is given in the following table:

complexity number of sequences complexity number of sequences
6 6 45 28702

27 10 47 86056
30 8 48 134290
32 12 50 401102
33 8 51 453734
35 62 53 1364978
36 152 54 1819148
38 478 56 5453680
39 1036 57 3190982
41 3572 59 9555084
42 6100 60 11148860
44 17240 62 33441564

We will try now to explain the attainable values for the linear complexities
of span n shortened de Bruijn sequences as were found by a computer search.
Since any sequence of period π is generated by the LFSRπ , where π = 2n − 1,
whose feedback function is xπ = x0, which is associated with the polynomial
f (x) = xπ − 1, i.e., the PCRπ , it follows that the minimal polynomial that gen-
erates the sequence is a factor of xπ −1. Since a shortened de Bruijn sequence S

has span n, it follows that its linear complexity is at least n. Note further that
since the weight of S is even, it follows that (Eπ−1 +Eπ−2 +· · ·+E+1)S is the
all-zeros sequence and hence its linear complexity is at most π − 1. Therefore
we have the following theorem.

Theorem 6.1. For n ≥ 4, the linear complexity L of a span n shortened de
Bruijn sequence satisfies

n ≤ L ≤ 2n − 2.

The number of irreducible polynomials of degree n over Fq , Iq(n), computed
in Lemma 3.18 is used in the attainable linear complexities of span n shortened
de Bruijn sequences.

Theorem 6.2. For n ≥ 4, a linear complexity L attained by span n shortened
de Bruijn sequences satisfies

L =
∑
d|n
d �=1

ad∈{0,1,...,I2(d)}

ad · d.
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Proof. A span n shortened de Bruijn sequence S has period π = 2n − 1, and
hence its minimal polynomial divides the polynomial f (x) = xπ − 1. By The-
orem 1.23, the irreducible factors of f (x) are all the irreducible polynomials
over F2 of degree d , where d divides n. Hence, the minimal polynomial that
generates S is formed from a multiplication of a subset of the irreducible poly-
nomials that divides f (x), except for x + 1 (since its associated sequence [1]
will complement all the entries of the sequence and will make it an odd-weight
sequence). Therefore the sum of the degrees of each such subset of irreducible
polynomials can be the linear complexity of a shortened de Bruijn sequence.
Thus the claim of the theorem follows.

Corollary 6.1. For n ≥ 4, the linear complexity L attained by a span n short-
ened de Bruijn sequence, where n is a prime, satisfies L ≡ 0 (mod n).

Proof. This is an immediate consequence from Theorem 6.2 since the only di-
visor of n different from 1 is n.

Not all the linear complexities that are allowed by Theorem 6.2 occur, i.e.,
Theorem 6.2 is a necessary condition, but not a sufficient condition on the attain-
able linear complexities of shortened de Bruijn sequences. This is immediately
observed from the computer search that was detailed. For example, for span 6
shortened de Bruijn sequences, all the values that are allowed by Theorems 6.1
and 6.2 starting from linear complexity 27, except for linear complexity 28, are
attained. We expect a similar phenomenon for higher spans.

Problem 6.4. Analyze the attainable values for the linear complexities of short-
ened de Bruijn sequences and improve on the bounds of Theorems 6.1 and 6.2.

Problem 6.5. Prove (or disprove) that for n > 3, the linear complexity of most
shortened span n de Bruijn sequences is greater than 2n−1.

We turn now to consider the classification of de Bruijn sequences by the
weights of their truth table. The two span 3 de Bruijn sequences have weight
function 3. Twelve of the span 4 de Bruijn sequences have weight function 5
and four have weight function 7. For span 5, 576 sequences have weight func-
tion 7, 960 sequences have weight function 9, 448 have weight function 11,
and 64 sequences have weight function 13. A table for the span 6 de Bruijn
sequences is given below:

weight number of sequences weight number of sequences
13 2211840 21 9912320
15 11059200 23 2637824
17 21086208 25 344064
19 19841024 27 16384

It should be noted that the number of sequences with minimum weight function
and with maximum weight function, which are generated by merging the PCRn
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cycles and the CCRn cycles, respectively, are relatively small compared to the
sequences with the other weight functions.

Some preliminary analysis of the weight functions of de Bruijn sequences
will be provided now. For the next theorem, we will generalize the definition
of the reversed function that was presented for linear FSRs in Section 2.1. The
reversed function f R(x1, x2, . . . , xn) of a feedback function

f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn)

is the function defined by

f R(x1, x2, . . . , xn) � x1 + g(xn, . . . , x2).

Theorem 2.6 is generalized in the next theorem, whose proof is identical to
that of Theorem 2.6.

Theorem 6.3. The sequences generated by the reversed function f R(x1, . . . , xn)

of a feedback function f (x1, x2, . . . , xn) are the reverse sequences of those gen-
erated by the feedback function f .

Theorem 6.4. A de Bruijn sequence and its reverse sequence belong to the same
weight class.

Proof. Assume that S is a span n de Bruijn sequence with feedback function f

and weight function w. Let f R be the feedback function of the reverse se-
quence SR . We have to consider two cases.

1. If f (0, x2, . . . , xn) = 0, then f R(0, xn, . . . , x2) = 0.
2. If f (0, x2, . . . , xn) =1, then f (1, x2, . . . , xn) = 0, i.e., f R(0, xn, . . . , x2) =1.

These two cases imply that the weight function of f R is also w.

Theorem 6.5. A de Bruijn sequence and its complement sequence belong to the
same weight class.

Proof. Assume S is a span n de Bruijn sequence with a feedback func-
tion f and weight function w, in other words, the top half of the truth table
has weight w and the bottom half has weight 2n−1 − w. We also have that
f (x1, x2, · · · , xn) = b if and only if f (x̄1, x2, · · · , xn) = b̄. For the function
f̄ of the complement sequence S̄ we have that if f (x1, x2, · · · , xn) = b, then
f̄ (x̄1, x̄2, · · · , x̄n) = b̄. This implies that the weight of the bottom half of the
truth table for f̄ is the same as the weight of the bottom half of the truth table
for f . Thus the weight function of f̄ is w.

We already mentioned in Section 5.5 that for odd n there exist de Bruijn
sequences whose reverses equal their complement (CR sequences) and hence
we can only say that the number of sequences in each weight class is divisible
by 2. When n is even, CR sequences cannot exist and hence the number of
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sequences in each class is divisible by four when n is even. Nevertheless, the
experimental results show that the divisibility is by a much higher power of 2
and it is intriguing to find an explanation for this phenomenon that does not
happen in the distribution of linear complexities where similar sequences were
examined (see Section 5.5).

6.3 Classification of balanced sequences

In Section 6.1, the discussion was on sequences of length 2n − 1 that have
2n−1 ones and 2n−1 − 1 zeros, where at the top of the hierarchy we had all the( 2n−1

2n−1−1

)
such sequences and at the bottom of the hierarchy we have the φ(2n−1)

n

M-sequences. In this section, we consider sequences of even length with half
ones and half zeros. If the length of the sequences is 2n, then the

( 2n

2n−1

)
such

sequences are at the top of the hierarchy and the 22n−1−n span n de Bruijn se-
quences will be at the bottom of the hierarchy. If the length of the sequences is
μ · 2�, where μ is an odd integer and � ≥ 1, then at the top of the hierarchy, we

have all the
( μ·2�

μ·2�−1

)
such sequences and at the bottom of the hierarchy will be

all the sequences in which each �-tuple appears exactly μ times in a window of
length �. This type of sequence forms a natural generalization to the de Bruijn
sequences.

We start by considering algorithms to generate the set of
(2n

n

)
binary se-

quences of length 2n and weight n. There is a simple encoding algorithm to
order this set of sequences. Given a sequence S = (s1, s2, . . . , s2n), the next se-
quence T = (t1, t2, . . . , t2n) is computed as follows:

(E1) Find the largest �, 1 ≤ � ≤ 2n − 1, such that s� = 0 and s�+1 = 1; if no
such � exists, then S is the last sequence.

(E2) Set ti := si for 1 ≤ i ≤ � − 1; set t� := 1; for the rest of the sequence
t�+1 · · · tn set the entries such that the total weight of the sequence is n

and all the ones are consecutive at the end of the sequence.

The words of length 2n and weight n are generated with this algorithm in
lexicographic order. The method used for this lexicographic order is called enu-
merative coding. This generation of all the binary sequences of length 2n and
weight n is very efficient in obtaining the next sequence from the current one.
This procedure is used to order all the

(2n
n

)
balanced words of length 2n, but it

can be also used to order the set of words of length n and any given weight w,
1 ≤ w ≤ n. We can also find the ith sequence in this ordering and also compute
the place of each sequence in this ordering. These procedures are also called
combinatorial index systems. However, the procedures to find the ith sequence
or to find the place of a sequence in this ordering are not efficient enough.

The following algorithm, known as Knuth’s algorithm, generates balanced
words (not all of them) more efficiently and can be used to generate the kth
sequence in the list or to find the position of a given word.
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Knuth’s algorithm:

Given an arbitrary binary sequence S = (s1s2 · · · s2n) of length 2n.

(K1) If the sequence S is balanced, then set S1 to be S and go to (K3).
(K2) Starting from i = 1 flip the values of the bits from si to s̄i until the se-

quence is balanced. Let S1 be the generated sequence.
(K3) Let k be the last index for which sk was flipped, where k = 0 if no bit

was flipped. Encode k into a balanced sequence S2, such that each k is
encoded into a different balanced sequence S2 of even length n′ ≈ logn.

(K4) The output is the sequence S1S2. �

Theorem 6.6. Knuth’s algorithm generates a balanced sequence of length
2n + n′.

Proof. It is easily verified that to prove the claim of the theorem it is sufficient
to show that if S is not a balanced sequence, then there exists a k such that the
sequence s̄1, s̄2, . . . , s̄k, sk+1, sk+2, . . . , s2n is a balanced sequence.

Let N1(S) denote the number of ones in S and N0(S) denote the number of
zeros in S. If S is not balanced, then either N0(S) > N1(S) or N1(S) > N0(S).

Assume w.l.o.g. that N1(S) < n, i.e., N0(S) > N1(S). Hence, for the com-
plement sequence S̄, N1(S̄) = N0(S) > N1(S) = N0(S̄). Flipping all the bits
changes the number of ones from N1(S) in S to 2n − N1(S) = N0(S) = N1(S̄).
Each flip of a bit either increases the number of ones by one (and decreases the
number of zeros by one) or decreases the number of ones by one (and increases
the number of zeros by one). Since the process starts when N1(S) < n and ends
when N1(S̄) > n, it follows that there exists a certain point, say k, when sk is
flipped and the sequence

s̄1, s̄2, . . . , s̄k, sk+1, sk+2, . . . , s2n

is balanced.

Theorem 6.7. Two different sequences S and S′ of length 2n are mapped by
Knuth’s algorithm to two different sequences of length 2n + n′.

Proof. If the last bit that is flipped by the algorithm is in a different entry, then
by (K3) we have that S and S′ are mapped into different sequences.

If the last bit that is mapped in both S and S′ is k, then clearly the sequences
obtained from S and S′ in (K2) are different and hence S and S′ are mapped into
different sequences.

Corollary 6.2. Knuth’s algorithm induces a one-to-one mapping from F
2n
2 into

a subset of F2n+n′
2 whose size is 22n.

Definition 6.1. A binary cyclic sequence S of length n = μ ·2� is an (�,μ)-BdB
(for balanced de Bruijn) sequence, if each binary �-tuple is contained exactly
μ times as a window of length � in the sequence.
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An (�,1)-BdB sequence is a span � de Bruijn sequence and the set of all
balanced sequences of even length n is the set of (1, n/2)-BdB sequences. Let
B(�,μ) be the set of all inequivalent (�,μ)-BdB sequences.

Lemma 6.1. A sequence S of length n is a (2, n
4 )-BdB sequence if and only if S

is balanced and its derivative DS is balanced.

Proof. Assume first that S ∈ B(2, n
4 ). Since each 2-tuple is contained n

4 times
in S, it follows that S is balanced. Derivating each 2-tuple of S yields n

2 occur-
rences of zeros and n

2 occurrences of ones in DS. Hence, DS is balanced.
Assume now that both S and DS are balanced. Let xij be the number of

pairs (i, j) in S, where i, j ∈ {0,1}. Clearly, after an appearance of a pair (0,1)

in S, a pair (1,0) appears in S before the next appearance of another pair (0,1)

in S. Hence, we have

x01 = x10 (6.1)

for any cyclic sequence. Since DS is balanced, it follows by counting the number
of ones in DS and the number of zeros in DS that we have

x00 + x11 = x01 + x10. (6.2)

Since S is balanced, it follows by counting the number of ones in S and the
number of zeros in S that we have

2x00 + x01 + x10 = 2x11 + x01 + x10. (6.3)

Note that each zero and each one is counted twice in (6.3). Solving the three
equalities in Eqs. (6.1), (6.2), and (6.3), implies that

x00 = x11 = x01 = x10.

Let β(�,μ) be the set of all (�,μ)-BdB words, i.e., the distinct words of
length μ · 2� contained in the cyclic sequences of B(�,μ)

Example 6.1. For � = 3 and μ = 2, the following three words are contained
in β(3,2):

(0001110100011101)

(0000100111101101)

(0010011110110100)

.

However, these three words are associated with only two sequences of B(3,2),

[0001110100011101]
[0000100111101101]

since the third word is a cyclic shift of the second word. �
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It should be noted that in contrast to de Bruijn sequences, i.e., (�,1)-BdB
sequences and (�,1)-BdB words where the difference in their number is a factor
of 2� (the number of different cyclic shifts), the difference when μ > 1 is slightly
more difficult to compute. The number of sequences in B(�,μ), i.e., (�,μ)-BdB
sequences and the number of words in β(�,μ), i.e., (�,μ)-BdB words, can be
found using a graph in a similar way to the computation of the number of de
Bruijn sequences from the de Bruijn graph.

A generalized de Bruijn graph ��,μ is a directed graph with 2�−1 vertices,
which are the same vertices as in G�−1 and μ · 2� edges, where each edge
of G�−1 is duplicated μ times to form μ parallel edges in ��,μ. In ��,μ a Hamil-
tonian cycle is a span �−1 de Bruijn sequence the same as in G�−1, but Eulerian
cycles in ��,μ are different from those in G�−1. The enumeration of the words
in β(�,μ) and the sequences in B(�,μ) will be done using the reverse spanning
tree algorithm to form Eulerian cycles in ��,μ. Although the algorithm is not
deterministic we can count the number of distinct words formed by the algo-
rithm based on the distinct choices it has to perform. The reverse spanning tree
algorithm, to generate sequences in B(�,μ), is similar to the one introduced in
Section 4.1, to find the number of Eulerian cycles in a graph. The algorithm is
written the same as the one written in Section 4.1 with two exceptions. Let r be
the all-zeros vertex. The edge r → r is not marked when the algorithm starts.
If μ > 1, then the algorithm usually has many choices to choose which edge to
traverse next, while previously the choice was deterministic throughout its exe-
cution. The algorithm is a very important tool in this section and hence it will be
presented again. Moreover, some of the associated proofs given in Section 4.1
should be slightly modified.

The reverse spanning tree algorithm:

Let T be a reverse spanning tree in ��,μ rooted at the vertex r = (0�−1).
Each edge of T is starred in ��,μ. All the edges of ��,μ are set to be unmarked.
Set the current vertex v to be r .

(T1) If the only unmarked out-edge of v is the starred edge v → u1, then set
the current vertex v := u1, and mark the edge v → u1; otherwise, mark
an edge, either v → u1 (if one of the associated μ − 1 un-starred edges
is unmarked) or v → u2 (if one of these μ edges is unmarked) and set
v := u1 or v := u2, respectively.

(T2) If there are unmarked out-edges of v, then go to (T1); otherwise stop.

The output sequence is generated by considering the first bit of the consecutive
edges on the generated path. �

Example 6.2. The graph �3,2 is depicted in Fig. 6.3, where the starred edges
correspond to the reverse spanning tree T with the set of edges.

{ 010, 110, 100 }
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FIGURE 6.3 The graph �3,2.

One of the paths generated by the reverse spanning tree algorithm when
invoked with T is

00
000−→ 00

000−→ 00
001−→ 01

010−→ 10
100−→ 00

001−→ 01
011−→ 11

111−→ 11

111−→ 11
110−→ 10

101−→ 01
011−→ 11

110∗−→ 10
101−→ 01

010∗−→ 10
100∗−→ 00,

which corresponds to the (3,2)-BdB word (0000100111101101). �

We will prove the basic features of the algorithms as was proved in Sec-
tion 4.1. The proof of the first lemma is identical to the proof of Lemma 4.2.

Lemma 6.2. The path generated by the reverse spanning tree algorithm ends
at the root r and all the in-edges and out-edges of r are traversed.

The next lemma is the analog of Lemma 4.3 and its proof is essentially the
same.

Lemma 6.3. When the reverse spanning tree algorithm terminates, all the edges
of the graph are traversed, i.e., all the edges of ��,μ are marked.

It follows from Lemma 6.3 that each reverse spanning tree T corresponds to
some sequences of length μ · 2� in which each �-tuple appears exactly μ times,
i.e., an (�,μ)-BdB word. Since the chosen root is r = (0�−1), it follows that
each such sequence starts with � − 1 consecutive zeros.

Lemma 6.4. Each sequence of β(�,μ) that starts with � − 1 consecutive zeros
is obtained by an algorithm from exactly one reverse spanning tree.

Proof. Let S ∈ β(�,μ) be a sequence that starts with �−1 zeros, and observe the
cycle in ��,μ that is associated with S. For each vertex v �= r , its last appearance
on the sequence S as an (� − 1)-tuple, is associated with an edge v → u in the
graph ��,μ. Let E′ denote the set of these edges; we will prove next that E′
stands for a reverse spanning tree of ��,μ. Let v1, . . . , v2�−1−1 denote the start
points of these edges, which do no not include the root r , ordered by the position
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of their last appearance in S, and denote v2�−1 = r . It follows from the definition
of E′, the ordering of the vertices, and from the fact that the path associated
with S ends at the root r (since it starts with � − 1 zeros), that E′ contains only
edges of the form vi → vj , where i < j , which implies that E′ contains no
cycle. Thus given any vertex vi , we can construct a unique path vi → vj1 →
vj2 → ·· · → vjm−1 → vjm , where i < j1 < j2 < · · · < jm−1 < jm, by iteratively
traversing the single outgoing edge of each vertex. Since E′ contains no cycles,
this path must end at the root r .

Thus S can be obtained by the algorithm using the reverse spanning tree
whose set of edges is E′. This tree is uniquely defined by the sequence and
therefore S is obtained exactly once by the algorithm.

Lemma 6.5. Each reverse spanning tree induces 2
(2μ−1

μ−1

)2�−1

distinct sequences
of β(�,μ) that are generated by the algorithm.

Proof. At each vertex v �= 0�−1 there are two types of out-edges v → u1 and
v → u2, μ un-starred edges of one type and μ−1 un-starred edges of the second
type. These 2μ−1 edges are chosen arbitrarily on the first 2μ−1 times in which
v is visited, for

(2μ−1
μ−1

)
distinct choices. Similarly, at the vertex 0�−1 there are(2μ

μ

) = 2
(2μ−1

μ−1

)
distinct choices. There are a total of 2�−1 distinct vertices in

��,μ and the claim of the lemma follows.

Corollary 6.3. The total number of distinct (�,μ)-BdB words generated by the
algorithm is

22�−1−�+1
(

2μ − 1

μ − 1

)2�−1

.

Proof. This follows from Lemma 6.5 and the fact that by Corollary 4.4 there
are 22�−1−� reverse spanning trees in ��,μ.

Theorem 6.8. For each positive integers � > 1 and μ > 0 we have

|β(�,μ)| = 22�−1
(

2μ − 1

μ − 1

)2�−1

.

Proof. Let S ∈ β(�,μ) be a word that starts with � − 1 zeros and consider the
period of S.

Since the length of S is μ2� and each �-tuple appears μ times in S, it follows
by Corollary 3.1 that the period of S is λ2�, where λ divides μ. This implies
that the sequence S (when considered as a sequence of length λ2�) is associated
with exactly 2λ positions with �−1 zeros. Hence, there are exactly 2λ shifts of S

that yield distinct sequences in β(�,μ), each one starting with � − 1 zeros but
in another point of the prefix of length λ2� of S. These 2λ distinct sequences,
generated by the algorithm, are associated with exactly λ2� distinct words of
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β(�,μ). Since, by Corollary 6.3, the algorithm generates 22�−1−�+1
(2μ−1

μ−1

)2�−1

sequences starting with � − 1 zeros, it follows that their number in β(�,μ)

(compared to the number of distinct (�,μ)-BdB sequences generated by the

algorithm as was computed in Corollary 6.3) is multiplied by λ2�

2λ
= 2�−1. Thus

|β(�,μ)| = 22�−1
(

2μ − 1

μ − 1

)2�−1

.

Theorem 6.9. For each positive integers � > 1 and μ > 0 we have

|B(�,μ)| = 22�−1−�

μ

μ∑
i=1

λ=g.c.d.(μ,i)

(
2λ − 1

λ − 1

)2�−1

.

Proof. The number of words in β(�,μ) was computed in Theorem 6.8. Burn-

side’s lemma (see Theorem 1.2) is applied on these 22�−1(2μ−1
μ−1

)2�−1

sequences

of β(�,μ), where the group G consists of the μ2� cyclic permutations on the
sequences of β(�,μ). Sequences can be left “fixed” only by shifts that are mul-
tiples of 2�. The period of a sequence is λ2�, where λ is a divisor of μ. Hence,
by Theorem 6.8 and Theorem 1.2 we have that

|B(�,μ)| = 1

μ2�

μ∑
i=1

λ=g.c.d.(μ,i)

|β(�,λ)| = 1

μ2�

μ∑
i=1

λ=g.c.d.(μ,i)

22�−1
(

2λ − 1

λ − 1

)2�−1

,

which implies the claim of the theorem.

Let P(�,μ) be the set of (�,μ)-BdB sequences whose period is ex-
actly μ · 2�.

Theorem 6.10. For each positive integers � > 1 and μ > 0 we have

|P(�,μ)| = 1

μ · 2�

∑
d|μ

μ(d) · 22�−1
( 2μ

d
− 1

μ
d

− 1

)2�−1

.

Proof. The size of β(�,μ), |β(�,μ)|, can be computed in two different ways.
By Theorem 6.8 we have that

|β(�,μ)| = 22�−1
(

2μ − 1

μ − 1

)2�−1

.

When λ divides μ, a sequence whose least period is λ2� can be extended to
length μ2� and least period λ2�. Such a sequence contributes with its cyclic
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shifts λ2� sequences to β(�,μ). Hence, we have

|β(�,μ)| =
∑
λ|μ

λ2� |P(�, λ)| .

Now, let g(μ) = 22�−1(2μ−1
μ−1

)2�−1

and let f (μ) = μ2� |P(�,μ)|. By the Möbius
inversion formula (see Theorem 1.10) we have

μ2� |P(�,μ)| =
∑
d|μ

μ(d) · 22�−1
( 2μ

d
− 1

μ
d

− 1

)2�−1

,

which proves the claim of the theorem.

Example 6.3. Let � = 2 and μ = 2. There are five (2,2)-BdB sequences as
follows:

[00011101]
[00011011]
[00010111]
[00100111]
[00110011]

and hence |B(2,2)| = 5. The first four sequence are in P(2,2) and hence
|P(2,2)| = 4. The eight shifts of these four sequences are distinct, while
only four shifts of the last sequence are distinct since its period is 4. Thus
|β(2,2)| = 4 · 8 + 4 = 36. �

We have generated now a hierarchy between all the binary sequences of
even length whose weight is half of their length. This hierarchy is based on the
number of appearances of each window in the sequence. For n = μ · 2�, where
� is odd we have that

B(�,μ) ⊂ B(� − 1,2μ) ⊂ B(� − 2,4μ) ⊂ · · · ⊂ B(2,2�−2μ) ⊂ B(1,2�−1μ)

and the classification by this hierarchy is based on the containment between
these sets.

Next, we present another classification for balanced sequences that is based
on derivatives of balanced sequences.

The ith derivative of S, S(i), is the derivative of S(i−1) for 1 ≤ i ≤ k − 1,
where S(0) = S.

A sequence S is called k-order balanced for k ≥ 0, if S(i) is a balanced
sequences for each 1 ≤ i ≤ k − 1.

Lemma 6.6. If S is an (�,μ)-BdB sequence, then S is �-order balanced.
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Proof. For every two positive integers �′ and μ′ we have that an (�′,μ′)-BdB
sequence is a balanced sequence. As in the proof of Theorem 5.2, it is easy
to verify that the derivative of an (�,μ)-BdB sequence is an (� − 1,2μ)-BdB
sequence. Thus S is an �-order balanced sequence.

We can define a hierarchy for balanced sequences of even length that is
based on its balanced order. Clearly, by definition, if a sequence is k-order
balanced for some k > 0, then it is also r-order balanced for each 0 ≤ r < k.
By Lemma 6.1 the two hierarchies coincide for balanced sequences and also
coincide for 2-order balanced sequences that by Lemma 6.1 are (2, n

4 )-BdB se-
quences. Lemma 6.6 implies that an (�,μ)-BdB sequence is also an �-order
balanced sequence. Is the other direction also true? In other words, given an �-
order balanced sequence S is it also an (�,μ)-BdB sequence? The answer is no
for many sequences, as can be observed from the following example.

Example 6.4. Let � = 3 and μ = 3, which implies that n = 24. The sequence

S = [000101111101001110010010]
is a balanced sequence. Similarly

DS = [001110000111010010110110]
and

D2S = [010010001001110111011010]
are balanced sequences. Therefore S is a 3-order balanced sequence. However,
the 3-tuple 111 appears four times as a window of S, and hence S is not a (3,3)-
BdB sequence. �

6.4 The depth of a word

The linear complexity of a sequence, which was defined and discussed in Sec-
tion 5.1, was defined only for cyclic sequences, but the definition can be easily
adapted for acyclic sequences (which will be referred to as words). For a word
of length n, the recursion should be defined in a way that given the first k sym-
bols as the initial state of length k, all the other n− k bits can be computed, each
one by the same linear function from the previous k bits. It should be noted that
not always can such a linear function be found (for example when the word is
(0n−11) ). When there is no such linear function, the linear complexity will be
defined to be n. However, we can adopt another concept to replace the linear
complexity in the case of words. This concept that will be called the depth will
use the operator D. For binary words whose length is a power of 2, it coincides
with the linear complexity. Some of the results that follow can be compared with
results on the linear complexity, where the proofs are very similar, but there are
some differences between the corresponding results. Moreover, we will also use
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this measure to classify words and also for the characterization of linear codes,
as will be demonstrated in this section. In the following, we will use the letter c

for a word as these words will be considered as codewords later in this section.
We start to consider words and codes over Fq and after that, we will consider
only binary words and codes.

Definition 6.2. The depth of a word c of length n, over Fq , depth(c), is the
smallest integer i such that Dic = (0n−i ), where Dic = D(Di−1c) for i > 1. If
no such i exists, then the depth of c is defined to be n.

As an immediate consequence of the definitions, we have the following
lemma that can be compared with Corollary 5.2, and Lemmas 5.4 and 5.19.

Lemma 6.7. The depth of a word c of length n is i, n > i, if and only if
Di−1c = (αn−i+1), for some α ∈ F

∗
q . The depth of a word of length n is at most n.

Proof. If x = (x1x2 · · ·xk) is a nonzero word in F
n
q and Dx = (0k−1), then

Dx = (x2 − x1, x3 − x2, . . . , xk − xk−1) = (0k−1), which implies that xi = xi+1
for 1 ≤ i ≤ k − 1, i.e., xi = α, 1 ≤ i ≤ k, for some nonzero α ∈ Fq . On the other
hand, if x = (αk), then Dx = (0k−1). This implies that the depth of a word c of
length n is i, n > i, if and only if Di−1c = (αn−i+1) for some α ∈ F

∗
q .

Hence, if for some j and � ≥ 1, Dj c = (0�), then the depth of c is less than n.
If no such j and � exist, then by Definition 6.2 the depth of c is n. Thus the depth
of a word of length n is at most n.

The next lemma is the analog of the second part in Lemma 5.5.

Lemma 6.8. If c1 is a word of length n and depth i, and c2 is a word of length n

and depth j , j < i, then c = c1 + c2 is a word with depth i.

Proof. Since c1 is of depth i, it follows by Lemma 6.7 that Di−1c1 = (αn−i+1)

for some nonzero α ∈ Fq . Since c2 is of depth j , j < i, it follows by Defini-
tion 6.2 that Di−1c2 = (0n−i+1). Thus Di−1(c1 + c2) = (αn−i+1), and hence by
Lemma 6.7 we have that c = c1 + c2 has depth i.

Lemma 6.9. If c is a word of length n over Fq and α is a nonzero element of Fq ,
then αc and c have the same depth.

Proof. This is an immediate observation from the fact that by Definition 6.2 we
have that D(αc) = αDc.

The immediate consequence of Lemmas 6.8 and 6.9 is the following corol-
lary.

Corollary 6.4. If c1, c2, . . . , ck are nonzero words of length n and distinct
depths then c1, c2, . . . , ck are linearly independent.



206 Sequences and the de Bruijn Graph

Proof. Assume, on the contrary, that a subset of r words of length n and dif-
ferent depths from {c1, c2, . . . , ck} are linearly dependent. W.l.o.g. assume that
cr = ∑r−1

i=1 aici , where ai ∈ F
∗
q , 1 ≤ i ≤ r − 1, and

depth(c1) < depth(c2) < · · · < depth(cr−1) < depth(cr ),

for some 3 ≤ r ≤ k.
By Lemmas 6.8 and 6.9, we have that depth(a1c1 + a2c2) = depth(c2).

Hence, depth(a1c1 + a2c2) < depth(c3), which implies by Lemmas 6.8 and 6.9
that depth(a1c1 + a2c2 + a3c3) = depth(c3). Therefore when we continue by
induction and have that

depth(cr ) = depth

(
r−1∑
i=1

aici

)
= depth(cr−1),

a contradiction. Thus c1, c2, . . . , ck are linearly independent.

It is easily verified that the converse of Corollary 6.4 is not correct. For
example, any two nonzero words c and c̄ are linearly independent but have the
same depth.

Lemma 6.10. Let c1 and c2 be two words of length n and depth i over Fq . If
α is a primitive element in Fq , then there exists an integer j , 0 ≤ j ≤ q − 2,
such that c1 + αjc2 is of depth m, m < i (note that in this lemma and its proof
only the superscripts for α are powers of the element in the field, while other
superscripts refer to the multiplicity of a symbol in a string).

Proof. By Lemma 6.7 we have that Di−1c1 = (βn−i+1
1 ) for some nonzero

β1 ∈ Fq and Di−1c2 = (βn−i+1
2 ) for some nonzero β2 ∈ Fq . Let j1 and j2 be

two integers such that 0 ≤ j1, j2 ≤ q − 2, β1 = αj1 , and −β2 = αj2 . Let j3 be an
integer such that 0 ≤ j3 ≤ q − 2 and j1 ≡ j2 + j3 (mod q − 1), which implies
that αj2αj3 = αj1 = β1. Since αj3αj2 = αj1 , it follows that

Di−1(c1 + αj3c2) = Di−1c1 + Di−1(αj3c2) = (βn−i+1
1 ) + αj3(βn−i+1

2 )

= (βn−i+1
1 ) − ((αj3αj2)n−i+1) = (βn−i+1

1 ) − (βn−i+1
1 ) = (0n−i+1)

and hence c1 + αj3c2 has depth less than i.

Definition 6.3. Given a code (a set of words) C of length n, let Di be the number
of codewords in C of depth i. The integers D0,D1, . . . ,Dn are called the depth
distribution of C.

Theorem 6.11. The depth distribution of the nonzero codewords of an [n, k]q
code consists of exactly k nonzero values.
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Proof. By Corollary 6.4, the depth distribution of the nonzero codewords of an
[n, k]q code consists of at most k nonzero values. Assume, on the contrary, that
the depth distribution of the nonzero codewords of an [n, k]q code C consists
of m, m < k nonzero values. Let C1 be the subcode of C that consists of the
qm − 1 nontrivial linear combinations of m nonzero codewords c1, c2, . . . , cm,
where

depth(cm) > depth(cm−1) > · · · > depth(c2) > depth(c1).

Let c be a nonzero codeword in C \ C1 with the smallest depth. W.l.o.g.
assume that depth(c) = depth(ci), for some 1 ≤ i ≤ m. If α is a primi-
tive element in Fq , then clearly, αjci + c is a codeword in C \ C1 for all
0 ≤ j ≤ q − 2. By Lemma 6.10 there exists an integer r , 0 ≤ r ≤ q − 2, such
that depth(αrci + c) < depth(c), a contradiction to the assumption that c is a
codeword with the smallest depth in C \ C1. Thus the depth distribution of the
nonzero codewords of C consists of exactly k nonzero values.

Corollary 6.5. Let c1, c2, . . . , ck be nonzero codewords with distinct depths in
an [n, k]q code, where

depth(ck) > depth(ck−1) > · · · > depth(c2) > depth(c1).

If ij = depth(cj ), where 1 ≤ j ≤ k, then Dim = qm − qm−1 for 1 ≤ m ≤ k.

Some immediate consequences from Theorem 6.11 and Corollary 6.4 are the
following results.

Corollary 6.6. Any k codewords of an [n, k]q code with distinct nonzero depths
can form a generator matrix of the code.

We will concentrate now more on the binary case, although most of the re-
sults can be extended to Fq . The following lemma can be readily verified, but
its strength is beyond its simplicity.

Lemma 6.11. If x = (x1, x2, . . . , xn) is a binary word whose depth is δ, then the
depth of the word (x1, x2, . . . , xn, b), b ∈ {0,1} is either δ or n+ 1. The depth of
(x1, x2, . . . , xn, b) is δ if and only if the depth of (x1, x2, . . . , xn, b̄) is n + 1.

Proof. If the depth of x = (x1, x2, . . . , xn) is δ, then Dδ−1x = (1n−δ+1). This
implies that for some b ∈ {0,1} we have Dδ−1(xb) = (1n−δ+2) and Dδ−1(xb̄) =
(1n−δ+10). Therefore Dδ(xb) = (0n−δ+1), i.e., the depth of (x1, x2, . . . , xn, b)

is δ. On the other hand, it implies that Dn(xb̄) = (1), i.e., the depth of
(x1, x2, . . . , xn, b̄) is n + 1.

Similarly to Lemma 6.11 we have the related result for Fq .

Lemma 6.12. If x = (x1, x2, . . . , xn) is a word over Fq whose depth is δ, then
the depth of the word (x1, x2, . . . , xn,β), β ∈ Fq is either δ or n+ 1. For exactly
one β ∈ Fq the depth of (x1, x2, . . . , xn,β) is δ and for γ ∈ Fq \ {β} the depth
of (x1, x2, . . . , xn, γ ) is n + 1.
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Example 6.5. Consider the word (00110) whose depth is 3. The depth of the
word (001100) is 3, while the depth of the word (001101) is 6. The depth of
the word (0011010) is 7. The depth of the word (00110101) is also 7, while
the depth of the word (00110100) is 8, the same as its linear complexity. The
linear complexity of the word (00110) is 4 (it is generated by the irreducible
polynomial x4 + x3 + x2 + x + 1), while its depth is 3. The linear complexity
of the word (0011101), which is one of the shifts of a span 3 M-sequence, is 3,
while its depth is 7. Another shift (1101001) has linear complexity 3, while its
depth is 5. �

An important tool in the understanding of the properties of words of certain
depths, and for using the depth, is an algorithm for computing the depth of a
word. We will give the algorithm only for binary words. This algorithm is a gen-
eralization of the Games–Chan algorithm (see Section 5.1) for computing the
linear complexity of a cyclic word of length 2n. A generalization for Fq , q > 2,
is quite simple and will follow the lines of a generalization of the Games–Chan
algorithm for Fq (the non-binary linear complexity algorithm). The algorithm
that follows is presented recursively.

Algorithm depth:

Let v = (v1, v2, . . . , vn) be a binary word of length n and let r be the largest
integer such that 2r < n. Let

v′ = (v1, v2, . . . , v2r )

and

u = (v1 + v2r+1, v2 + v2r+2, . . . , vn−2r + vn).

Compute a function δ(v) recursively as follows:

• if v = (0n), then δ(v) = 0.
• if v = (1n), then δ(v) = 1.
• if u �= (0n−2r

), then δ(v) = 2r + δ(u).
• if u = (0n−2r

), then δ(v) = δ(v′).
The output of the algorithm is the depth δ(v). �

For the proof of the next theorem we will use the operators R and L (see
Section 1.2).

Theorem 6.12. If v = (v1, v2, . . . , vn) is a binary word, then after algorithm
depth is applied recursively we have that δ(v) = depth(v).

Proof. Let v = (v1, v2, . . . , vn) be a binary word of length n.
If v = (0n), then obviously depth(v) = 0 and if v = (1n), then obviously

depth(v) = 1.
Let r , u, and v′ be defined as in the algorithm. We recall that by Def-

inition 6.2, we have that depth(v) ≤ n, and by Lemma 6.7, we have that
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depth(v) = δ if and only if (R − L)δ−1v = (1n−δ+1). Also, note that over F2

we have (R − L)2m = R2m − L2m
since

(2m

k

)
is even for 1 ≤ k ≤ 2m − 1 and the

operators L and R commute. Moreover, (R − L)2r
v = R2r

v − L2r
v = u. There-

fore clearly u �= (0n−2r
) if and only if depth(v) > 2r and hence we have that

depth(v) = 2r + depth(u).
The last case is when u = (0n−2r

). Clearly, u = (R − L)2r
v = (0n−2r

) if and
only if depth(v) ≤ 2r since v is obtained from v′ by attaching n − 2r bits to the
end of v′. By Lemma 6.11 it implies that the depth of v is equal to the depth
of v′.

Thus by the recursive definition of the function δ(v) in algorithm depth we
have that δ(v) = depth(v).

If n is a power of 2, then the algorithm depth for computing the depth coin-
cides with the Games–Chan algorithm for computing the linear complexity of a
cyclic sequence whose length is n. Hence, we have

Corollary 6.7. If v is a binary word of length 2n, then its depth as an acyclic
word equals its linear complexity as a cyclic word.

Note that if the length of the word is not a power of two, then usually the
depth and the linear complexity are not related.

We turn now to consider the depth distribution of linear codes that can be
used as a way to classify linear codes. In all the following lemmas we con-
sider only binary words and codes. The first lemma characterizes some of the
properties of words with length 2n (cyclic or acyclic) and certain depths (linear
complexities). Some of these properties are well known (see Section 5.1) and all
of them can be easily derived from algorithm depth for computing the depth of a
word or the Games–Chan algorithm, although the definitions of depth and linear
complexity seem different for acyclic words and cyclic words, respectively.

Lemma 6.13. Let v be a word of length 2n.

(1) v has depth 2n if and only if v has odd weight.
(2) v has depth 2i + 1 if and only if v has the form (XX̄XX̄ · · · XX̄), where

X is a word of period 2i .
(3) If the period of v equals its length, then v has weight two only if v has depth∑n−1

i=m 2i = 2n − 2m, for some m, 0 ≤ m ≤ n − 1.

Proof.

(1) This follows from Lemma 5.6.
(2) This follows from Lemma 5.7.
(3) Let u be a word of length 2k and weight two. If the period of u is smaller

than it length, then its period is 2k−1, in which case depth(u) = 2k−1 by (1).
If the period of u is 2k , then by Corollary 6.7 and the Games–Chan algo-
rithm we have that depth(u) = 2k−1 + depth(L(u) + R(u)), where L(u) is
the prefix of u of length 2k−1 and R(u) is the suffix of u of length 2k−1.
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Moreover, L(u) + R(u) has length 2k−1 and weight two. Thus we can con-
tinue by induction to prove that depth(v) = ∑n−1

i=m 2i = 2n − 2m.

Two binary words u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are called
orthogonal if

∑n
i=1 uivi = 0.

Lemma 6.14. If v is a nonzero word of length 2n and depth i, 1 ≤ i ≤ 2n−1, and
u is a word of length 2n and depth 2n + 1 − i, then u and v are not orthogonal.

Proof. We will prove by induction that for each i, 1 ≤ i ≤ 2n−1, any word of
length 2n and depth i is not orthogonal to any word of length 2n and depth
2n + 1 − i. The basis of the induction is i = 1, where the only word of depth 1,
is (12n

), and by Lemma 6.13(1), a word of length 2n has depth 2n if and only if
it has odd weight and hence the claim follows.

Assume now that the claim is true for some i, 1 ≤ i ≤ 2n−1 − 1, i.e., each
word of length 2n and depth i is not orthogonal to any word of length 2n and
depth 2n + 1 − i.

Let v = (v1, v2, . . . , v2n) be a word of length 2n and depth i + 1, and
u = (u1, u2, . . . , u2n) be a word of length 2n and depth 2n − i. By definition

(E + 1)v = (v1 + v2, v2 + v3, . . . , v2n−1 + v2n , v2n + v1),

whose depth is i, and by Lemma 6.13(1) we have that the weight of u, i.e.,∑2n

j=1 ui is even. Hence, there exists a word y such that u = Dy = Dȳ, where

y =
⎛
⎝0 =

2n∑
j=1

uj ,u1, u1 + u2, u1 + u2 + u3, . . . ,

2n−1∑
j=1

uj

⎞
⎠

has depth n − i + 1. We also have that

Ey =
⎛
⎝u1, u1 + u2, u1 + u2 + u3, . . . ,

2n−1∑
j=1

uj ,

2n∑
j=1

uj

⎞
⎠ .

By carefully multiplying (E + 1)v by Ey we have that

((E + 1)v) · (Ey) = ((E + 1)v) · (Eȳ) =
2n∑

j=1

vjuj .

Since u is of length 2n, it follows by Corollary 6.7 that the depth of u is equal to
its linear complexity. Moreover, a cyclic shift does not affect the linear complex-
ity of a word, and hence depth(u) = depth(Eu). Since depth(u) = depth(Eu), it
follows that (E + 1)v and y are orthogonal if and only if v and u are orthogonal.
However, by the induction hypothesis, we have that (E + 1)v (whose depth is i)
and y (whose depth is 2n + 1 − i) are not orthogonal and hence v and u are not
orthogonal.
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Recall that by Lemma 1.10, for an [n, k]q self-dual code we have that n = 2k

and hence by Theorem 6.11 if the length of a self-dual code is 2n, then it has ex-
actly 2n−1 + 1 nonzero values in its depth distribution, for which one is D0 = 1.

Corollary 6.8. If {Di0,Di1, . . . ,Di2n−1 } is the set of nonzero values of the depth
distribution of a self-dual binary code of length 2n, then for any two integers j

and m, ij + im �= 2n + 1.

Corollary 6.9. In a self-dual code of length 2n we have D0 = 1 and for each i,
1 ≤ i ≤ 2n−1, either Di = 0 and D2n+1−i �= 0, or Di �= 0 and D2n+1−i = 0.

It is important to note in Corollaries 6.8 and 6.9 that the claim is true for
any coordinate permutation of the code, since a coordinate permutation on the
code will preserve its self-duality, although the depths of the codewords can be
changed (in fact usually their depths will be changed).

The first-order Reed–Muller code is an [2n, n + 1,2n−1] code. This code is
unique, i.e., all linear codes with the same parameters are equivalent to the first-
order Reed–Muller code. Recall that the simplex code is a [2n − 1, n,2n−1] code
that can be constructed by the 2n − 1 cyclic shifts of a span n M-sequence with
the addition of the all-zeros word. The first-order Reed–Muller code is obtained
from the simplex code by adding a parity bit to all the codewords and adding all
their complements to the code. The Reed–Muller code is one of the more useful
codes in practice.

Lemma 6.15. For any given n, any generator matrix with n + 1 rows, where
row i, 1 ≤ i ≤ n, is any word of length 2n and depth 2i−1 +1, and row n+1 is the
only word of length 2n and depth 1, is a generator matrix of the [2n, n+1,2n−1]
first-order Reed–Muller code.

Proof. By Corollary 6.4, all the n + 1 defined rows are linearly independent.
By Theorem 6.11, the depths of the nonzero codewords are 1 and 2j + 1,
0 ≤ j ≤ n − 1. Therefore by Lemma 6.13(2), the weights of each codeword
that is neither the all-zeros codeword nor the all-ones codeword is 2n−1 and
the lemma follows.

The Hamming code is the unique [2n − 1,2n − n − 1,3] code whose parity-
check matrix contains all the 2n − 1 nonzero column vectors of length n. This
parity-check matrix can be generated also from n linearly independent shifts of
a span n M-sequence. Such shifts exist by Theorem 2.22. It is the dual to the
[2n − 1, n,2n−1] simplex code. This can be observed as follows. Let G be a
generator matrix for the [2n − 1, n,2n−1] simplex code obtained from n linearly
consecutive shifts of span n M-sequence. All the columns of G are distinct since
each one is associated with a different window of length n in the M-sequence.
Therefore the minimum number of columns from G that sum to the all-zeros
vector is three, and hence G is a parity-check matrix of a [2n − 1,2n − n − 1,3]
code that is the Hamming code. Since G is the generator matrix or the simplex



212 Sequences and the de Bruijn Graph

code and the parity-check matrix of the Hamming code, it follows that these
two codes are dual. The extended Hamming code obtained by adding a parity
bit to the codewords of the [2n − 1,2n − n − 1,3] Hamming code is the unique
[2n,2n − n − 1,4] code. It is the dual code of the [2n, n + 1,2n−1] first-order
Reed–Muller code.

Example 6.6. The following generator matrix in standard form⎡
⎢⎢⎢⎣

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎥⎥⎥⎦

is a basis for the [7,4,3] Hamming code C. However, the four codewords that
form this matrix are not of four distinct depths. The following generator ma-
trix G is a basis for the same code C:

G =

⎡
⎢⎢⎢⎣

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 1 0 1 0 1 0
1 1 1 1 1 1 1

⎤
⎥⎥⎥⎦ .

The four rows of this matrix have the following depths, depth(1000110) = 6,
depth(0100101) = 5, depth(0101010) = 2, and depth(1111111) = 1. The depth
distribution of C is D0 = 1, D1 = 1, D2 = 2, D5 = 4, and D6 = 8. The dual code
of C, C⊥, is the [7,3,4] simplex code and its generator matrix can be taken as⎡

⎢⎣ 1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 0 1 0 1 0 1

⎤
⎥⎦ .

The three rows of this matrix have the following depths, depth(1101100) = 6,
depth(1011010) = 5, and depth(1010101) = 2. The depth distribution of C⊥ is
D0 = 1, D2 = 1, D5 = 2, and D6 = 4.

By an appropriate permutation on the columns, a generator matrix for the
simplex code can be taken as shifts of the span 3 M-sequence [0010111] and it
is written as follows: ⎡

⎢⎣ 0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 1 0 0 1 0

⎤
⎥⎦ .

The three rows of this matrix have the following depths, depth(0010111) = 7,
depth(1001011) = 5, and depth(1110010) = 6. The depth distribution of this
code is D0 = 1, D5 = 1, D6 = 2, and D7 = 4.
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The generator matrix of the [8,4,4] extended Hamming code, which is also
a first-order Reed–Muller code, can be constructed by adding parity for the rows
of G as follows:

G′ =

⎡
⎢⎢⎢⎣

1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎦ .

The code is self-dual and the four codewords of this matrix have the follow-
ing depths, depth(10001101) = 6, depth(01001011) = 5, depth(01010101) = 2,
and depth(11111111) = 1. The depth distribution of this code is D0 = 1,
D1 = 1, D2 = 2, D5 = 4, and D6 = 8. �

Lemma 6.16. For any given n, any generator matrix with 2n − n − 1 rows
that contains any word of length 2n and depth i for each i, 1 ≤ i ≤ 2n − 1,
i �= 2n − 2j , for each j , 0 ≤ j ≤ n − 1, as a row, is a generator matrix for the
[2n,2n − n − 1,4] extended Hamming code.

Proof. By Corollary 6.4 we have that the 2n − n − 1 rows selected are linearly
independent and hence by Lemma 6.8 and Theorem 6.11, these are exactly the
depths of the codewords in the generated code. By Lemma 6.13(1) all these
chosen rows have even weight and hence the code cannot have any code-
word of weight 1 or 3. By Lemma 6.13(3), the chosen depths do not contain
words of weight 2. Thus the code has minimum distance 4 and hence it is a
[2n,2n − n − 1,4] code.

Similarly to Lemma 6.16, we can obtain the following lemma.

Lemma 6.17. For any given n, any generator matrix with 2n − n − 1 rows that
contains any word of length 2n − 1 and depth i, for each i, 1 ≤ i ≤ 2n − 1,
i �= 2n − 2j , for each j , 0 ≤ j ≤ n − 1, as a row, is a generator matrix for the
[2n − 1,2n − n − 1,3] Hamming code.

Proof. One can verify from the algorithm for computing the depth of a word,
that a word of length 2n − 1 and weight either one or two has depth 2n − 2j for
some j , 0 ≤ j ≤ n − 1. The lemma follows now from Lemmas 6.8 and 6.13(3)
since the linear span of the given generator cannot contain nonzero codewords
with weights one or two.

Example 6.7. The following generator matrix of the [8,4,4] extended Ham-
ming code has words with depths 1, 2, 3, and 5:⎡

⎢⎢⎢⎣
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎦ .

�
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6.5 Notes

Since the number of binary sequences of length n is 2n and those of weight w

and length n is
(
n
w

)
it is very important to classify them for diverse applica-

tions. The classifications presented in this chapter represent only a small frac-
tion of these classifications. We have concentrated mainly on classifications for
de Bruijn sequences, shortened de Bruijn sequences, and balanced sequences,
which are the center of interest in this book. For example, some classifications
are associated with constrained coding. Balanced sequences are important in
many applications such as optical recording, magnetic recording, etc. They have
been subject to extensive research. In Section 6.3 these sequences were classi-
fied based on the multiplicity of their �-tuples and their balanced derivatives.
Both classifications are based on different constraints that the sequences should
satisfy. Indeed, the property of exactly one occurrence of each n-tuple in a span n

de Bruijn sequence is a type of constraint. However, there are other constraints
of balanced sequences. These constraints can form a hierarchy between all the
balanced sequences or subsets of these sequences. One of the most investigated
constraints is the longest run of a symbol is called the run-length constraint. A
second one is the maximum accumulated charge constraint, which is the ab-
solute value of the difference between the number of ones and the number of
zeros in any prefix of a word. For some of the techniques and applications of
such codes, the reader is referred to the book of Immink [21]. Balanced codes
that have the run-length constraint and the accumulated charge constraint were
extensively studied and some examples are given in the work of Calderbank,
Herro, and Telang [7], Etzion [13], and van Tilborg and Blaum [44]. Other inter-
esting constrained balanced codes are the spectral-null codes of various orders
that were extensively studied in Karabed and Siegel [24] and Roth, Siegel, and
Vardy [38] and further studied in Skachek, Etzion, and Roth [39], and Tallini
and Bose [41]. The window property required by de Bruijn sequences is also a
type of constraint. A relaxed window property in local segments of the sequence
was discussed and analyzed in Chee, Etzion, Kiah, Marcovich, Vardy, Vu, and
Yaakobi [9].

Section 6.1. Classification of sequences of length 2n − 1 with 2n−1 ones and
2n−1 − 1 zeros was carried out by Golomb [17] and most of the material in the
section is based on this paper. The counterexample of length 127 of a sequence
in R ∩ C that is not an M-sequence was found by Cheng and Golomb [10]. The
classification depicted in Fig. 6.2 was further analyzed by Golomb [17], where
more subclasses are demonstrated. More analysis, related sequences, and fami-
lies of sequences that can be added to this hierarchy can be found in Bromfield
and Piper [5], Chung and No [11], No, Golomb, Gong, Lee, and Gaal [36], and
No, Yang, Chung, and Song [37].

Section 6.2. The linear complexities of shortened de Bruijn sequences were
considered by Mayhew and Golomb [32], and later by Kyureghyan [27]. The
material in this section for these linear complexities is based on the work of
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Mayhew and Golomb [32], where also the complexities distribution of short-
ened de Bruijn sequences are taken from their paper. The minimum number
of products in the sum of products form function of the FSRn that generates
the shortened de Bruijn sequence was considered in Mayhew and Golomb [33].
Classification of de Bruijn sequences by their weight functions was considered
first by Mayhew [30] from which the table given in this section was taken. The
weight function was extensively studied and analyzed in the papers of Hauge
and Mykkeltveit [18,19]. More related tables were given in Mayhew [31]. Fi-
nally, another classification method was suggested by Chan and Games [8] who
examined the quadratic span of de Bruijn sequences.

Problem 6.6. Continue to provide a comprehensive analysis of the number of
sequences in the weight functions (especially for the minimum and maximum
ones) of de Bruijn sequences.

Golomb [16] proved that all irreducible factors of the trinomial x2n+1+ x +1
have degrees dividing 3n, and therefore, periods dividing 23n − 1. He proved
that all irreducible factors of x2n + x + 1 have degrees dividing 2n, and there-
fore, periods dividing 22n − 1. He also conjectured that all irreducible factors
of x2n+1 + x2n−1−1 + 1 have degrees dividing 6(n − 1) and periods dividing
26(n−1) − 1. Mills and Zierler [34] proved that the degree of every irreducible
polynomial that divides x2n+1 +x2n−1−1 +1 divides either 2(n−1) or 3(n−1),
but not n−1. Information on irreducible trinomials with degrees up to 1000 was
given by Zierler and Brillhart [49,50]. Finally, if the degree of an irreducible tri-
nomial is the exponent of a Mersenne prime, then the polynomial is a primitive
trinomial since the order of a root of an irreducible polynomial of degree n must
divide 2n − 1. Such trinomials were considered by Zierler [48]. More work on
primitive trinomials can be found in Goldstein and Zierler [15].

Section 6.3. Balanced codes were extensively studied over the years, e.g., Al-
Bassam and Bose [1], Alon, Bergmann, Coppersmith, and Odlyzko [2], Holl-
mann and Immink [20], Immink and Weber [22], Knuth [25], Roth, Siegel, and
Vardy [38], Skachek, Etzion, and Roth [39], Tallini and Bose [40,41], Tallini,
Capocelli, and Bose [42], and Weber and Immink [45]. The family of bal-
anced codes is the most important subclass of constant-weight codes, see Agrell,
Vardy, and Zeger [3] and Brouwer, Shearer, Sloane, and Smith [6]. Knuth’s al-
gorithm was presented in [25]. The algorithm was later improved and modified
by Al-Bassam and Bose [1], Immink and Weber [22], Tallini and Bose [40],
Tallini, Capocelli, and Bose [42], and Immink and Weber [45]. The enumerative
coding method was presented by Cover [12].

The hierarchy that is based on the multiplicity of �-tuples in a sequence and
the classification based on the number of balanced derivatives was carried out
by Marcovich, Etzion, and Yaakobi [29], where also the generalized de Bruijn
graph with multiple edges was presented. The enumerations of the associated
types of sequences were also carried out in that paper. Sequences with a mul-
tiplicity of �-tuples were also extensively studied by Tesler [43], where other
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enumeration results were provided. Some of the results are for the same objects,
but the equivalent formula is different.

Section 6.4. The depth distribution was defined and considered first by Et-
zion [14]. The definition was considered for infinite sequences of finite depth
by Mitchell [35], where it was proved that these sequences correspond to a set
of equivalence classes of rational polynomials. This work also characterizes in-
finite sequences of finite depth in terms of their periodicity. Finally, the depth
distribution of all cyclic codes is given. Further results were obtained in Kai,
Wang, and Zhu [23], Kong, Zheng, and Ma [26], Luo, Fu, and Wei [28], Yuan,
Zhu, and Kai [46], and Zeng, Luo, and Gong [47]. The depth was generalized
and analyzed for sequences of length n = pβ with entries taken from Zpα by
Bar Yehuda, Etzion, and Moran [4] and the computation is performed in the
ring Zpα .

In the same way that the linear complexity could be defined by the operators
D and E and also by a polynomial representation, a similar definition can be
given to the depth. Let α be an element in Fq , let c = (c0, c1, . . . , cn−1) be a
word of length n, and let c(x) = ∑n−1

j=0 cj x
j be the characteristic polynomial

of c. We say that c has depth i, if i is the least integer such that

(x − α)ic(x) ≡ 0 (mod (x − α)n).
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Chapter 7

One-dimensional applications
Cryptography, verification, Gray codes, and games

In this chapter, we consider applications of the theory that was developed so
far. These applications are for important technologies on the one hand and for
theoretical problems and games on the other hand.

The first application, discussed in Section 7.1, was already known in the
ancient world. A (long) message has to be sent from one party to a second party.
Since the message can be obtained by a third malicious party, it follows that
the message has to be encrypted so that when falling into the hands of a third
party, he will not be able to find the source message. The idea is to encrypt the
message by adding to it a long (de Bruijn) sequence that was agreed upon by
the two parties. Is this encryption method secure? This will be discussed in this
section.

Section 7.2 considers a completely different problem. Given a very large
number of binary inputs, for an electronic chip (device), and from many rel-
atively small subsets of them Boolean functions are defined for a chip to be
designed for the device. We want to verify whether each such function is well
functioning, i.e., it provides the required answer for each possible input. If each
function is based on t inputs, then 2t values have to be tested to check each
possible input. This makes such a verification very expensive since the number
of Boolean functions is very large. Can we decrease dramatically the number
of tests required to check all the possible inputs for each Boolean function? Se-
quences generated by irreducible polynomials will help us to achieve this goal
in this section.

Section 7.3 is devoted to one type of Gray code. Gray codes have many
applications and for each application, they should satisfy certain properties. The
codewords are organized in a matrix for which each codeword is a row (or a
column) in the matrix. In this section, the requirement for the Gray code is that
all the columns of the code (when the codewords are written as rows) will be
cyclic shifts of the other columns. Surprisingly, their construction resembles
constructions of full cycles. One of the constructions that has some similarities
to the construction of de Bruijn sequences with minimal complexity seems to be
very close to optimality. A proof of the nonexistence of a better code than this
code is done using the linear complexity of sequences.

In Section 7.4 we will see how the concept of linear complexity can help to
find a winning strategy for a rotating-table game with two players.

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00013-5
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7.1 Stream ciphers

In cryptography, one of the main questions is how to submit messages between
two parties in a channel that is open to the public, in a way that any third party
who sees the information sent on the channel, will not be able to reveal the
original content of the message. There are many modern ways to do this task,
but in this section we will concentrate on an old, simple, and efficient method.

Alice and Bob want to communicate in a secure channel. Alice wants to
send Bob a very long message, using a key, which is agreed upon between her
and Bob, from which the whole message is constructed. She wants to encode
her message by adding to it bit by bit a very long text, constructed from the key,
in a way that if Mallory, the malicious, who knows a small fraction of the text
(or a small fraction of the key) will not be able to generate the whole text (and
the original message). It is assumed that Mallory knows the method in which
the message is encoded, but he is missing the key that is shared by Alice and
Bob. If Mallory will know this key, he will be able to find the original message.
The key, from which the whole sequence is constructed, is applied to generate
the long text that is added to the original message. It is also assumed that there
is a set with a large number of keys, all of them are known to Mallory, but he
does not know which key Alice and Bob choose to use each communication.
His target is to generate this key. The protocol starts when Alice generates the
long text with the agreed key from which the long text will be generated.

Before they start their communication, the first step that Alice and Bob
should take is to generate a large set of keys. They want the generated long
text to be as random as possible so that Mallory cannot find the text. The num-
ber of keys should be also very large so that Mallory will not be able to try all
of them to find the right one that Alice and Bob are using.

M-sequences are long sequences with interesting properties, where some
properties (such as R-1, R-2, and R-3) imply that M-sequences behave like
random sequences. Assume that the long text s0s1 · · · was generated by an
M-sequence whose shift-register feedback function (which is the given short
key) is

xn+1 = f (x1, x2, . . . , xn) =
n∑

i=1

cixn+1−i , i ∈ Fq .

Hence, the sequence {sk} satisfies the linear recursion

sk =
n∑

i=1

cisk−i , k = n,n + 1, . . . .

We assume now that Mallory can find a short subsequence of the long text (i.e.,
the M-sequence), which was added to the message. If the given bits found by
Mallory are sm, sm+1, sm+2, . . . , sm+2n−1, for some m, he forms the following n
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equations that are satisfied by any section of length 2n in the sequence

sm+j =
n∑

i=1

cism+j−i , n ≤ j ≤ 2n − 1. (7.1)

It is easily verified that in Eq. (7.1) there are n linearly independent equations.
The n equations have n variables (the cis). Hence, this set of n equations has a
unique solution for the cis and once Mallory solves this set of equations and
finds the cis, the whole M-sequence can be revealed to Mallory. Using the
revealed M-sequence, Mallory can decode the message that was sent on the
channel and reveals the original message. This makes this system not secure
from a cryptographic point of view and Alice and Bob will be advised not to
use it. Therefore we would like to use another similar sequence that cannot be
revealed from a small fraction of the sequence.

The next method is to use any span n de Bruijn sequence as the long text
added to the source message. Generally, we cannot find the sequence from a
small set of linear equations, since it was proved in Theorem 5.2 that the lin-
ear complexity of a span n de Bruijn sequence is larger than half of its length.
A similar property on the linear complexities is shared by most of the shortened
de Bruijn sequences (see Section 6.2). Moreover, these sequences have the de-
sired randomness properties such as R-1 and R-2. We have to guarantee not to
use a sequence from the small set that has a low linear complexity. Such a large
set of de Bruijn sequences can be any set generated by any algorithm to merge
cycles as presented in Section 4.3. There should be a tradeoff between the pa-
rameters so that the set will be large enough. The method used in this case can
be based on either the set of bridging states V in the algorithm to merge PCRn

cycles or on the set of bridging states U in the algorithm to merge CSRn cycles.
To generate the whole sequence, it seems that one must know the whole stored
set V of bridging states (or the set U of bridging states, respectively) and this set
can be made as large as we like to make this method relatively secured. Each
set V , respectively U , of size k can be used to form about 2k different keys, so
we can control the length of the key and the number of keys associated with
the number of generated sequences that will be added to the source message.
Furthermore, the algorithms to generate the whole sequence from the key are
simple and efficient, as was demonstrated and proved in Section 4.3.

7.2 VLSI testing

In a very large-scale integration (VLSI) an electronic chip (device) can have a
few hundred inputs and a similar number of outputs, i.e., logic Boolean func-
tions, each depending on a smaller number of input variables. Due to the large
number of inputs involved and a large number of associated outputs, testing
these chips for proper functioning is a formidable task. One approach is to con-
figure the input register (which contains all the s inputs of the device) as a shift
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register during testing and to shift through it a sequence that exhausts all the pos-
sible inputs for each function on the chip. The results of the output sequences
are then compared with the stored correct ones. This procedure is very expen-
sive as s is very large and we have to shift through the register a sequence of
length 2s something that is completely not practical. Another method is to con-
sider each function separately and if a function has t inputs, then a shift register
of length t will be enough to test it. The cost of this procedure is proportional
to the lengths of the test sequences and it tends to grow exponentially with the
largest order of a function on the chip, where the order of a function is the num-
ber of variables on which it depends. For example, if each function depends on
t inputs and there are η functions, then η · 2t tests are required to check such a
chip. This number can be very large (since η can be huge) and hence the verifi-
cation process can be very costly. Finally, another method might be to order the
inputs on the chip in a way that each function is based on variables that occupy
no more than t consecutive positions. This time a span t de Bruijn sequence
(or a span t M-sequence) can be shifted through the register, but this method
requires to order the variables in a way that t is small as possible, something
that might not be feasible. For these reasons, the design of the shortest possible
test sequence is of great importance. The idea will be to use an FSRn to gener-
ate a sequence S, which will be shifted through all the inputs and the positions
associated with each function will contain each nonzero word during one of the
shifts of S. The all-zeros sequence will be also shifted through all the inputs to
examine the results associated with the all-zeros input. This will complete the
process. If, for example, all the functions were confined to t consecutive inputs,
then again a span t M-sequence S will do the work. Moreover, also any span t

de Bruijn sequence will do this task. However, in practice, the positions of each
function required for the chip are not consecutive on the chip and we consider
the largest gap between the first input and the last input of a function. If this gap
is of size t − 1, then the associated function is confined to t consecutive inputs
of the chip and a span t sequence will be required. However, again, the length 2t

of such a sequence can be so huge as to make this approach impractical.
We continue to prove that in many cases a set of binary sequences obtained

from irreducible polynomials and in particular M-sequences, not necessarily of
the same length, can be used to verify the functionality the Boolean functions.

Definition 7.1. A sequence exercises a set of t register positions if and only if
all nonzero t-tuples appear in those positions.

Definition 7.2. For t < s, a binary sequence is called (s, t)-universal if when
shifted through a register of length s (where s is the total number of input vari-
ables), it exercises every subset of t register positions.

Definition 7.3. For a set R = {r0, r1, . . . , rt−1} of t register positions, the set
polynomial gR(x) is defined by

gR(x) �
∏

Q⊆R

∑

ri∈Q

xri .
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We are given an irreducible polynomial f (x) = xn + ∑n
i=1 cix

n−i , where
n ≥ t , and its associated sequence A = a0a1a2a3 · · · (an M-sequence if the poly-
nomial is primitive and a few sequences, of the same length, if the polynomial
is irreducible and not primitive) that satisfies the recurrence

ak =
n∑

i=1

ciak−i , (7.2)

with the initial nonzero n-tuple (a−na−n+1 · · · a−1).
Consider all the possible shifts of the nonzero sequences generated by f (x)

as rows in a matrix B, which has L = 2n −1 rows, and let T be the L×n matrix
that is formed by a projection of any n columns of B. Note that by Corollary 2.2
all the sequences have the same period and hence there is no ambiguity.

Lemma 7.1. Every nonzero n-tuple appears as a row of the matrix T if and
only if the columns of T are linearly independent.

Proof. Assume first that each n-tuple appears as a row in T . This immediately
implies that the n columns of T are linearly independent.

Assume now that the columns of T are linearly independent. Since each
n-tuple appears as a window exactly once in one of the nonzero sequences gen-
erated by f (x), it follows that every n consecutive columns of B contain each
one of the 2n − 1 nonzero n-tuples as a row. Hence, the first n columns of B

contain each nonzero n-tuple exactly once. These column vectors can be used
as rows for the generator matrix of the [2n − 1, n,2n−1] simplex code. Each
other column of B can be represented as a linear combination of the first n

columns of B. This linear combination is defined by the recursion induced by
f (x) given in Eq. (7.2). Hence, all these linear combinations coincide with the
codewords of the simplex code. This implies that every n linearly independent
column contains each nonzero n-tuple as a row in T .

Lemma 7.2. If Q is a nonempty subset of R and q(x) = ∑
ri∈Q xri , then

f (x) divides q(x) if and only if the columns of B that are associated with the
subset Q sum to zero.

Proof. If the columns in B that are associated with the subset Q sum to zero,
then one of the columns is a sum of the other columns, i.e., this column is a
linear combination of the other columns. This linear combination is induced
by the polynomial f (x) and hence q(β) = 0, where β is a root of f (x). Since
we also have f (β) = 0 and f (x) is an irreducible polynomial, it follows that
f (x) divides q(x).

If f (x) divides q(x), then f (α) = 0 implies that q(α) = 0 and hence since
the columns of B are defined by the recursion induced by f (x), it follows that
associated columns of B defined by Q sum to zero.
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Theorem 7.1. Given an irreducible polynomial f (x) of degree n and a set R

of t register positions, where n ≥ t , the nonzero sequences generated by f (x)

exercises the set R if and only if gR(x) is not divisible by f (x).

Proof. The nonzero sequences generated by the polynomial f (x) are now
shifted through the input register. The patterns appearing across the given set
R = {r0, r1, . . . , rt−1} of register positions are given by

Ai = (ai+r0 , ai+r1, . . . , ai+rt−1), i ≥ 0,

where A is taken over all the nonzero sequences generated by f (x). For sim-
plicity, assume the A is an M-sequence (the same arguments will work for the
sequences generated by any other irreducible polynomial). Since the period of
the M-sequence is equal to L = 2n − 1, it suffices to examine the first L such
patterns Ai , 0 ≤ i ≤ L − 1.

Consider now a new L × t matrix T , where Tij = ai+rj (this matrix is as-
sociated with the t positions that are checked). By Lemma 7.1 and since n ≥ t ,
every nonzero t-tuple appears as a row in A if and only if the columns of T are
linearly independent. The columns of T are linearly dependent if and only if a
nonempty subset of the columns in T sums to zero.

By Lemma 7.2 we have that f (x) divides the polynomial
∑

ri∈Q xri , where
Q is a nonempty subset of R, if and only if the associated subset of columns
of T sums to zero.

Since the polynomial f (x) is irreducible, it follows that f (x) divides the set
polynomial gR(x) if and only if there exists a subset Q ⊆ R such that f (x) di-
vides the factor

∑
ri∈Q xri of gR(x). Hence, by Lemmas 7.1 and 7.2 the proof

is completed.

Corollary 7.1. Let {f (i)(x)}ki=1 be a set of k distinct irreducible polynomials
(not necessarily of the same degree), let S be the concatenation of the associated
nonzero sequences generated by these polynomials, and let R be a given set of
positions in the register of length s. If gR(x) is not divisible by

k∏

i=1

f (i)(x),

then S exercise R.

Proof. The set polynomial gR(x) is not divisible by the product of the k irre-
ducible polynomials if and only if it is not divisible by at least one of them.
By Theorem 7.1 the segment of S contributed by the sequences, for which the
characteristic polynomial does not divide gR(x), exercises the given set R.

Corollary 7.1 provides a sufficient condition that the sequence obtained
by a concatenation of the distinct sequences, is an (s, t)-universal sequence.
This condition implies the existence of a test sequence for verification of the
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functionality of the chip in practice. Note that for one M-sequence, to be
an (s, t)-universal sequence, the condition of Theorem 7.1 is necessary and suf-
ficient.

7.3 Single-track Gray codes

Originally, Gray codes were defined as Hamiltonian cycles in the well-known
binary n-cube (hypercube). The binary n-cube is an undirected graph with
2n vertices represented by the 2n binary n-tuples. Two vertices (x1, x2, . . . , xn)

and (y1, y2, . . . , yn) are connected by an edge if and only if they differ in ex-
actly one position, i.e., their Hamming distance is one. The simplest Gray code
is defined recursively as follows. Let M be a 2n × n binary matrix whose rows
represent the codewords of a Gray code in the n-cube. Let M0 the 2n × (n + 1)

be the matrix defined from M by appending a column of zeros before the first
column of M. Let M1 the 2n × (n + 1) be the matrix defined from M by ap-
pending a column of ones before the first column of M. It is easy to verify that
the 2n+1 × (n+1) matrix obtained from the rows of M0 followed by the reverse
order rows of M1 is a Gray code for the (n + 1)-cube. This Gray code is called
the reflected Gray code.

Example 7.1. For n = 2 an order of the words of length 2 in a Gray code is by
00, 01, 11, 10. The 4 × 3 matrices M0 and M1 are given by

000 100
001 101
011 111
010 110

.

The associated reflected Gray code of order 3 is given by the 8×3 matrix formed
by column concatenation of the first matrix with the reverse of the second ma-
trix. The associated 8 × 3 reflected Gray code of order 3 can be also represented
by the following 3×8 transposed matrix, where each column represents a code-
word

00001111
00111100
01100110

.

�

We will present now the formal definition of a Gray code and the necessary
definitions for a single-track Gray code. A length n Gray code is an order of
distinct binary n-tuples, called the codewords,

W0,W1, . . . ,Wπ−1
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having the property that any two adjacent codewords Wi and Wi+1 differ in
exactly one component. If this property holds for Wπ−1 and W0 as well, then we
say that the Gray code is cyclic with period π . Otherwise, we say that the Gray
code is acyclic. Originally, a Gray code was defined to contain all the 2n binary
n-tuple and was cyclic. However, over time, applications for such codes that
do not require all the binary n-tuples, but require other properties based on the
application, were introduced. Such a code can be introduced in two ways by a
matrix. The first way is by a π × n matrix whose rows represent the codewords
of the code. This is the representation that will be used more frequently in this
section. The second way is by an n × π matrix whose columns represent the
codewords.

As a typical example of an application, a length n, period π Gray code can
be used to record the absolute angular positions of a rotating wheel by encoding
(e.g., optically) the codewords on n concentrically arranged tracks. The rotating
wheel has n reading heads, mounted in parallel across the tracks sufficient to
recover the codewords. When the heads are nearly aligned with the division be-
tween two codewords, any components that change between those words will be
in doubt, and a spurious position value may result. Such quantization errors are
minimized by using a Gray encoding, for then exactly one component can be in
doubt, and the two codewords that could result identify the positions bordering
the division, resulting in a small angular error.

When a high resolution is required, the need for a large number of con-
centric tracks results in encoders with large physical dimensions. This poses
a problem in the design of small-scale or high-speed devices. Single-track
Gray codes were proposed as a way of overcoming these problems. Let C be
a length n cyclic Gray code with codewords W0,W1, . . . ,Wπ−1 and write
Wi = [w0

i ,w
1
i , . . . ,w

n−1
i ], so that w

j
i denotes component j of codeword i. We

call the sequence

tj (C) � [wj

0 ,w
j

1 , . . . ,w
j

π−1]
of period π , the j th track of C.

Definition 7.4. Let C be a length n Gray code with codewords W0,W1, . . . ,Wπ−1

and let si , 0 ≤ i < π − 1, denote the unique component in which Wi and Wi+1

differ, which implies that 0 ≤ si ≤ n − 1. Then, the sequence

S = s0, s1, . . . , sπ−2

is called the coordinate sequence of C. If C is cyclic, then the sequence

S = s0, s1, . . . , sπ−2, sπ−1,

where sπ−1 denotes the unique component in which Wπ−1 and W0 differ, is
called the cyclic coordinate sequence of C.
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Theorem 7.2. Let S = s0s1 · · · sπ−1 be a sequence with terms from the inte-
gers 0,1, . . . , n − 1. S is the coordinate sequence of a length n Gray code with
π + 1 codewords if and only if, in every subsequence si , si+1, . . . , sh of S with
0 ≤ i < h ≤ π − 1, some symbol occurs an odd number of times. The sequence S

is a cyclic coordinate sequence of a length n, period π Gray code if and only if,
in every subsequence si , si+1, . . . , sh of S with 0 ≤ i < h ≤ π − 2, some symbol
occurs an odd number of times, while in S itself, every symbol occurs an even
number of times.

Proof. First, consider the case of an acyclic coordinate sequence. Suppose that
S is a coordinate sequence of a length n Gray code and that in some subse-
quence si , si+1, . . . , sh of S, every symbol occurs an even number of times.
Then, in obtaining codeword Wh+1 from codeword Wi , we make an even num-
ber of changes to every component of Wi . Thus Wh+1 = Wi , contradicting
the distinctness of the words in a Gray code. On the other hand, suppose that
S on the symbols 0,1, . . . , n − 1 has the property that in every subsequence
si , si+1, . . . , sh, some symbol occurs an odd number of times. Then, if we
choose an arbitrary n-tuple W0 and generate a list of n-tuples by interpreting
si as the unique component in which consecutive n-tuples Wi and Wi+1 differ,
it is clear that Wh+1 �= Wi for every choice of i and h. Thus the list of π + 1
n-tuples obtained from S and W0 is a Gray code whose coordinate sequence
is S.

A similar argument also applies to cyclic coordinate sequences, the only dif-
ference to note being that the property that every symbol occurs an even number
of times in S guarantees that for any W0, a cyclic Gray code is obtained. The
reason is that a symbol appears in si , si+1, . . . , sh an odd number of times if and
only if it appears in sh+1, . . . , sπ−1, s0, . . . , si−1 an odd number of times.

Definition 7.5. A single-track Gray code is a list of π distinct binary words of
length n, such that every two consecutive words, including the last and the first,
differ in exactly one position and when looking at the list as a π × n array, each
column of the array is a cyclic shift of the first column. In other words, there
exist integers

k0, k1, . . . , kn−1

called the head positions, where k0 = 0, such that

ti (C) = Eki t0(C)

for each 0 ≤ i ≤ n − 1. For each i, 0 ≤ i ≤ n − 1, ki is called the position of the
ith head.

Lemma 7.3. If S = s0s1 · · · sπ−1 is the cyclic coordinate sequence of a length n,
period π , single-track Gray code, then for each symbol j with 1 ≤ j < n, the
positions where symbol j occurs in S are cyclic shifts of the positions where
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symbol 0 occurs in S. Conversely, if S is a sequence with this property and
the properties of a cyclic coordinate sequence given in Theorem 7.2, then there
exists a choice of W0 such that S is the cyclic coordinate sequence of a single-
track Gray code with the first codeword W0.

Proof. In a single-track Gray code C, the j th track tj (C), 1 ≤ j ≤ n − 1, is a
cyclic shift by some kj of t0(C). Symbol j occurs in position i of the coordinate
sequence S if and only if term i and term i + 1 of tj (C) differ, or equivalently,
term i +kj , and term i +kj +1 of t0(C) differ. In turn, this holds precisely when
symbol 0 occurs in position i + kj of S. Thus we see that the positions where
symbol j occurs in S are a shift, by kj , of the positions where symbol 0 occurs
in S.

Conversely, suppose S has this property and the properties of a cyclic coor-
dinate sequence given in Theorem 7.2. Then, for any choice of W0, S is a cyclic
coordinate sequence of length n, period π , Gray code C whose first codeword
is W0. Also, the positions where changes occur in track tj (C) of this code are
cyclic shifts by kj of the positions where changes occur in t0(C). Thus tj (C)

is equal to the cyclic shift by kj of either t0(C) or the complement of t0(C).
Whether or not the complement occurs for a specific j depends only on com-
ponent j of W0, i.e., on w

j

0 . Therefore by an appropriate choice of W0, we can
ensure that tj (C) is equal to a cyclic shift of t0(C) for every j , where 1 ≤ j < n.
For this choice, the sequence S is a coordinate sequence of a single-track Gray
code whose first codeword is W0.

Lemma 7.4. If there exists a length n, period π single-track Gray code C, then
π is an even multiple of n and 2n ≤ π ≤ 2n.

Proof. Let S be the cyclic coordinate sequence of C. Suppose that symbol 0
occurs � times in S, where � ≥ 2. By Theorem 7.2, � is even, and by Lemma 7.3,
every symbol 0,1, . . . , n − 1, occurs � times in S. Hence, π = n� and π is
an even multiple of n. On the other hand, C is a list of π distinct n-tuples so
π ≤ 2n.

Let C be a single-track Gray code of length n and period π . By Lemma 7.4,
there is a theoretical possibility that π = 2n, but then, necessarily, n is a power
of 2. We are going to show that there is no such code whose period is larger
than 4.

Theorem 7.3. There is no ordering of all the 2n binary words of length n = 2m,
m > 2, in a list that satisfies all the following requirements:

1. Each two adjacent words have a different parity.
2. The list has the single-track property.
3. Each word appears exactly once.

Proof. Let us assume the contrary, i.e., let s be the track of a single-track code
in which each n-tuple appears exactly once and each two adjacent words have
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different parity. Let s(x) be the generating function of s and θ1 the largest integer
for which there exists a polynomial p1(x) that satisfies

s(x) ≡ (x − 1)θ1p1(x) (mod x2n − 1). (7.3)

Let k0, k1, . . . , kn−1 be the head positions in the list, let

h(x) �
n−1∑

i=0

xki

be the head locator polynomial in the list, and let h be the word of length 2n

associated with h(x) considered as a generating function. Let θ2 be the largest
integer for which there exists a polynomial p2(x) that satisfies

h(x) ≡ (x − 1)θ2p2(x) (mod x2n − 1). (7.4)

Since x2n − 1 = (x − 1)2n
, it follows that 0 ≤ θ1, θ2 ≤ 2n − 1. Since every two

adjacent words have different parity, it follows that

(x − 1)h(x)s(x) ≡ 1 + x + x2 + · · · + x2n−1 (mod x2n − 1). (7.5)

Since (x − 1)2n = x2n − 1 and

(x − 1)2n−1 ≡ 1 + x + x2 + · · · + x2n−1 (mod x2n − 1),

it follows from Eqs. (5.1), (7.3), (7.4), and (7.5), that

θ1 + θ2 = 2n − 2. (7.6)

Eqs. (5.1), (7.3), (7.4), and (7.5) also imply that θ1 + 2 is the linear complexity
of h, and θ2 +2 is the linear complexity of s. These two claims are verified from
the following two equations,

(x − 1)h(x)(x − 1)θ1p1(x) ≡ 1 + x + x2 + · · · + x2n−1 (mod x2n − 1),

(x − 1)s(x)(x − 1)θ2p2(x) ≡ 1 + x + x2 + · · · + x2n−1 (mod x2n − 1).

Since each word appears in the list exactly once, it follows that s is not periodic,
and hence by Corollary 5.3 we have that

θ2 ≥ 2n−1 − 1. (7.7)

If we assume that h is periodic, then

{ki}n−1
i=0 = {2n−1 + ki}n−1

i=0
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and therefore the ith word and the (i + 2n−1)th word have the same bit values
(a permutation of each other). This implies that the all-zeros word, which ap-
pears somewhere in the list, appears twice in the list, a contradiction. Thus h is
not periodic, and therefore by Corollary 5.3 we have that

θ1 ≥ 2n−1 − 1.

Self-dual sequences of length 2n have weight 2n−1 and since h has weight n, it
follows that h is not self-dual when 2n ≥ 4, and hence by Lemma 5.7 the linear
complexity of h is not 2n−1 + 1. Therefore

θ1 ≥ 2n−1. (7.8)

Summing Eqs. (7.7) and (7.8) implies that

θ1 + θ2 ≥ 2n − 1,

in contradiction to Eq. (7.6). Thus no such single-track code with track s exists.

Corollary 7.2. There does not exist a single-track Gray code of length n and
period 2n.

Theorem 7.4. Let S0, S1, . . . , Sr−1 be r length n binary pairwise inequivalent
full-order necklaces, such that for each i, 0 ≤ i < r − 1, Si and Si+1 differ in
exactly one coordinate, and there also exists an integer �, where g.c.d.(�, n) = 1,
such that Sr−1 and E�S0 differ in exactly one coordinate, then the following
words (read row by row) form a length n, period nr single-track Gray code:

S0 S1 · · · Sr−1

E�S0 E�S1 · · · E�Sr−1

E2�S0 E2�S1 · · · E2�Sr−1

...
...

...
...

E(n−1)�S0 E(n−1)�S1 · · · E(n−1)�Sr−1

.

Proof. Since � is relatively prime to n, the integers 0, �,2�, . . . , (n − 1)� are
the distinct residues modulo n. It is then clear from the properties of the
words S0, S1, . . . , Sr−1 that the list of words in the statement of the theo-
rem does form a cyclic Gray code. We need only to show that this code has
the single-track property. Suppose that the words S0, S1, . . . , Sr−1 are written
in a vertical list to form an r × n binary array. Let C0,C1, . . . ,Cn−1 be the
columns of this array. Then, it is easy to see that j th track of the code is
Cj ,Cj+�,Cj+2�, . . . ,Cj+(n−1)� (with subscripts taken modulo n), formed by
the concatenation of the columns in this order. In particular, track 0 is just
C0,C�,C2�, . . . ,C(n−1)� and contains all the columns in some order. Now,
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since � and n are relatively primes, it follows that for every j we have that
j = mj� modulo n for some mj . Then, the j th track is the sequence

Cmj �,Cmj �+�,Cmj �+2�, . . . ,Cmj �+(n−1)�,

which is simply a cyclic shift of track 0. Hence, the code is a single-track Gray
code.

Example 7.2. For n = 5, the list of full-order necklaces [00001], [00011],
[10011], [11011], [11010], [10010], satisfies the conditions of Theorem 7.4 and
leads to a length 5, period 30, single-track Gray code. The code is written in a
5 × 30 array, where each column represents one codeword, as follows:

001111 000110 000000 011111 111100
000110 000000 011111 111100 001111
000000 011111 111100 001111 000110
011111 111100 001111 000110 000000
111100 001111 000110 000000 011111

.

Track 0 equals

0,0,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0

and the coordinate sequence (counting components from the top by 0,1,2,3,4) is

3,0,1,4,1,0,2,4,0,3,0,4,1,3,4,2,4,3,0,2,3,1,3,2,4,1,2,0,2,1. �

It is believed that whenever n is a prime, there exists an arrangement of the
2n−2

n
full-order necklaces of length n into a single-track Gray code of length n

and period 2n − 2. Such an arrangement can be found relatively easily by com-
puter search up to n = 19.

Example 7.3. For n = 7, there are 18 full-order necklaces. These necklaces can
be ordered as follows to satisfy the conditions of Theorem 7.4 and to lead to a
length 7, period 126, single-track Gray code

S0 = [0000001] S9 = [0110101]
S1 = [0000101] S10 = [0110111]
S2 = [0001101] S11 = [0100111]
S3 = [0001001] S12 = [0100101]
S4 = [1001001] S13 = [1100101]
S5 = [1011001] S14 = [1000101]
S6 = [1111001] S15 = [1000111]
S7 = [1111101] S16 = [0000111]
S8 = [0111101] S17 = [0000011]

.

�
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For a self-dual word S = [X X̄] we have that for each i, EiS = [Y Ȳ ] for
some Y . Hence, we have the following lemma, which is an immediate conse-
quence of the discussion on the CCRn in Chapter 3.

Lemma 7.5. If S1 and S2 are two inequivalent full-order self-dual necklaces of
length 2n, then 2n distinct n-tuples appear as subsequences of consecutive bits
in each of S1 and S2, while none of the n-tuples appearing in S1 appear in S2.

Proof. The claim follows immediately from the observation that one n-tuple
in the self-dual sequence of period 2n determines the whole self-dual se-
quence.

Lemma 7.5 leads to the following idea for constructing single-track Gray
codes. The idea is described in the following theorem whose proof is analogous
to the proof of Theorem 7.4.

Theorem 7.5. Let S0, S1, . . . , Sr−1 be r binary self-dual pairwise inequiv-
alent full-order sequences of length 2n. For each i = 0,1, . . . , r − 1, let
Si = [s0

i , s1
i , . . . , s2n−1

i ] and define

Fj Si = [sj
i , s

j+1
i , . . . , s

j+n−1
i ],

where superscripts are taken modulo 2n.
If for each 0 ≤ i < r − 1, Si and Si+1 differ in exactly two coordinates,

and there also exists an integer �, where g.c.d.(�,2n) = 1, such that Sr−1 and
E�S0 differ in exactly two coordinates, then the following words form a length n,
period 2nr single-track Gray code.

F0S0 F0S1 · · · F0Sr−1

F�S0 F�S1 · · · F�Sr−1

F2�S0 F2�S1 · · · F2�Sr−1

...
...

...
...

F(2n−1)�S0 F(2n−1)�S1 · · · F(2n−1)�Sr−1

.

Example 7.4. For n = 5, the list of full-order self-dual inequivalent necklaces
[0000011111], [0100010111], [0100110110], satisfies the conditions of Theo-
rem 7.5 and leads to a length 5, period 30, single-track Gray code. The code is
written in a 10 × 30 array, where the first five entries of each column represent
one codeword, as follows (but also any other 5 consecutive rows can represent
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such a Gray code).

000011 000000 001111 100111 111110
011000 000001 111100 111111 110000
000000 001111 100111 111110 000011
000001 111100 111111 110000 011000
001111 100111 111110 000011 000000
111100 111111 110000 011000 000001
100111 111110 000011 000000 001111
111111 110000 011000 000001 111100
111110 000011 000000 001111 100111
110000 011000 000001 111100 111111

.

Track 0 equals

0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0

and the coordinate sequence (counting components from the top by 0,1,2,3,4) is

1,4,1,0,3,0,4,2,4,3,1,3,2,0,2,1,4,1,0,3,0,4,2,4,3,1,3,2,0,2.

�

Problem 7.1. Provide a construction for a single-track Gray code of length p,
p prime, and period 2p − 2, based on full-order necklaces or self-dual full-order
necklaces of period 2p, or show some p for which such a code does not exist.
Similarly, we have the same problem for period 22p −4 with self-dual full-order
necklaces of period 4p.

We will now present a recursive construction based on Theorem 7.5. This
construction can be compared with the construction of binary de Bruijn se-
quences of minimal complexity presented in Section 5.2. Let S0, S1, . . . , Sr−1
be the set of all inequivalent full-order self-dual necklaces of length 2n and let
Y(n) denote the set of 2n−1 elements consisting of the 2n−1 − 1 words of the
form (1, y1, . . . , yn−1), where at least one of the yis is a zero, together with the
word (0n). For each S = [X,X̄] of length 2n and for Y ∈ Y(n), let

SY = [Y X + Y Ȳ X + Ȳ ].
The proof of the following lemma is along the same lines as the proof of

Lemma 5.13.

Lemma 7.6. The set of sequences

r−1⋃

i=0

Si (n),
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where

Si (n) =
⋃

Y∈Y(n)

(Si)Y ,

contains 2n−1r inequivalent self-dual necklaces of length 4n.

We will continue the construction, but restrict ourselves to n, which is a
power of 2. When n is a power of 2, there are r = 2n

2n
inequivalent full-order self-

dual necklaces of length 2n and these contain all the n-tuples as subsequences.
Assume that S0, S1, . . . , Sr−1, the set of all inequivalent self-dual necklaces of
length 2n, are arranged so that the following three properties hold:

(C1) For each i, Si and Si+1, where subscripts taken modulo r , differ in exactly
two positions k and k + n.

(C2) Let diff∗(Si, Si+1) denote the first position on which Si and Si+1 differ
and let

Dn � {diff∗(Si, Si+1) : 0 ≤ i < r − 2}.
Then,

Dn = {0,1, . . . , n − 1}.
(C3) E(Sr−2) differs in exactly two positions from S0. More precisely, we re-

quire that

Sr−2 = [0n−410001n−40111]
Sr−1 = [0n−410011n−40110]
S0 = [0n−400011n−41110]

.

Example 7.5. For n = 8, the 16 self-dual necklaces of length 16 are ordered
below so that Properties (C1), (C2), and (C3) hold

S0 = [0000000111111110] S8 = [1111000100001110]
S1 = [1000000101111110] S9 = [1101000100101110]
S2 = [1000001101111100] S10 = [1101100100100110]
S3 = [1100001100111100] S11 = [0101100110100110]
S4 = [1100011100111000] S12 = [0101100010100111]
S5 = [1101011100101000] S13 = [0100100010110111]
S6 = [1101010100101010] S14 = [0000100011110111]
S7 = [1111010100001010] S15 = [0000100111110110]

.

�
Lemma 7.7. For any Y ∈ Y(n) the list of words

S(Y ) = (S0)Y , (S1)Y , . . . , (Sr−1)Y ,

satisfies Property (C1).
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Proof. If Xi and Xi+1 differ in exactly one position, then so do [Y Xi + Y ] and
[Y Xi+1+Y ]. This implies that [Y Xi+Y Ȳ Xi+Ȳ ] and [Y Xi+1+Y Ȳ Xi+1+Ȳ ]
differ in exactly two positions that are 2n positions apart. Since this is true for
each i, 0 ≤ i ≤ r − 1, it follows that the list S(Y ) satisfied Property (C1).

Lemma 7.8. If Y and Z differ in exactly one position d and diff∗(Si, Si+1) = d ,
then the list of words

(Si)Y , (Si+1)Z, (Si+2)Z, . . . , (Sr−1)Z, (S0)Z, . . . , (Si)Z, (Si+1)Y ,

satisfies Property (C1) above. The first and the last pair of words differ only in
positions d and d + 2n, while for every n ≤ d ′ < 2n, some pair of consecutive
words in the list differ only in positions d ′ and d ′ + 2n.

Proof. If Si = [Xi X̄i], where Xi and Xi+1 differ in exactly position d and Y

and Z also differ exactly in position d , then Xi + Y = Xi+1 + Z and hence
[Y Xi +Y ] and [Z Xi+1 +Z] differ exactly in position d . Similarly, [Z Xi +Z]
and [Y Xi+1 +Y ] differ exactly in position d . The statement about position n up
to 2n − 1 follows from the construction of the words (Sj )Z and Property (C2)
of S0, S1, . . . , Sr−1.

Lemma 7.9. If the set of self-dual necklaces of length 2n = 2m+1 can be ar-
ranged to satisfy Properties (C1), (C2), and (C3), then so can the set of self-dual
sequences of length 4n.

Proof. We start by forming the list of words S(Y ) for Y ∈ Y(n), as in
Lemma 7.7. Next, we merge these lists in the set {S(Y )} using Lemma 7.8.
We order the words of Y(n) as follows: we take Y0 = (0n), Yj = (1j 0n−j ),
1 ≤ j ≤ n−1, and Yn = (10n−21). Then, we order the remaining words of Y(n)

so that each Yi , i ≥ n, differs in exactly one position from some Yj , j < i. Note
that for 1 ≤ j < n, Yj differs from Yj−1 in position j − 1, while Yn differs
from Y1 in position n − 1.

Given an initial list S(Y0), assume that the lists S(Y1),S(Y2), . . . ,S(Y�−1)

have been successfully inserted into the main list. We will show now that S(Y�)

can also be introduced.
Now, there exists a word Yj with j < � such that Yj and Y� differ in exactly

one position, say d , and, for some 0 ≤ i < r − 2, there exist a pair of words
Si = [Xi, X̄i] and Si+1 = [Xi+1, X̄i+1] such that Xi and Xi+1 also differ in
exactly position d . We claim that the words

SiYj
= [Yj Xi + Yj Ȳj Xi + Ȳj ]

and

S(i+1)Yj
= [Yj Xi+1 + Yj Ȳj Xi+1 + Ȳj ]

still lie adjacent in the main list. For if not, then some list S(Ym), m < �, must
have been inserted between them. This only occurs if Yj and Ym differ in exactly
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position d . This, in turn, implies that Y� = Ym, a contradiction, since these words
are distinct. Therefore we can insert a cyclic shift of the code S(Y�) between the
words SiYj

and S(i+1)Yj
using Lemma 7.8, extending the main list.

Applying this process, beginning with S(Y1) and ending with S(Y2n−1−1),
we obtain a list of all 2n−1r inequivalent self-dual necklaces that obviously sat-
isfy Property (C1).

Observe that in the above procedure, we never insert any words in positions
between the last two words and the first word of the initial list S(Y0). These
three words are

[02n−4100012n−40111]
[02n−4100112n−40110]
[02n−4000112n−41110]

.

Thus these words remain the last two words and the first word of the final list,
so that the final list satisfy Property (C3).

Examining the last list inserted, we see that Lemma 7.8 guarantees that there
are pairs of consecutive words in the list that differ in positions n up to 2n − 1.
Moreover, from the choice of words Y0, . . . , Yn and Lemma 7.8, there are pairs
of consecutive words in the list that differ in positions 0 up to n − 1. Hence,
Property (C2) is satisfied.

An immediate consequence from Example 7.5 and Lemma 7.9 is the follow-
ing theorem.

Theorem 7.6. For every m ≥ 3, there exists an arrangement of the self-dual
sequences of length 2n = 2m+1 satisfying Properties (C1), (C2), and (C3).

For m ≥3 and n = 2m, let the list of words in Theorem 7.6 be S0,S1, . . . ,Sr−1,
where r = 2n

2n
. Consider the list S0, S1, . . . , Sr−2. Now, for each 0 ≤ i < r − 2,

Si and Si+1 differ in exactly two positions, while ESr−2 differs in exactly two
positions from S0. Thus Theorem 7.5 applies, with j = 2n − 1, to show:

Theorem 7.7. If n is a power of 2, n ≥ 8, then there exists a single-track Gray
code of length n and period 2n − 2n.

7.4 Rotating-table games

The next application that we consider shows that linear complexity can be used
to have a winning strategy in games. Consider the following game of two players
Alice and Bob seated by a rotating round table. The game starts when Alice (the
adversary) puts n drinking glasses evenly spaced on the edge of the table, such
that some of the glasses are in the upright position, and others are upside down.
The goal of Bob is to set all the glasses in the upright position, while Alice
tries to prevent him from doing so. The first round of the game starts when Bob
points to some of the glasses, and asks Alice to invert them. Next, Alice rotates
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the table, and then she inverts the glasses at the locations pointed out by Bob
(which might be different glasses, from those that were pointed out by Bob).
This completes the first round. The second round starts similarly, by having Bob
select a subset of the glasses to invert, and so forth.

We can view the n glasses on the table as a cyclic binary sequence of length n

of zeros (for upright glasses) and ones (for upside down). We can view the in-
structions of Bob also as a binary sequence, where one means to invert the glass
in the associated position and zero means to leave the glass as is. It can be
viewed as a cyclic sequence since the table is rotated that has the same effect
as having a cyclic shift in the positions of the glasses (or a cyclic shift on the
sequence chosen by Bob). The game continues in rounds as before, where at
the ith round (i ≥ 1), the position of the glasses on the table is represented by a
sequence Wi−1, and the new positions of the glasses are generated as a binary
sequence Wi , as follows:

1. Bob gives Alice a binary word called keyi . This word denotes which glasses
should be inverted after the table is rotated.

2. Alice selects an integer αi in the range between 0 and n − 1. This integer αi

indicates that the table should be rotated by 360αi

n
degrees. This implies that

Wi = Wi−1 + Eαi keyi .

Bob wins the game if he can force Alice to generate the sequence [0n]. For
which values of n does Bob has a winning strategy, and when he has a winning
strategy, what is the number of rounds required for his win? The game has two
versions: an open game and a blind game. Up to now, the open game has been
described. The blind game is the same as the open game, with one important
exception: Bob is blindfolded from the very beginning of the game. He should
point to the glasses that he wants to invert by sending a sequence of length n.

The blind game can be also described in a different way, which is more
convenient to handle. Since Bob receives no information during the game,
the sequence (key1, key2, . . . , keym) that he generates during the game de-
pends only on the number of glasses n. Therefore we can describe the blind
game as a one player game, in which Alice plays against the sequence
KEY = (key1, key2, . . . , keym) as follows:

• Initially, the sequence KEY is given to Alice.
• Using this sequence, Alice generates the sequence S = W0,W1, . . . ,Wm as

follows:

1. Choose an arbitrary vector as W0.
2. Given Wi−1, then select an integer αi in the range [0,1, . . . , n − 1], and

set Wi = Wi−1 + Eαi keyi .

• Alice loses the game if one of the Wis is the sequence [0n].
A sequence KEY is a universal sequence if Alice must lose the game when

playing against this sequence.
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Lemma 7.10. If Bob has a winning strategy, then the number of glasses n is a
power of 2.

Proof. Assume first that n is odd. Alice can start with the sequence [10n−1]
(the initial status of the glasses on the table) and Wi−1 has the subsequences
01 and 10. Since n is odd, it follows that keyi has the subsequence 00 or the
subsequence 11. This implies that Alice can have a 10 subsequence and a 01 sub-
sequence in Wi , if Wi−1 has such subsequence. Thus Bob cannot have a winning
strategy.

Assume now that n = 2mk, where k > 1 is an odd integer. Consider now
2m words of length k obtained from Wi−1, where the entries in the j th word,
0 ≤ j ≤ 2m − 1, are those that were in the same position j modulo 2m in Wi−1.
Consider similarly 2m words of length k obtained from keyi , where the entries
in the j th word, 0 ≤ j ≤ 2m − 1, are those that were in the same place j mod-
ulo 2m in keyi . Alice starts again with the sequence [10n−1], where the one is in
position 0. Consider now the words of length k obtained from Wi−1 and keyi .
A word obtained from the positions that are congruent to 0 modulo 2m should
have the subsequences 01 and 10. W ′

0, obtained from those positions of W0, is
[10k−1] and hence it has these subsequences. Assume now that W ′

i−1, obtained
from those positions of Wi=1, has these subsequences. In the associated words
of keyi , we have a subsequence 00 or a subsequence 11. Hence, with the right
cyclic shift Alice can make sure that W ′

i , will have the required subsequences.
We continue with the arguments as in the case where n is odd. Thus Bob cannot
have a winning strategy.

Therefore Bob can have a winning strategy only if n is a power of 2.

When n is a power of 2 we will show now that the necessary condition of
Lemma 7.10 are also sufficient for both the open game and the blind game. For
the open game, the strategy that Bob should use is very simple and it is based on
the linear complexity of the sequence S that represents the glasses on the round
table. When Bob sees the sequence S associated with the status of the glasses
on the table, he chooses the same sequence (or another sequence with the same
linear complexity) to change the status of the glasses on the table. Assume that
T is the sequence chosen by Bob. Alice makes a shift by i to the sequence T

and changes the status of the glasses in the positions with a one in EiT . By
Lemma 5.5 we have that the linear complexity of the sequence associated with
the new status of the glasses on the table, EiT + S, has linear complexity less
than the linear complexity of S. This implies that the complexity of the sequence
associated with the glasses on the table is reducing from one round to another.
When this complexity is zero all the glasses will be in their upright position and
Bob will win the game. This will be done using at most c(S) rounds, where c(S)

is the linear complexity of the initial sequence of glasses on the table.
For the blind game, we will first show that a universal sequence must contain

all the nonzero words of length n.
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Lemma 7.11. If KEY = (key1, key2, . . . , keym) is a universal sequence, then
in every play of the game all the nonzero binary words must be generated and
hence m ≥ 2n − 1.

Proof. Assume, on the contrary, that KEY is a universal sequence, but a nonzero
binary word Y is not generated in some play of the game. We will show that in
this case, Alice can win the game. Assume further that the first word generated
by Alice in this play, which will be called the original play, was W = W0.

Consider now another play of the game, in which Alice makes the exact
moves as in the original play, with one exception. The first word that Alice
generates is not W , but it is W −Y . It is easy to verify that a binary word X −Y

is generated in the current play if and only if the word X is generated in the
original play. In particular, Y −Y = 0n is not generated in the current game. This
means that KEY is not a universal sequence, a contradiction. Thus every nonzero
binary word is generated by a universal sequence and hence m ≥ 2n − 1.

Now, we will describe a universal sequence of length 2n−1 that is an optimal
sequence by Lemma 7.11. The construction is defined recursively and the proof
that it is indeed a universal sequence will be done inductively in n + 1 steps,
where at step i, 0 ≤ i ≤ n, we construct a sequence KEYi of length 2i − 1,
having the following properties:

P1i : All the words in KEYi are of linear complexity at most i.
P2i : Let W0 be the first word generated by Alice. If c(W0) ≤ i, then Alice must

lose the game when playing against KEYi .

By property P2n we have that the sequence KEY = KEYn is universal.
KEY0 is the empty sequence of length 0 and hence it satisfies properties P10

and P20. Assume now that we are given a sequence KEYi of length �i = 2i − 1
that satisfies P1i and P2i for some 0 ≤ i ≤ n− 1. A sequence KEYi+1 of length
2i+1 − 1 that satisfies properties P1i+1 and P2i+1 is constructed as follows.

If X is an arbitrary word such that c(X) = i + 1, then set

KEYi+1 := KEYi ◦ X ◦ KEYi ,

where A ◦ B is the sequence of keys obtained by taking the keys in A followed
by the keys in B.

It is easy to verify that �i+1, the length of KEYi+1, is 2�i + 1 = 2i+1 − 1. It
remains to show that properties P1i+1 and P2i+1 are satisfied.

Property P1i+1 holds since by property P1i all the words in KEYi have com-
plexity at most i and the complexity of X is i + 1. To see that property P2i+1 is
satisfied, assume first that c(W0) ≤ i. Then, by the induction hypothesis, Alice
loses the game during the first application of KEYi on W0. Thus we are left
with the case where c(W0) = i + 1. Now, after Alice plays only against KEYi ,
by Lemma 5.5 we have that the word Y that is generated at the end of the process
is of complexity i + 1. By Lemma 5.5 we also have that c(X + Y) < i + 1 since
c(Y ) = c(X) = i + 1. Hence, after Alice plays against KEYi ◦ X, the word W
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that is generated has complexity at most i. Now, again we use the induction
hypothesis, and after Alice takes W and continues to play against KEYi , by
property P2i Alice loses the game. Thus KEYi ◦ X ◦ KEYi is a universal se-
quence against a word with complexity at most i + 1 and P2i+1 is satisfied.

7.5 Notes

Linear shift registers and in particular M-sequences have many applications.
We have presented in this chapter only a small number of examples for these
applications. The same, on a somewhat smaller scale, is true for nonlinear shift-
register sequences. The same is also true for the de Bruijn graph, de Bruijn
cycles, linear complexities of sequences, and balanced sequences. For example
Hsish [14,15] suggested that de Bruijn sequences can be used for structured
light patterns that can acquire the range data of an object with the use of single
camera for three-dimensional imaging systems. It is intriguing to know what
new applications for all these concepts the future will bring.

Section 7.1. Stream ciphers is the most ancient method in encoding a message
for security. Although today many advanced technologies are known, stream
ciphers still have an important role in this area. For some work that was done on
stream ciphers, the reader can be referred to the work of Klein [20], Lempel [23],
and Rueppel [31].

Section 7.2. VLSI testing was considered to be an important problem that re-
ceived the attention of several companies during the 1980s. The discussion
in this section is mainly due to the direction and the results suggested by
Lempel and Cohen [24] who considered only primitive polynomials. The gen-
eralization for irreducible polynomials taken in this section demanded some
different proofs. A slightly different approach, using M-sequences, was sug-
gested by Barzilai, Coppersmith, and Rosenberg [3] and Tang and Chen [38].
The approach was generalized to other LFSRns by Hollmann [17]. Other
techniques for such VLSI testing were suggested by Kagaris Makedon, and
Tragoudas [19], Rajski and Tyszer [30], Seroussi and Bshouty [35], and Wang
and McCluskey [39].

Section 7.3. Single-track codes are used in high-technology companies using
for example sensitive sensing instruments, instruments for saving energy, and
even instruments for drilling oil.

Single-track Gray codes were introduced first in Hiltgen, Paterson, and Bran-
destini [16] and were further studied by Etzion and Paterson [8] and Schwartz
and Etzion [34]. The basic definitions and Theorem 7.2 were given by Hiltgen,
Paterson, and Brandestini [16]. The construction of single-track Gray codes of
length m = 2n, period 2m − 2m is due to Etzion and Paterson [8] who also
gave several constructions based on full-order sequences. The proof for the
nonexistence of single-track Gray codes of length m = 2n, period 2m appears
in Schwartz and Etzion [34] who also proved some properties and gave several
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constructions for single-track Gray codes. The material in this section is taken
from these three papers.

In Schwartz and Etzion [34] there is another recursive construction based
on the existence of two single-track Gray codes, one of length n and period
2n − cn and a second one of length k and period 2k − ck , obtained by full-
order necklaces ordering, with certain properties (which are usually not difficult
to satisfy). The construction is again obtained by an appropriate ordering of
necklaces has length nk and period 2nk − cnk , where

cnk = 2nk(ck2−k + cn2−n − ckcn2−(n+k)).

If we further assume that we have sequences of single-track Gray codes such
that

limn→∞
cn

2n
= 0 limk→∞

ck

2k
= 0,

then we have

limn,k→∞
cnk

2nk
= 0.

Consider now n = 2k + 1 and the vertices of the n-cube whose weights are k

or k + 1. Is there a Hamiltonian cycle in the n-cube passing only these vertices?
The middle-levels problem is to order these binary words in a way that every two
consecutive words differ in exactly one coordinate. This implies that in any two
consecutive words, there is one word of weight k and one word of weight k + 1.

The middle-levels conjecture was presented by Buck and Wiedemann [5],
Havel [13] and extensive work was done on the problem over the years, e.g.,
see the papers of Alpar-Vajk [1], Johnson [18], Savage and Winkler [33], and
Shields, Shields and Savage [36]. The middle-levels conjecture was eventually
solved by Mütze [27].

All the necklaces that contain the vertices of the middle levels are full-
order necklaces since g.c.d.(k,2k + 1) = g.c.d.(k + 1,2k + 1) = 1. An interest-
ing question is whether there exists a solution for the middle-levels problem that
yields a single-track Gray code? The idea of constructing a single-track Gray
code based on full-order necklaces (see Theorem 7.4) might also work here.

Example 7.6. Consider n = 5 and the following list with the 4 necklaces of
length 5 and weight 2 or 3.

1) [00011]
2) [00111]
3) [00101]
4) [10101]

.

Clearly, E[10101] = [01011] and [00011] differ exactly in the second position
and hence this ordering yields a single-track middle-levels Gray code of length 5
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and period 20 given by the following 5 × 20 array.

0001 1111 1100 0111 0000
0000 0001 1111 1100 0111
0111 0000 0001 1111 1100
1100 0111 0000 0001 1111
1111 1100 0111 0000 0001

.

�

Example 7.7. Another example is the following list with the 10 necklaces of
length 7 and weights 3 or 4.

1) [0000111]
2) [0001111]
3) [0001101]
4) [0011101]
5) [0011001]
6) [1011001]
7) [1011000]
8) [1011010]
9) [1001010]
10) [1001011]

.

Clearly, E[1001011] and [0000111] differ exactly in the third position and hence
this ordering yields a single-track middle levels Gray code of length 7. �

Contrary to the unsolved Problem 7.1, there is a construction for the middle-
levels problem based on all the full-order necklaces. This solution was presented
by Merino, Mička, and Mütze [26].

We have proved that there is no length n single-track Gray code with pe-
riod 2n. If n is a sum of two powers of 2, it was proved in Gregor, Merino, and
Mütze [12] that there exists a length n Gray code with period 2n with exactly
two different tracks.

In general, Gray codes were extensively studied in the literature. They were
found by Gray [11] and introduced later in Gilbert [10] as a listing of all the
binary n-tuples in a list such that any two successive tuples in the list differ in
exactly one position.

Finally, for an excellent survey on Gray codes, the interested reader is re-
ferred to the work of Savage [32] that was extended and updated later by
Mütze [28].

Different generalizations for the concept of Gray codes have been given over
the years. Such generalizations include the arrangements of other combinatorial
objects in a such way that any two consecutive elements in the list differ in
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some pre-specified, usually small way, as was considered by Chung, Diaconis,
and Graham [6].

Section 7.4. Combinatorial games have been very popular in mathematics over
the years with an excellent survey given by Fraenkel [9] and attracted computer
scientists when computer science started as a discipline. An excellent series of
four books were written by Berlkamp, Conway, and Guy [4]. Martin Gardner
was known for his puzzles given in the column “Recreational Mathematics”
published in Scientific American. Indeed, a rotating-table game was suggested
by Lasser and Ramshaw [22] in a book dedicated to him, where several versions
and the history of the game were presented. The original version was given
by Lewis and Willard [25]. The version presented in this section is due to Bar
Yehuda, Etzion, and Moran [2]. A sequence of follow-up works on this problem
can be found in Ehrenborg and Skinner [7], Korsky [21], Rabinovich [29], and
Sidana and Sharma [37].

The rotating-table game described in this section was generalized by Bar
Yehuda, Etzion, and Moran [2] for words over alphabets of arbitrary size σ > 2,
as follows. Instead of n drinking glasses, we now have on the rotating table n

roulettes of σ sides each. Denote the sides of the roulettes by 0,1, . . . , σ − 1.
Each round starts when Bob selects some of the roulettes, and for each selected
roulette, Bob also selects an angle between 0 and σ−1

σ
360 degrees, by which it

should be rotated. After receiving these instructions, Alice first rotates the table,
and then she follows instructions of Bob regarding the roulettes, which after the
rotation are at the locations originally selected by Bob. Bob wins the game if
he can force Alice to set all the roulettes in a way that the side of each roulette
that is closest to the center of the table is the one marked by a zero. Describing
this in the notation of words over the alphabet {0,1, . . . , σ − 1}, we obtain a
description similar to the one for binary words, where the addition is performed
modulo σ . The necessary condition for a winning strategy for Bob is generalized
as follows.

Theorem 7.8. If Bob has a winning strategy, then there exists a prime p such
that σ = pα and n = pβ for some integers α > 0 and β > 0.

A sequence KEY is a (σ,n) universal sequence if Alice must lose the game
when playing against this sequence. Lemma 7.11 can be generalized easily using
the same proof as follows.

Lemma 7.12. If KEY = (key1, key2, . . . , keym) is a (σ,n) universal sequence,
then in every play of the game all the nonzero words, over {0,1, . . . , σ − 1},
must be generated and hence m ≥ σn − 1

Theorem 7.9. Bob can win the rotating table game (open or blind) if and only
if n = pβ and σ = pα , where α,β ≥ 1.

It is interesting to note that the proofs of these claims are based on a gener-
alization of the depth of sequences over the ring Zpα rather than over a field.
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Chapter 8

DNA sequences and DNA codes
The genome assembly and DNA storage

In this chapter, we will consider applications of sequences and the de Bruijn
graph for concepts associated with DNA. The applications are mainly in two di-
rections, the Human Genome Project and DNA storage. We will describe these
two applications and how the de Bruijn graph and its sequences can be used
for these two applications. Three combinatorial structures associated with these
two applications and other concepts of DNA and RNA will be also discussed:
constant-weight de Bruijn sequences, reconstruction of a sequence from its sub-
sequences, and non-overlapping codes.

Section 8.1 is devoted to the human genome project, a project that was con-
sidered towards the end of the 1980s. A large number of subsequences from
a genome sequence have to be merged into the original genome. This process,
which is called DNA sequencing in the genome assembly, was the main target of
the project. Several methods were developed for this purpose. One of the most
successful methods is based on paths and cycles in the de Bruijn graph. The
basic elements of the project and the de Bruijn graph method will be discussed
in this section.

A somewhat dual problem is to reconstruct a codeword of a given code from
a subset of its subsequences. Such a problem has an important application in one
of the most fascinating storage media of the 21st century, namely DNA storage.
This storage media is the topic of Section 8.2. We will give a short introduction
to this research area. The next three sections will be devoted to graphs and codes
associated with sequences related to biology, e.g., DNA and RNA.

Section 8.3 is devoted to cycles that cover a certain subset of edges in Gn,
where the goal is to have a path that represents all the words of length n and
weight w. Such a path based on the vertices of Gn does not exist. However, the
words of length n and weight w can be represented by the words of length n− 1
and weights w − 1 or w since there is a unique way to complete them to words
of length n and weight w by appending one more bit. Similarly, removing
the last bit of all the words of length n and weight w yields all the words of
length n − 1 and weights w − 1 or w. A graph, whose edges represent all the
words of length n + 1 and weights between w1 and w2 and their associated ver-
tices in Gn, is constructed. In this graph, there exist Eulerian cycles, as will be
proved in this section. The associated sequences will be called constant-weight
de Bruijn sequences.

Sequences and the de Bruijn Graph. https://doi.org/10.1016/B978-0-44-313517-0.00014-7
Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
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In Section 8.4, a reconstruction problem of a sequence from its subsequences
will be discussed. In both DNA sequencing and DNA storage we are given a
set of subsequences of a long sequence and we have to reconstruct the long
sequence. This is the reconstruction problem that is important mainly for the
genome assembly.

Overlapping and non-overlapping of codewords is also an important con-
cept in the reconstruction of a sequence from its subsequences. Section 8.5 will
consider codes where no two words are overlapping.

8.1 The genome assembly

The Human Genome Project (HGP) was a very ambitious project in the 20th
century. The target of the project was to have a complete mapping of all the
genes of a human being. The genome is the set of all our genes. The HGP has
revealed that there are more than 20 000 human genes. The impact of the HGP
was incredible, but we will concentrate on the application of the de Bruijn graph
to the project.

We start with some basic concepts used to understand the foundations of the
problem. We have no intention of obtaining a deep knowledge and understand-
ing of the biology behind all the concepts. A nucleotide is the basic building
block of nucleic acid. DNA and RNA are polymers made of long chains of nu-
cleotides. Deoxyribonucleic Acid (DNA) contains four letters (amino acids):

• A - Adenine;
• T - Thymine;
• C - Cytosine;
• G - Guanine.

These letters come in pairs {A,T } and {C,G}, as depicted in Fig. 8.1, where
a schematic structure of DNA is depicted. Each one of the components has its
chemical structure.

FIGURE 8.1 DNA with its amino acids.
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Genome assembly (and its DNA sequencing) is a computational process that
receives as an input a large number of short subsequences from a long DNA
sequence. The computational process deciphers these short subsequences and
produces as an output the original representation of the chromosome of the long
DNA sequence. We can distinguish between three types of solutions, i.e., tech-
niques for the computational process.

1. Greedy.
2. Overlap layout consensus (OLC), which is based on a Hamiltonian path.
3. A de Bruijn graph (DBG), which is based on an Eulerian path in a subgraph

of the de Bruijn graph.

The greedy computational process receives the short subsequences (called
strands) and tries to find overlaps of the prefix from one strand with a suffix
from another strand to form the long DNA chromosome.

Example 8.1. Assume we have the following four strands: CAACCGTAG,
AGTTTCCA, CAATTCAGT, and AGTGTACACAA. These four strands induce
the following four overlaps:

• the suffix of length 2 of the strand CAACCGTAG with the prefix of length 2
of the strand AGTTTCCA.

• the suffix of length 2 of the strand AGTTTCCA with the prefix of length 2 of
the strand CAATTCAGT.

• the suffix of length 3 of the strand CAATTCAGT with the prefix of length 3
of the strand AGTGTACACAA.

• the suffix of length 3 of the strand AGTGTACACAA with the prefix of length
3 of the strand CAACCGTAG

We combine these four overlaps (in this given order) to obtain the circular
genome

CAACCGTAGTTTCCAATTCAGTGTACA.

It is readily verified that each strand is a subsequence in this circular genome of
length 27 that can be written in any of its cyclic shifts, e.g.,

AGTTTCCAATTCAGTGTACACAACCGT

or

CAATTCAGTGTACACAACCGTAGTTTC.

However, there are also other overlaps between these four strands. Consider
now the following four overlaps:

• the suffix of length 2 of the strand CAACCGTAG with the prefix of length 2
of the strand AGTGTACACAA.

• the suffix of length 3 of the strand AGTGTACACAA with the prefix of
length 3 of the strand CAATTCAGT.
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• the suffix of length 3 of the strand CAATTCAGT with the prefix of length 3
of the strand AGTTTCCA.

• the suffix of length 2 of the strand AGTTTCCA with the prefix of length 2 of
the strand CAACCGTAG.

We combine these four overlaps (in this given order) to obtain another circular
genome whose length is also 27 as follows:

CAACCGTAGTGTACACAATTCAGTTTC.

�

The greedy algorithm might be sometimes efficient and can produce the cor-
rect genome, but as we saw in Example 8.1 it might produce different genomes,
so the goal is to have a better systematic algorithm.

Example 8.2. Consider, for example, the circular genome depicted in Fig. 8.2,
where the amino acids (DNA letters) are read from left to right (clockwise)

FIGURE 8.2 Short-reads sequencing from a circular genome.

The circular genome can be read as AACGTTGATCGGGTAC. Consider
now the eight short reads of length 6 for sequencing: AACGTT, CGTTGA,
TTGATC, GATCGG, TCGGGT, GGGTAC, GTACAA, and ACAACG. Con-
sider now the following large overlaps:

• the suffix of length 4 of GATCGG with the prefix of length 4 of TCGGGT.
• the suffix of length 4 of TCGGGT with the prefix of length 4 of GGGTAC.
• the suffix of length 4 of GGGTAC with the prefix of length 4 of GTACAA.
• the suffix of length 4 of GTACAA with the prefix of length 4 of ACAACG.
• the suffix of length 4 of ACAACG with the prefix of length 4 of AACGTT.
• the suffix of length 4 of AACGTT with the prefix of length 4 of CGTTGA.
• the suffix of length 4 of CGTTGA with the prefix of length 4 of TTGATC.
• the suffix of length 4 of TTGATC with the prefix of length 4 of GATCGG.

From these eight overlaps we construct an overlap graph depicted in Fig. 8.3
and the circular genome sequence GATCGGGTACAACGTT by the order of
the edges in the graph. This genome is a cyclic sequence of the genome in
Fig. 8.2.
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FIGURE 8.3 The overlap graph.

�
Although we have constructed the correct circular genome in Example 8.2,

we might have some practical problems that can cause the production of an
incorrect genome. These problems can be:

1. Not all the short subsequences are read. In this case, the number of overlaps
might not be enough to reconstruct the whole sequence of the genome.

2. The strands that are read might lead to a few different genomes.
3. There might be errors in the reads, which can produce an incorrect genome,

especially if the reads are relatively long, although they are short compared
to the long genome.

4. Some of the reads might repeat and this can cause some confusion.
5. The genome might not be circular as in our current examples.

One partial solution can be obtained by using even shorter reads that will be
called k-mers. The two computational methods, the overlap layout consensus,
and the de Bruijn graph are based on this idea of the k-mers.

In the OLC method we construct a graph whose vertices are the k-mers and
the direct edges represent (k − 1)-mers. There is a directed edge u → v in the
graph if and only if the suffix of length k − 1 of the k-mer in u is the prefix of
length k − 1 of the k-mer in v. The goal now is to find a Hamiltonian cycle in
the graph. From such a Hamiltonian cycle the circular genome is derived. If the
genome is not circular, then instead of a Hamiltonian cycle, it will be required
to find a Hamiltonian path in the graph. We note that the graph is a subgraph of
the de Bruijn graph, but the labels on the edges are different in these two graphs.

Example 8.3. Consider the circular genome AACGTTGATCGGGTAC of Ex-
ample 8.2 and partition the reads into 3-mers that will represent the vertices of
the graph shown in Fig. 8.4. Every two vertices for which the suffix of length
two of the first equals the prefix of length two of the second are connected by
an edge from the first vertex to the second vertex. Now, the target is to find a di-
rected Hamiltonian cycle in the directed graph. If the genome was acyclic, then
only a Hamiltonian path had to be found.

In this example, each vertex is a 3-mer. There are two Hamiltonian cycles in
the graph leading to two possible circular genomes. The first one is the original
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one and the second one is AACGGGTTGATCGTAC. The numbers on the edges
in Fig. 8.4 indicate the order of the edges in these two cycles. To avoid this
ambiguity it is required to use larger k-mers. In our example, we use 4-mers for
the vertices. The appropriate graph is depicted in Fig. 8.5.

FIGURE 8.4 Two circular genomes found by the overlap layout consensus method.

FIGURE 8.5 A circular genome found by the overlap layout consensus method.

�
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We see from Example 8.3 that as the length of the genome is larger, it will
be required to use k-mers with larger k. However, the main problem in the pro-
cess of the OLC is that finding a Hamiltonian cycle (path) in a graph is an
NP-complete problem. It might not be difficult in some graphs (like in the de
Bruijn graph), but we have no indication when in the constructed graph (which
is a subgraph of the de Bruijn graph G4,n) there will be an efficient method to
find the Hamiltonian cycle. This is the motivation for the next computational
method of sequencing.

In the DBG method for the genome assembly, the target will be to find an
Eulerian cycle or an Eulerian path. The problem of finding such Eulerian cycles
and paths is solved in polynomial time using an algorithm, as was done in the
proof of Theorem 1.15. Again, we construct a graph whose edges are k-mers.
A directed edge e = u → v connects the vertex u that represents the prefix of e,
whose length is k−1, to the vertex v that represents the suffix of e, whose length
is k − 1. The goal now is to find an Eulerian cycle in the graph. From such an
Eulerian cycle the circular genome is derived. If the genome is not circular, then
instead of an Eulerian cycle, it will be required to find an Eulerian path in the
graph.

Example 8.4. Consider the same circular genome AACGTTGATCGGGTAC
as in Example 8.3. Using 3-mers for the edges and 2-mers for the vertices, we
generate the graph of Fig. 8.6. In this graph, it is required to find an Eulerian
cycle. Exactly as in Example 8.3 there will be two solutions based on two Eu-
lerian cycles. The numbers on the edges indicate the order of the edges in these
two cycles.

FIGURE 8.6 A circular genome found by the de Bruijn graph method.

�
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We note again that contrary to Example 8.4, taking larger k-mers will make it
more probable that the outcome will be exactly one possible genome sequence.

8.2 DNA storage codes

The storage demands for all computerized systems are increasing from year to
year. Writing some approximate figures for the storage demands will not be
productive. The reason is that any given figures will be dramatically increased
in just a few years, as is expected today. Hence, there is an important need for a
new storage medium that is small in size, reliable, and with a long lifespan. The
concept of DNA storage seems to be the solution to this problem for many years,
as its size is dramatically small and DNA is not damaged for tens of thousands
of years. There are of course the physical problems – how to store information
in such a medium, how to retrieve it, and how to correct possible errors while
reading from and writing into the medium? These are important problems, but
there is a strong belief that these problems will be solved with time.

Although the requirement for such storage is a problem that occurred during
the beginning of the 21st century, the concept of DNA storage was first sug-
gested in 1959 by Richard Feynman. The interest in storage solutions based on
DNA molecules was increased as a result of the HGP in which there was re-
markable progress in sequencing and assembly methods, as was discussed in
Section 8.1. Some techniques and computations have involved variations of the
de Bruijn graph.

As described in Section 8.1, DNA consists of four types of nucleotides: ade-
nine (A), cytosine (C), guanine (G), and thymine (T). A single DNA strand, also
called an oligonucleotide (oligo), is an ordered sequence of some combination
of these nucleotides. DNA strands can be synthesized chemically and modern
DNA synthesizers can concatenate the four DNA nucleotides to form almost any
possible sequence. This process enables us to store digital data in the strands.
The data can be read back with common DNA sequencers, while the most pop-
ular ones use DNA polymerase enzymes and are referred to as sequencing by
synthesis.

Progress in synthesis and sequencing technologies has paved the way for
the development of a non-volatile data-storage technology based on DNA
molecules. A DNA storage system consists of three important entities, as de-
picted in Fig. 8.7. The first is a DNA synthesizer that produces the strands
that encode the data to be stored in DNA. To produce strands with an accept-
able error rate, the length of the strands is typically limited to no more than
250 nucleotides. The second part is a storage container with compartments that
stores the DNA strands, however, unordered. Lastly, a DNA sequencer reads
back the strands and transfers them back to digital data. The encoding and de-
coding stages are two external processes to the storage systems that convert the
binary user data into strands of DNA in such a way that even in the presence of
errors (the 4 nucleotides colored in underlined red in Fig. 8.7), it will be pos-
sible to revert to the original binary data of the user. DNA as a storage system
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FIGURE 8.7 DNA-based storage system.

has several attributes that distinguish it from any other storage system. The most
outstanding one is that the strands are not ordered in the memory and thus it is
not possible to know the order in which they were stored. Usually, this constraint
can be overcome by using block addresses, also called indices, that are stored
as part of the strand. Note that this limitation already imposes the capacity of
DNA storage to be strictly less than 2 bits per nucleotide. This structure also
prevents random access to the stored data since it is not possible to read a given
strand in the pool and most of the proposed systems have to read the entire pool
to retrieve even a single strand.

This described model is quite complicated and deserves much thought about
the encoding and decoding to DNA strands and from DNA strands, respec-
tively. To store and retrieve information in DNA storage, one starts with the
desired information (sequences) encoded into a set of sequences over the alpha-
bet {A,T ,G,C} as those are the letters used for DNA. The DNA sequencer part
is somehow related to the DNA sequencing that was described in Section 8.1,
but there is at least one major difference between the two processes. While in
DNA sequencing, the DNA strands, which were called k-mers are produced
from a genome of an organ body, the DNA strands for DNA storage are pro-
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duced via the technology based on some codebook that is used for the DNA
storage system and they are synthesized.

Sequencing of DNA strands is usually preceded by polymerase chain re-
action (PCR) amplification that replicates the strands. Hence, every strand has
multiple copies and several of them are going to be read during sequencing.
Reading several copies for each strand is beneficial since it allows us to cor-
rect errors that may occur during this process. This setup falls under the general
framework of the reconstruction problem that has been studied over the years.
The first model, which is the most appropriate for DNA storage, assumes that the
information is transmitted over multiple channels, and the decoder that observes
all channel estimations uses this inherited redundancy to correct the errors. The
main studied problem was finding the minimum number of channels that guar-
antees successful decoding in the worst case. Here, our task is more difficult
since each strand has several copies. Hence, it follows that first we will need to
cluster together the read strands that belong to the same amplified strand and
only then correct these errors.

The reconstruction problem has many other variants that depend on the in-
put received for the reconstruction. The reconstruction problems, which are not
associated with multiple channels, are related more to the genome assembly,
but they were also mentioned in the context of DNA storage, and they are also
interesting from a combinatorial point of view. We will discuss one reconstruc-
tion problem in Section 8.4. We mention some other reconstruction problems in
Section 8.6 and concentrate now on some of the appropriate definitions and how
the de Bruijn graph can be used to solve the reconstruction problem. Although
our alphabet consists of the four letters A, C, G, and T, we will continue to make
most of our discussion with F2, but Fq will not be ignored.

For the �-mers (they are also called k-grams for DNA storage) of an acyclic
sequence S, let p(S;q, �) denote the profile vector of length q�, indexed by all
the words of Z�

q ordered lexicographically. The j th entry in p(S;q, �) denotes
the number of occurrences of the j th word of this lexicographic order in S.
The sum of entries in p(S;q, �) is n − � + 1 since there are n − � + 1 distinct
windows of length � in S. For DNA storage, there is some balancing between
the different symbols and hence we would like to have some kind of a de Bruijn
graph with “almost” balanced words. We continue to consider the binary case
but keep in mind that the generalization for a larger alphabet is required. This
generalization is usually straightforward. Let the de Bruijn graph Gn(w1,w2)

be the subgraph of Gn that contains all the edges whose weight is between w1

and w2 and the vertices that are connected by these edges.

Example 8.5. Consider the graph G3(2,3) presented in Fig. 8.8 and its se-
quence S = 01100110101 of length 11.

The profile vector of length 24 = 16 is

p(S;2,4) = (0,0,0,1,0,1,2,0,0,1,1,0,1,1,0,0).
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FIGURE 8.8 The graph G3(2,3).

The sequence S is associated with a path of length 8 in G3(2,3) as follows:

011
0110−→ 110

1100−→ 100
1001−→ 001

0011−→ 011
0110−→ 110

1101−→ 101
1010−→ 010

0101−→ 101.

�
Many questions can be asked just on the brief exposition that was given.

Given w1 and w2 such that 1 ≤ w1 < w2 ≤ n, is there an Eulerian cycle in
Gn(w1,w2)? Given a sequence S and its profile vector p(S;q, �), is the profile
vector sufficient to find the sequence S? The answer is no in many cases, but
there are many cases in which the profile vector is sufficient to reconstruct the
sequence S, as was discussed in Section 8.1. We should remember that while
in the DNA sequencing discussed in Section 8.1, there is exactly one unknown
sequence that was picked from some organ body, in DNA storage the sequence
required to be reconstructed was taken from a codebook that contains many
sequences known in advance, but still it is not an easy task to reconstruct the
sequence (codeword) taken from the codebook.

Example 8.6. Assume first that the codebook contains the 22n−1−n span n

acyclic de Bruijn sequences (each of length 2n + n − 1 starting with n zeros)
and we consider �-mers with � = n + 1. For each sequence S in the codebook,
the profile vector p(S;2, n + 1) of length 2n+1 has exactly 2n nonzero entries,
all equal to one. If S is a sequence from the codebook, then we can form a unique
truth table that consists of 2n rows (the first n bits of the edge is the state and the
last bit is the result of the feedback function for these n bits). Each (n + 1)-mer
defines exactly one row in the truth table. This immediately implies that we can
reconstruct any de Bruijn sequence taken from the codebook.

Now, if the codebook contains again the 22n−1−n span n acyclic de Bruijn
sequences, starting with n zeros, and we consider �-mers with � = n. The profile
vector p(S;2, n) of length 2n and all its 2n entries are nonzero, all equal to one.
Therefore we will not be able to distinguish between any two sequences of the
codebook as they all have the same profile vector. �

Example 8.6 shows that we have to be careful in choosing the codebook
and the value of � for the �-mers. However, more parameters force the chosen
codebook and other parameters of the DNA storage system. This is beyond our
exposition, but it will be also briefly discussed in Section 8.6.
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8.3 Constant-weight de Bruijn sequences

The first goal of this section is to form a sequence from the de Bruijn graph Gn

that contains all the words of length n and weight w. This is possible only when
w ∈ {0,1, n−1, n}. Therefore we will achieve this goal with a simple correspon-
dence between the words in the path and the words of length n and weight w.
By simple combinatorial arguments, we can see that the words of length n − 1
and weights w − 1 or w can represent all the words of length n and weight w.
This can be also easily derived from the combinatorial identity

(
n

w

)
=

(
n − 1

w

)
+

(
n − 1

w − 1

)
.

A word of length n − 1 and weight w is mapped to a word of length n

and weight w by appending a zero to its end. A word of length n − 1 and
weight w − 1 is mapped to a word of length n and weight w by appending a
one to its end. A word of length n and weight w is mapped to a word of length
n − 1 and weight either w − 1 or w by removing its last entry.

The associated problem is whether Gn(w1,w2), where w1 < w2 has an
Eulerian cycle? An edge of Gn(w1,w2) represented by the (n + 1)-tuple
(x0, x1, . . . , xn−1, xn) is directed from the vertex (x0, x1, . . . , xn−1) to the ver-
tex (x1, . . . , xn−1, xn). Since the edge (x0, x1, . . . , xn−1, xn) has any weight
between w1 and w2, it follows that the vertices can have any weight between
w1 − 1 and w2. A vertex (z1, z2, . . . , zn) with weight w2 can have only one in-
edge (which starts with a zero) and only one out-edge (which ends with a zero)
to avoid an edge whose weight is larger than w2. A vertex (z1, z2, . . . , zn) with
weight w1 − 1 can have only one in-edge (which starts with a one) and only
one out-edge (which ends with a one) to avoid an edge whose weight is smaller
than w1. A vertex (z1, z2, . . . , zn) with weight between w1 and w2 − 1 has no
constraints on its in-edges and out-edges since its incident edges in any case will
be with weights between w1 and w2. Hence, each such vertex has in-degree two
and out-degree two. Therefore we have

Lemma 8.1. The vertices of Gn(w1,w2) can have any weight between w1 − 1
and w2. The in-degree of each vertex of Gn(w1,w2) is equal to its out-degree.

Given Lemma 8.1 and Theorem 1.15, to prove that there exists an Eule-
rian cycle in Gn(w1,w2) we have only to prove that the graph Gn(w1,w2)

is a strongly connected graph. Consider a possible path from a vertex x =
(x1, x2, . . . , xn) to a vertex z = (z1, z2, . . . , zn). Assume that the first bit in
which x and z differ is bit i, i.e., xi �= zi and xj = zj for 1 ≤ j < i. First, we
will show a path from x = (x1, x2, . . . , xn) to (z1, z2, . . . , zi , y1, . . . , yn−i ) for
some y1, . . . , yn−i . The proof will continue iteratively when in the next step we
consider a path from (z1, z2, . . . , zi , y1, . . . , yn−i ) to z = (z1, z2, . . . , zn). In the
last step, the path will end at the vertex z = (z1, z2, . . . , zn).
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For the first step, we distinguish between three cases depending on whether
the weight of x is w1 − 1, between w1 and w2 − 1, or w2.
Case 1: If w1 ≤ wt(x1, x2, . . . , xn) ≤ w2 − 1, then consider the path defined by
the sequence x1, x2, . . . , xn, z1, . . . , zi−1, zi (where each of the n + 1 consec-
utive bits define an edge and each n consecutive bits define a vertex) and the
claim is proved since the weight of each vertex, with the possible exception of
the last one, is the same as the weight of x. The weight of the last vertex is be-
tween wt(x) − 1 ≥ w1 − 1 and wt(x) + 1 ≤ w2, which is in the required range.
The path can be continued with any n− i edges, from Gn(w1,w2), to obtain the
required result.
Case 2: If wt(x1, x2, . . . , xn) = w1 − 1, then we distinguish again between two
cases depending on whether xi = 0 or xi = 1.

• If xi = 0 and zi = 1, then consider the path defined by the sequence
x1, x2, . . . , xn,1, z1, . . . , zi−1, zi and the claim is proved since the weight of
each vertex on this path is either wt(x) = w1 − 1 or wt(x) + 1 = w1. The
path can be continued with any n − i edges, from Gn(w1,w2), to obtain the
required result.

• If xi = 1 and zi = 0, then we claim that there exists a j , i < j ≤ n, with
xj = 0. If no such j exists, then wt(x) = wt(x1, x2, . . . , xi,1, . . . ,1) = w1 −1
and hence wt(z1, z2, . . . , zi , . . . , zn) < w1 − 1, a contradiction. Consider now
a path defined by the sequence x1, x2, . . . , xn, x1, . . . , xj−1,1, xj+1, . . . , xn.
This path exists in the graph since the weight of each vertex on this path
is either wt(x) = w1 − 1 or wt(x) + 1 = w1. The last vertex on this path is
(x1, . . . , xj−1,1, xj+1, . . . , xn) and its weight is w1. Now, we can use Case 1
to prove the existence of a path from (x1, . . . , xj−1,1, xj+1, . . . , xn) to a ver-
tex (z1, z2, . . . , zi , y1, . . . , yn−i ) as required.

Case 3: If wt(x1, x2, . . . , xn) = w2, then we distinguish again between two cases
depending on whether xi = 0 or xi = 1.

• If xi = 1 and zi = 0, then consider the path defined by the sequence
x1, x2, . . . , xn,0, z1, . . . , zi−1, zi and the claim is proved since the weight of
each vertex on this path is either wt(x) = w2 or wt(x) − 1 = w2 − 1. The
path can be continued with any n − i edges, from Gn(w1,w2), to obtain the
required result.

• If xi = 0 and zi = 1, then we claim that there exists a j , i < j ≤ n, with
xj = 1. If no such j exists, then wt(x) = wt(x1, x2, . . . , xi,0, . . . ,0) = w2

and hence wt(z1, z2, . . . , zi , . . . , zn) > w2, a contradiction. Consider now
a path defined by the sequence x1, x2, . . . , xn, x1, . . . , xj−1,0, xj+1, . . . , xn.
This path exists in the graph since the weight of each vertex on this path
is either wt(x) = w2 or wt(x) − 1 = w2 − 1. The last vertex on this path is
(x1, . . . , xj−1,0, xj+1, . . . , xn) and its weight is w2 − 1. Now, we can use
Case 1 to prove the existence of a path from (x1, . . . , xj−1,0, xj+1, . . . , xn)

to (z1, z2, . . . , zi, y1, . . . , yn−i ).
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Once the first step is completed we have shown the existence of a path from
vertex x = (x1, x2, . . . , xn) to a vertex z = (z1, z2, . . . , zi , y1, . . . , yn−i ). We
now have to show that there exists a path in Gn(w1,w2) starting in the vertex
z = (z1, z2, . . . , zi , y1, . . . , yn−i ) and ending in the vertex z = (z1, z2, . . . , zn).
This is accomplished by at most n − i iterations of the first step.

Thus we have proved the following lemma.

Lemma 8.2. The graph Gn(w1,w2) is a strongly connected graph.

Lemmas 8.1 and 8.2 lead to the following consequence from Theorem 1.15.

Corollary 8.1. There exists an Eulerian cycle in Gn(w1,w2).

The description we gave for a path from a vertex x = (x1, x2, . . . , xn) to a
vertex z = (z1, z2, . . . , zn) in Gn(w1,w2) does not seem to be efficient. How-
ever, it should be noted that the purpose of this description was only to show
that the graph Gn(w1,w2) is strongly connected. To have an efficient algorithm
to generate an Eulerian cycle in this graph we can use the Eulerian cycle algo-
rithm presented in Section 1.2. To obtain the sequence of words of length n and
weight w, we have to consider the Eulerian cycle in the graph Gn−1(w − 1,w)

and append a one or a zero, respectively, to each word along the path, depending
on whether its weight is w − 1 or w, respectively.

The same approach can be used for a larger alphabet of size σ and the
graph Gσ,n, by defining a graph Gσ,n(w1,w2), whose edges contain all the
words whose length is n + 1 and weight is between w1 and w2.

Lemma 8.3. The in-degree of each vertex of Gσ,n(w1,w2) is equal to its out-
degree.

Proof. As in Gn(w1,w2) we have to consider the same three cases for the
weight of a vertex x in Gσ,n(w1,w2).

1. If wt(x) = w1 −1, then the symbol preceding x on an edge must be a nonzero
symbol and the same is for the symbol succeeding x on an edge. Hence, the
in-degree of x is σ − 1 and the out-degree of x is also σ − 1.

2. If wt(x) = w2, then the symbol preceding x on an edge must be zero and the
same is for the symbol succeeding x on an edge. Hence, the in-degree of x

is one and the out-degree of x is also one.
3. If w1 ≤ wt(x) ≤ w2 − 1, then each one of the σ symbols can be appended

to x to start an in-edge and each one of the σ symbols can be appended to x

to end an out-edge. Hence, the in-degree and the out-degree of x is σ .

Again, in view of Lemma 8.3 and Theorem 1.15, there exists an Eulerian
cycle in Gσ,n(w1,w2) if and only if Gσ,n(w1,w2) is a strongly connected graph.

Lemma 8.4. The graph Gσ,n(w1,w2) is a strongly connected graph.

Proof. The proof is exactly the same as the proof of Lemma 8.2, where the one
in Gn(w1,w2) is replaced by any of the σ − 1 nonzero symbols as required by
the associated vertices.
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Corollary 8.2. There exists an Eulerian cycle in Gσ,n(w1,w2).

8.4 Reconstruction of a sequence from subsequences

This is one basic combinatorial problem that is associated with DNA sequenc-
ing as part of the genome assembly and for reconstructing a sequence for DNA
storage. Each one requires a different type of input. Without elaborating more
on the distinction between the two, it should be clear that there are many recon-
struction problems, some of which are more theoretical than practical.

If there is some information about the sequence S it might be of help to re-
construct it, as was demonstrated in Example 8.6. We elaborate now on one
possible reconstruction problem. We will assume that all the sequences are
binary unless mentioned otherwise. It should be also mentioned that the recon-
struction problem that will be considered in this section is more theoretical than
practical, and it is given here also for its combinatorial interest. Other recon-
struction problems will be mentioned in Section 8.6.

The reconstruction problem, which will be considered, is known as the
k-deck problem, where the ordered information of all the projections of k po-
sitions in the sequence S is given as an input. Let X = (x1, x2, . . . , xn) be a
binary word of length n. For A ⊆ {1,2, . . . , n}, we use X(A) to denote the sub-
sequence with indices in A. In other words, X(A) = (xa1 , xa2, . . . , xak

), where
A = {a1, a2, . . . , ak} and a1 < a2 < · · · < ak . For k < n, the k-deck of X,
denoted by Dk(X), refers to the multiset of all the

(
n
k

)
subsequences of X of

length k. We represent the k-deck of a word X by an integer-valued vector of
length 2k . Specifically,

Dk(X) � (Xα)α∈{0,1}k ,

where Xα denotes the number of occurrences of α as a subsequence of X and
the indices in {0,1}k are presented in increasing lexicographic order.

Let Dk(n) be the number of distinct k-decks of all the words of length n.

Example 8.7. Consider the sequence X = (101000110). The subsequence 010
is contained 12 times in X as follows:

X({2,3,4}) = X({2,3,5}) = X({2,3,6}) = X({2,3,9}) = X({2,7,9})
= X({2,8,9}) = X({4,7,9}) = X({4,8,9}) = X({5,7,9}) = X({5,8,9})

= X({6,7,9}) = X({6,8,9}) = 010

and hence X010 = 12.
With the same computations for all subsequences of lengths 1, 2, and 3, we

have the following distribution

D1(X) = (X0,X1) = (5,4),

D2(X) = (X00,X01,X10,X11) = (10,9,11,6),

D3(X) = (X000,X001,X010,X011,X100,X101,X110,X111) = (10,12,12,6,16,15,9,4).

�
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We will present now a sequence of results concerning the parameters defined
for the k-deck. The first lemma is a trivial observation.

Lemma 8.5. If X is a binary sequence of length n and weight w, then

1. D1(X) = (n − w,w).
2. D1(n) = n + 1.

Lemma 8.6. If X is a binary sequence of length n and weight w, then

1. D2(X) = ((
n−w

2

)
, t,w(n − w) − t,

(
w
2

))
, where t can be any integer between

0 and w(n − w).
2. D2(n) = (n3 + 5n + 6)/6.

Proof. Let X be a binary sequence of length n and weight w.

1. For a sequence with w ones we have X11 = (
w
2

)
and X11 = (

n−w
2

)
. For the

sequence (1w0n−w) we have X01 = 0 and for the sequence (0n−w1w) we
have X01 = w(n − w). Two sequences of weight w that differ only in two
consecutive positions, where one has 01 and the other has 10, in these two
positions, differ by exactly one in the value of their X01 and by exactly one
in the value of their X10. Hence, all the values between 0 and w(n − w) are
attained for X01 with sequences of length n and weight w. Therefore for a
sequence X of length n and weight w we have

D2(X) =
((

n − w

2

)
, t,w(n − w) − t,

(
w

2

))
,

where t can be any integer between 0 and w(n − w), depending on X.
2. Once t between 0 and w(n − w) is determined, the whole 2-deck of the

sequence is determined. Therefore the total number of 2-decks is

n∑
w=0

(w(n − w) + 1) =
n∑

w=0

wn −
n∑

w=0

w2 + n + 1

and since it is well known that
∑n

w=0 w2 = n(n + 1)(2n + 1)/6, it follows
that

n∑
w=0

(w(n − w) + 1) = n2 + n3

2
− 2n3 + 3n2 + n

6
+ n + 1 = n3 + 5n + 6

6

and thus, D2(n) = (n3 + 5n + 6)/6.

Lemma 8.7. The k-deck of a sequence X of length n induces the (k − 1)-deck
of the sequence.

Proof. Each projection of k positions in the sequence X induces k projections
of k − 1 positions. Each k − 1 projection in the sequence X is contained in
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n − k + 1 projections of k positions in X. Hence, summing the (k − 1)-decks of
the sequences of length k in the k-deck of X and dividing by n − k + 1 yields
the (k − 1)-deck of X.

Corollary 8.3. If two sequences X and Y have the same k-deck, k > 1, then
they have the same (k − i)-deck for each 1 ≤ i ≤ k − 1.

Corollary 8.4. If a sequence X of length n has a unique k-deck for some k > 0,
then X has unique (k + i)-deck for each 1 ≤ i ≤ n − i.

Proof. If two sequences X and Y have the same (k + i)-deck, then by Corol-
lary 8.3 they have the same k-deck. Therefore if X does not have a unique
(k + i)-deck, then it does not have a unique k-deck.

Lemma 8.8. All the sequences of length n over an alphabet of size σ > 2 have
a unique k-deck if and only if all the binary sequences of length n have a unique
k-deck.

Proof. Assume first that all the sequences of length n over an alphabet of
size σ > 2 have a unique k-deck. Since this set of sequences contains also all
the binary sequences, it follows that all the binary sequences of length n have a
unique k-deck.

Assume now that all the binary sequences of length n have a unique k-deck.
Let X be a sequence over an alphabet of size σ > 2 and let α be a nonzero
symbol in the alphabet. Let X′ be a sequence obtained from X by replacing all
symbols different from α by a zero. Clearly, X′ is a binary sequence and hence
it has a unique k-deck, which implies that we can determine the positions of α

in X. Repeating the same procedure with the other symbols yields the positions
of each symbol of the alphabet in X. Thus X has a unique k-deck.

Let S(k) be the smallest value of n such that there exist two distinct se-
quences of length n with the same k-deck.

Let T (n) be the smallest value of k such that all the sequences of length n

have unique k-decks.
The following lemma is an immediate consequence of these two definitions.

Lemma 8.9.

• If S(k) ≤ n, then T (n) > k.
• If T (n) ≤ k, then S(k) > n.

Proof.

• If S(k0) ≤ n0, then the smallest n for which there exists two distinct se-
quences of length n with the same k0-deck is at most n0. Hence, there are
sequences of length n0 that have the same k0-deck. Therefore the smallest k

such that all the sequences of length n0 have a unique k-deck is larger than k0.
Thus T (n0) > k0, i.e., if S(k) ≤ n, then T (n) > k.
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• If T (n0) ≤ k0, then the smallest k such that all sequences of length n0 have
a unique k-deck is at most k0. Hence, all the sequences of length n0 have a
unique k0-deck. Therefore the smallest n for which there exist two distinct
sequences with the same k0-deck is larger than n0. Thus S(k0) > n0, i.e., if
T (n) ≤ k, then S(k) > n.

We will now derive two simple lower and upper bounds on T (n), which is
the smallest value of k for which all sequences of length n have a unique k-deck.
The lower bound will be proved by a simple counting argument.

Lemma 8.10. For each ε, 0 < ε < 1, there exists an N such that

T (n) > ε · log2 n

for all n > N .

Proof. The proof is by a counting argument. We first compute the number of
possible k-decks (including those that might be impossible to obtain). We have
to choose

(
n
k

)
elements (for the k-subsets of a sequence of length n) from the 2k

possible ordered k-tuples. This number is a combination with repetitions that is
equal to ((

n
k

) + 2k − 1(
n
k

)
)

=
((

n
k

) + 2k − 1

2k − 1

)
.

For 3 ≤ k < n we have that

((
n
k

) + 2k − 1

2k − 1

)
<

(
n

k

)2k−1

< nk(2k−1).

For a fixed k and sufficiently large n we have that nk(2k−1) < 2n and hence the
number of possible k-decks is smaller than the number of sequences of length n.
This implies that there are sequences of length n whose k-decks are not unique.

Let k = ε · log2 n for some 0 < ε < 1 and again consider the inequality

nk(2k−1) < 2n,

which by substitution of k = ε · log2 n becomes

nε·(2ε·log2 n−1)·log2 n < 2n,

which is equivalent to

ε · (log2 n
)2 (

nε − 1
)
< n,

which is again true for sufficiently large n. Thus for any ε, 0 < ε < 1 and suffi-
ciently large n we have that

T (n) > ε · log2 n.



DNA sequences and DNA codes Chapter | 8 265

For an upper bound on T (n) we will use a different presentation for binary
sequences. For a binary sequence X of length n and weight w we define the
zero vector to be a vector of length w + 1, (i0, i1, . . . , iw) whose j th entry ij ,
1 ≤ j ≤ w −1, is the number of zeros between the j th one and the (j +1)th one
in the sequence, i0 is the number of zeros before the first one in the sequence
and iw is the number of zeros after the last one in the sequence. By definition,
the sum of entries of the zero vector of X is n − w. Similarly, we define the
one vector of X to be the vector that indicates the number of ones between the
zeros of X. The one vector of X is equal to the zero vector of X̄. The sum of the
entries of the one vector of X is w.

Example 8.8. For the sequence X=(101000110), the zero vector is (0,1,3,0,1)

and the one vector is (1,1,0,0,2,0). �

The following lemma is a simple observation.

Lemma 8.11. A sequence is uniquely defined by its zero (one) vector.

Lemma 8.12. A sequence of length n and weight k − 1 has a unique k-deck.

Proof. Let X be a sequence of length n and weight k − 1 with zero vector
(i0, i1, . . . , ik−1) and Y be a subsequence of X with one vector (j, k − j − 1),
where 0 ≤ j ≤ k − 1, i.e., Y is a subsequence of length k and weight k − 1
with a unique zero in its (j + 1)th position. Clearly, Y has weight k − 1 as the
weight of X, and hence the number of appearances of Y as a projection of k

positions of X is exactly ij . This implies that the k-deck determines the exact
zero vector of X. Therefore by Lemma 8.11 the k-deck of X is unique.

Corollary 8.5.

T (n) ≤ n

2
+ 1 .

Proof. A sequence X of length n has at most n
2 zeros or at most n

2 ones. There-
fore by Lemma 8.12, X has a unique k-deck for some k ≤ n

2 + 1. This implies
by Corollary 8.4 that X has a unique

(⌊
n
2

⌋ + 1
)
-deck. Thus

T (n) ≤ n

2
+ 1.

8.5 Synchronization codes

Various types of synchronization codes are generated for a unique deciphering
of a text message. There are a few families of codes, which are considered in
this section. These families of codes have found applications associated with
DNA.

A code C is called a comma-free code if it contains words of length n

over an alphabet of size σ and for any two codewords (not necessarily distinct)
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(a1, a2, . . . , an) and (b1, b2, . . . , bn), any subsequence of

a1a2 · · · anb1b2 · · · bn

is not a codeword in C, except for the prefix of length n and the suffix of length n.
Let CF(n,σ ) be the maximum number of codewords in a comma-free code of
length n over an alphabet of size σ .

Theorem 8.1. For each positive integers n ≥ 1 and σ ≥ 2,

CF(n,σ ) ≤ 1

n

∑
d|n

μ(d) · σn/d .

Proof. Let C be a comma-free code of length n over an alphabet of size σ . For
any given word (a1, a2, . . . , an) the sequence

a1, a2, . . . , an, a1, a2, . . . , an

contains all the cyclic shifts of (a1, a2, . . . , an) as subsequences and hence from
each full-order necklace of length n over σ beads at most one word can be
contained in C. If the word (a1, a2, . . . , an) has period d that is less than n, then
the sequence

a1, a2, . . . , an, a1, a2, . . . , an

has a subsequence

ad+1, ad+2, . . . , an, a1, a2, . . . , ad = a1, a2, . . . , an

and hence it cannot be contained in C. Therefore C contains at most one word
from each full-order necklace of length n over σ beads. By Theorem 3.6 the
number of such full-order necklaces is

1

n

∑
d|n

μ(d) · σn/d,

which completes the proof.

A much stronger condition than the one for comma-free codes is required in
the following type of codes called non-overlapping codes.

A code C is called a non-overlapping code if all the codewords have the
same length and for any two codewords c1, c2 ∈ C (not necessarily distinct)
any nonempty prefix of c1 is not a suffix of c2. Let NO(n,σ ) be the maximum
number of codewords in a non-overlapping code of length n over an alphabet of
size σ .

We have that NO(1, σ ) = σ , and hence we will assume from now that n ≥ 2.
It is also easy to verify by the definition that a non-overlapping code is also a
comma-free code, but not the converse.
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Theorem 8.2. If n ≥ 2 and σ ≥ 2, then

NO(n,σ ) <
σn

2n − 1
.

Proof. Let C be a non-overlapping code of length n over an alphabet � with
σ letters. Define the following set A.

A � {(x, i) : x = (x0, . . . , x2n−2) ∈ �2n−1, xi · · · xi+n−1 ∈ C, 0 ≤ i ≤ 2n−2},
where the subscripts in the subsequence xi · · · xi+n−1 are taken modulo 2n−1.

There are |C| codewords in C and each one can start in any of the 2n − 1
positions of a word x in (x, i) ∈ A. The codeword is of length n and hence
there are σn−1 distinct ways to complete the word x in (x, i). Since C is a non-
overlapping code, it follows that two codewords (not necessarily distinct) cannot
appear as distinct sub-words of the same word of length 2n − 1. Therefore

|A| = (2n − 1) |C|σn−1 .

This also implies that for each word x of length 2n − 1 over �, there exists
at most one choice of an integer i such that (x, i) ∈ A and hence A contains at
most σ 2n−1 codewords. Moreover, the words of length 2n−1 that contain 2n−1
repetitions of the same symbol cannot have a sub-word from a non-overlapping
code, and hence

|A| ≤ σ 2n−1 − σ < σ 2n−1 .

Thus we have

(2n − 1) |C|σn−1 = |A| < σ 2n−1,

which implies the claim of the theorem.

Non-overlapping code construction:
Let k be an integer such that 1 ≤ k ≤ n − 1. Let C be the set of all words

in �n, where (x1, x2, . . . , xn) ∈ C if the following three conditions are satisfied:

• xi = 0 for all 1 ≤ i ≤ k;
• xk+1 �= 0 and xn �= 0;
• the sequence xk+2, xk+3, . . . , xn−1 does not contain k consecutive zeros.

Theorem 8.3. The code C constructed in the non-overlapping code construction
is a non-overlapping code.

Proof. Since a codeword in C starts with k consecutive zeros followed by a
nonzero symbol and ends with a nonzero symbol, it follows that to have an
overlap of a prefix of a codeword x with a suffix of a codeword y, y must have
a run of k zeros except for the initial one. However, the only run of k zeros, is in
the first k positions. Therefore C is a non-overlapping code.
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Lemma 8.13. If σ is a fixed integer greater than 1, then the codes of the non-
overlapping code construction imply that

lim inf
n→∞

NO(n,σ )

σn/n
≥ (σ − 1)2(2σ − 1)

4σ 4
.

Proof. For a given k, any sequence that starts with k zeros followed by a
nonzero symbol, ends with a nonzero symbol, and is not generated by the non-
overlapping code construction, contains a run of k zeros in the other n − k − 2
positions. This run of zeros can start in n−k−2− (k −1) = n−2k −1 possible
positions (as it cannot overlap the last symbol). For the other n − 2k − 2 po-
sitions (outside these two runs of k zeros) there are σn−2k−2 possibilities
(some words will be counted more than once) and therefore there are at most
(n − 2k − 1)σ n−2k−2 such sequences, on these n− k − 2 positions, not fixed by
the non-overlapping code construction. Therefore there are at least

σn−k−2 − (n − 2k − 1)σ n−2k−2 > σn−k−2 − n · σn−2k−2

such sequences, on these n − k − 2 positions, which are generated by the con-
struction, if n ≥ 2k + 2. There are also (σ − 1)2 distinct ways to choose the
nonzero symbols for the (k + 1)th position and the last position. This implies
that for the given k, the code C generated by the construction has at least

(σ − 1)2
(
σn−k−2 − nσn−2k−2

)
=

(
σ − 1

σ

)2

σn
(
σ−k − nσ−2k

)

codewords. The expression σ−k −nσ−2k is maximized when k = logσ (2n)+ δ,
where δ is chosen so that |δ| < 1 and k is an integer. In this case, the value of
σ−k − nσ−2k is bounded below by 2σ−1

4nσ 2 if δ is nonnegative. Thus

|C| ≥ (σ − 1)2(2σ − 1)

4nσ 4
σn,

which implies the claim of the lemma.

The family of constant-weight codes is always interesting and we turn now
to binary constant-weight non-overlapping codes.

Constant-weight non-overlapping code construction:
Let w be a positive integer and n = 2w − 1. Consider the following binary

code of length n and words of weight w. The code C contains all the codewords
such that x = (x1, x2, . . . , xn) ∈ C if the following three conditions are satisfied:

• x1 = 1;
• ∑n

i=1 xi = w;
• In each nonempty prefix of x, the number of ones is strictly larger than the

number of zeros.
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Theorem 8.4. The code C obtained in the constant-weight non-overlapping
code construction is a non-overlapping code of length n = 2w − 1, and
weight w.

Proof. By definition all the words in C have length 2w−1, w ones, and w−1 ze-
ros. For any codeword x in C, each nonempty prefix of x has more ones than
zeros. Hence, since x has w ones and w − 1 zeros, it follows that in any suffix
of x, the number of zeros is at least the same as the number of ones. Therefore
a prefix of the word x cannot be the suffix of a word y ∈ C. Thus C obtained
in the constant-weight non-overlapping code construction is a non-overlapping
code of length n = 2w − 1, and weight w.

8.6 Notes

Sequences and the de Bruijn graph are heavily used in biology and bioinfor-
matics. This is no surprise since concepts in biology like DNA and RNA are
presented as sequences. The de Bruijn graph was also used in antibody se-
quencing, see Bandeira, Pham, Pevzner, Arnott, and Lill [6], in synteny block
reconstruction, see Pham and Pevzner [72], and in RNA assembly, see Grabherr
et al. [40].

Section 8.1. Sequencing of the human genome was discussed first in Lander et
al. [52] and in Venter et al. [85]. The number of references on the application of
the de Bruijn graph for DNA sequencing is quite large. An excellent introduction
to the problem was given in Compeau, Pevzner, and Tesler [23]. The direction
discussed in this part of the chapter is taken from their paper.

Before the OLC method and DBG method there were other methods for
sequencing such as sequencing by hybridization, see Drmanac, Labat, Brukner,
and Crkvenjakov [26]. Another algorithm was suggested, for example, by Idury
and Waterman [43]. The OLC method is usually not efficient since finding a
Hamiltonian path is an NP-problem, see Garey and Johnson [35]. The method
was developed by Kececioglu and Myers [48] and further, by Adams et al. [3].
Nevertheless, it was successfully applied by Fleischmann et al. [30] to obtain
the first microbial genome. The de Bruijn graph method was first suggested by
Pevzner [69]. The performances of the OLC algorithm and the DBG algorithm
were compared by Schatz, Delcher, and Salzberg [76].

Errors in reads are unavoidable and handling errors in the reads is dis-
cussed, for example, in Butler, MacCallum, Kleber, Shlyakhter, Belmonte, Lan-
der, Nusbaum, and Jaffe [12], Chaisson and Pevzner [14], Li et al. [60], Miller,
Koren, and Sutton [64], Paszkiewicz and Studholme [68], Pevzner, Tang, and
Tesler [70], Pevzner, Tang, and Waterman [71], Simpson, Wong, Jackman,
Schein, Jones, and Birol [80], and Zerbino and Birney [89].

Section 8.2. DNA-based storage has attracted significant attention due to re-
cent demonstrations of the viability of storing information in macromolecules.
Unlike classical optical and magnetic storage technologies, DNA-based storage
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does not require an electrical supply to maintain data integrity, and given the
trends in cost decreases of DNA synthesis and sequencing, it is now acknowl-
edged that shortly DNA storage may become a highly competitive archiving
technology.

The potential for using macromolecules for ultra-dense storage was recog-
nized as early as in the 1960s by Feynman [29]. DNA molecules, which may be
abstracted as strings over the four symbol alphabet {A,C,G,T }, stand out due
to several unique properties:

1. Self-assembly potential (DNA has been successfully used as a build-
ing block of a number of small-scale self-assembly-based computers, see
Nadrian [65]).

2. Stability (DNA can be recovered from 30 000 year-old Neanderthal and
700000 year-old horse bones, see Saey [75]), and capacity (a single human
cell, with a tiny mass, hosts DNA strands encoding 6.4 GB of information).

Furthermore, the technologies for synthesizing (writing) artificial DNA and for
massive sequencing (reading) have reached unprecedented levels of efficiency
and accuracy, see Shendure and Aiden [79]. As a result, DNA storage systems
may be the most plausible DNA-based platform to materialize shortly.

Storing data in DNA is not a new idea. One of the first experiments was con-
ducted by Clelland, Risca, and Bancrof [21], where they recovered a message
consisting of 23 characters. Shorty after, Leier, Richter, Banzhaf, and Rauhe [53]
managed to successfully store three sequences of nine bits each. A more sig-
nificant accomplishment, concerning the amount of data stored successfully,
was reported by Gibson et al. [36]. They stored 1280 characters in a bacterial
genome, that is, in vivo storage. The first large-scale experiments that demon-
strated the potential of in vitro DNA storage were reported by Church, Gao, and
Kosuri [19] who recovered 643 kB of data, and by Goldman, Bertone, Chen,
Dessimoz, LeProust, Sipos, and Birney [38] who accomplished the same task
for a 739 kB message. However, both of these groups did not recover the entire
message successfully due to the lack of using the appropriate coding solutions
to correct errors. Church, Gao, and Kosuri [19] had 10-bit errors, and Goldman,
Bertone, Chen, Dessimoz, LeProust, Sipos, and Birney [38] lost two strands of
25 nucleotides. Later, Grass, Heckel, Puddu, Paunescu, and Stark [41], stored
and recovered successfully a 81 kB message and Bornholt, Lopez, Carmean,
Ceze, Seelig, and Strauss [11] similarly succeeded while storing a 42 kB mes-
sage. Another progress in the amount of stored data was reported in Blawat,
Gaedke, Hütter, Chen, Turczyk, Inverso, Pruitt, and Church [10] who success-
fully stored 22 MB of data. More recently, 2.11 MB of data were stored with
a high storage rate, as shown by Erlich and Zielinski [28]. Organick et al. [67]
succeeded to store 200 MB of data, thereby storing an order of magnitude more
data than the previous experiment reported by Blawat, Gaedke, Hütter, Chen,
Turczyk, Inverso, Pruitt, and Church [10]. A method that offers both random
access and rewritable storage was developed in Yazdi, Yuan, Ma, Zhao, and
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Milenkovic [87]. The work on sequences, coding, and storing data in DNA stor-
age is rapidly developing as of 2023. To complete this part we will also mention
the work by Song, Cai, and Immink [81].

The microscopic world in which the DNA molecules reside induces error
patterns that are fundamentally different from their digital counterparts. This
distinction results from the specific error behavior in DNA and the method by
which DNA strands are stored together. Hence, to maintain reliability in reading
and writing, new coding schemes must be developed, and first attempts for such
solutions were already implemented in proof-of-concept storage systems, e.g.,
see Erlich and Zielinski [28] and Yazdi, Yuan, Ma, Zhao, and Milenkovic [87].
The definitions and the analysis of the DNA storage channel were done by Kiah,
Puleo, and Milenkovic [49] who also found its application to DNA storage and
made the connection of this analysis to the de Bruijn graph. More work on these
topics can be found in newly developed works that cite these references.

Beyond all these, there are other research studies carried out on DNA storage
codes that involve the de Bruijn graph and de Bruijn sequences. We have the
feeling that such research studies will continue for a long time.

Section 8.3. The graph Gn(w1,w2) was considered first by Ruskey, Sawada,
and Williams [74]. They also described an efficient algorithm to generate an
Eulerian cycle in this graph. Its generalization for Gσ,n(w1,w2) was carried out
by Kiah, Puleo, and Milenkovic [49]. The description and the proofs that are
given in this section are slightly different from those given in these papers.

Section 8.4. The k-deck problem was presented first by Kalashnik [47]. The
lower and upper bounds on T (n) proved in Lemma 8.10 and Corollary 8.5, re-
spectively, were presented in the paper of Manvel, Meyerowitz, Schwenk, Smith
and Stockmeyer [61], which started the relatively large amount of research on
this topic. Dudik and Schulman [25] presented the following bounds of S(k):

Theorem 8.5.

• If 7 ≤ k ≤ 28, then S(k) ≤ 1.75 · 1.62k .
• If 29 ≤ k ≤ 84, then S(k) ≤ 0.25 · 1.17kk3 log2 k.

• If 85 ≤ k, then S(k) ≤ 3(1.5+o(1))(log3 k)2
.

Rigo and Salimov [73] suggested Lemmas 8.5 and 8.6. They proved that

Dk(n) ≤ ∏k
i=1

((
n
i

) + 1
)(2i−1) and for a fixed k they proved that we have

Dk(n) = O
(
n2((k−1)2k+1)

)
. Chrisnata, Kiah, Karingula, Vardy, Yaakobi, and

Yao [17] proved that Dk(n) = O
(
n(k−1)2k−1+1

)
. They proved an asymptotic

lower bound Dk(n) = �(nk) and improved it for k = 3 to D3(n) = �(n6). Other
papers that considered the k-deck problem are by Choffrut and Karhumäki [22],
Krasikov and Roditty [51] and Scott [78].

There are many other reconstruction problems, but we will concentrate now
only on one of them. Motivated by protein sequencing the following recon-
struction problem was suggested by Acharya, Das, Milenkovic, Orlitsky, and
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Pan [2]. Assume that we are given a multiset that contains all the contiguous
subsequences of a sequence S, where the symbols of the subsequences are un-
ordered, i.e., only the number of appearances of each symbol in the subsequence
is given. Can the sequence S be reconstructed from all its subsequences?

Example 8.9. The sequence CTCAG is decomposed to a set with
(5

2

) = 10
subsequences as follows:

{A,C,C,G,T ,AC,AG,CT ,CT ,ACG,ACT,C2T ,AC2T ,ACGT,AC2GT }.
�

We start by showing that in a similar way to the k-deck problem, it is suffi-
cient to consider only binary sequences, by using similar arguments.

Lemma 8.14. If all binary sequences of a certain length are reconstructible
from their contiguous unordered subsequences, then sequences of the same
length over any finite alphabet are reconstructible from their contiguous un-
ordered subsequences.

Proof. Assume that all the binary sequences of length n can be reconstructed
from their contiguous unordered subsequences. Let X be a sequence of length n

over an alphabet of size σ > 2 and let α be a nonzero symbol in the alphabet. Let
X′ be a sequence obtained from X by replacing all symbols different from α by
zeros. Clearly, X′ is a binary sequence of length n and hence it is reconstructible
from its contiguous unordered symbols. Hence, we can determine the positions
of α in X. Repeating the same procedure with the other symbols yields the
positions of each symbol of the alphabet in X. Thus X is reconstructible from
its contiguous unordered symbols.

Another trivial observation is that the sequences S and SR have the same
decomposition into contiguous unordered subsequences. Hence, these two se-
quences will not be distinguished as different sequences. The following results
were proved by Acharya, Das, Milenkovic, Orlitsky, and Pan [2].

Lemma 8.15. All sequences of length at most 7 are reconstructible from their
contiguous unordered subsequences.

Lemma 8.16. If n + 1 is a product of two integers greater than 2, then there
exists a pair of sequences of length n + 1 that have the same decomposition.

Theorem 8.6.

1. All sequences whose length is one less than a prime are reconstructable from
their contiguous unordered subsequences.

2. All sequences whose length is one less than twice a prime are recon-
structable from their contiguous unordered subsequences.
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3. For each other length there are pairs of sequences that have the same de-
composition into contiguous unordered subsequences.

Reconstruction of sequences from their subsequences is one of the main
problems in DNA storage. This has attracted much attention. The first impor-
tant papers on reconstructions associated with information theory were written
by Levenshtein [56,57]. This work, on reconstruction with multiple channels,
which was followed by others, is the main direction required for DNA stor-
age. The deletion channel is one of the most important ones for DNA storage
and the reconstruction model of Levenshtein was considered for this channel by
Gabrys and Yaakobi [33]. Further studies on reconstruction with a different di-
rection were carried out by Cheraghchi, Gabrys, Milenkovic, and Ribeiro [16],
and Gabrys and Milenkovic [32].

The information stored in the DNA is subject to errors and several types of
errors can occur in codewords stored in DNA. Although errors occurred in the
received strands, it is still required to overcome these errors and reconstruct the
codewords. This is one of the main targets of research on DNA storage. Many
types of errors are typical for DNA storage. One type of error is a duplication of
a small subsequence that is attached exactly in the place in which it was dupli-
cated. Such an error called tandem-duplication and reconstruction of codewords
in the presence of tandem-duplication errors, was considered by Jain, Farnoud,
Schwartz, and Bruck [45] and by Yehezkeally and Schwartz [88]. Another type
of error is a deletion of a symbol, an insertion of a symbol, or a substitution error.
An error that can be any one of these three types of errors is called an edit error.
Reconstruction in the presence of an edit error was considered first by Abu-Sini
and Yaakobi [1] and later by Cai, Kiah, Nguyen, and Yaakobi [13] and by Chris-
nata, Kiah, and Yaakobi [18]. A combination of tandem-duplication errors and
edit errors was considered by Tang and Farnoud [83]. Edit errors combined with
adjacent transposition errors are called Damerau errors and these errors were
considered by Gabrys, Yaakobi, and Milenkovic [34]. A similar study was car-
ried out by Gabrys, Kiah, and Milenkovic [31] for codes in the asymmetric Lee
distance for DNA storage.

Section 8.5. Comma-free codes were defined first by Crick, Griffith, and
Orgel [24] in connection with protein synthesis. They considered a reconstruc-
tion of a sequence of length 20 or amino acids with a comma-free code. The
mathematical analysis of this type of code was carried out a year later by
Golomb, Gordon, and Welch [39]. An excellent survey of the results in this area
until 1987 was given by Levenshtein [58]. Further work on comma-free codes
can be found in Churchill [20], Eastman [27], Jiggs [46], King and Gaborit [50],
Scholtz [77], and Tang, Golomb, and Graham [84].

Non-overlapping codes were reintroduced several times over the years.
Gilbert [37] was the first to consider non-overlapping codes, but they were
more directly approached first by Levenshtein [55]. They were called later cross-
bifix-free codes by Bajić and Stojanović [4], Bajić, Stojanović, and Lindner [5],



274 Sequences and the de Bruijn Graph

and Stefanovic and Bajić [82]. Yazdi, Kiah, Gabrys, and Milenkovic [86] have
shown how these codes can be used for reconstruction in DNA storage.

Blackburn [9] gave a review of non-overlapping code with new results and
simpler proofs for older results. Theorems 8.2 and 8.3, and Lemma 8.13 are
based on his ideas.

Theorem 8.2 can be improved with the following result obtained by Leven-
shtein [55] whose proof requires more sophisticated analysis.

Theorem 8.7. If n ≥ 2 and σ ≥ 2, then

NO(n,σ ) ≤ 1

n

(
n − 1

n

)n−1

σn,

where e is the base of the natural logarithm and when n → ∞

NO(n,σ ) ≤ 1

e
· σn

n − 1
.

Gilbert [37] and Levenshtein [54] proved that when σ is fixed and k (of the
non-overlapping code construction) is chosen appropriately as a function of n,
we have the following bound on the code C obtained from the non-overlapping
code construction.

|C| � σ − 1

σ · e · σn

n
,

where e is the base of the natural logarithm, and n → ∞ over the subsequence{
n = σ i−1

σ−1

}∞
i=0

. More results and improvements can be found in Levy and

Yaakobi [59].
The non-overlapping code construction requires sequences with no runs of

k consecutive zeros. Such sequences are known as run-length limited codes
(RLL codes) and their number was extensively studied. A survey on these codes
was given by Immink [44] and a later excellent survey that covers also other
constrained codes was written by Marcus, Roth, and Siegel [62].

For large σ compared to n, Blackburn [9] has proved that the bound of The-
orem 8.7 can be attained if n divides σ . When σ is large and n does not divide σ ,
the bound of Theorem 8.7 is attained asymptotically for σ → ∞, as was shown
by Blackburn [9]. For σ ∈ {2,3}, Blackburn [9] managed to compute the exact
value of NO(n,σ ) as follows.

Theorem 8.8.

1. For any σ ≥ 2 we have that NO(2, σ ) = ⌈ q
2

⌉ · ⌊ q
2

⌋
;

2. for any σ ≥ 2 we have that NO(3, σ ) = [2σ/3]2 (σ − [2σ/3]);
where [x] denotes the nearest integer to the real number x.

Constant-weight non-overlapping codes were constructed by Markov and
Noskov [63] and the constant-weight non-overlapping code construction given



DNA sequences and DNA codes Chapter | 8 275

in this section was introduced by Bilotta, Pergola, and Pinzani [8]. Further work
on non-overlapping codes can be found in Bilotta, Grazzini, Pergola, and Pin-
zani [7], Chee, Kiah, Purkayastha, and Wang [15], Levy and Yaakobi [59], and
Morita, van Wijngaarden, and Han Vinck [66].

Other codes for synchronization based on other types of non-overlapping
prefixes and suffixes were produced by Guibas and Odlyzko [42].
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Chapter 9

Two-dimensional arrays
Perfect maps and distinct differences arrays

After having considered one-dimensional sequences, our goal now is to exam-
ine whether the definitions and results can be generalized into two-dimensional
arrays. In particular, we want to generalize de Bruijn sequences, shortened de
Bruijn sequences, and M-sequences. In this chapter, we restrict ourselves only to
binary arrays, although the definitions and the results can be straightforwardly
generalized for non-binary arrays. The definitions for a generalization for de
Bruijn sequences and shortened de Bruijn sequences are straightforward. Per-
fect maps (or de Bruijn arrays) are r × t binary two-dimensional cyclic (doubly
periodic) arrays in which all the n × m binary matrices appear exactly once as
windows in one period of the array. A shortened de Bruijn array (or shortened
perfect map) is an r × t binary two-dimensional cyclic array in which each one
of the nonzero n × m binary matrices appears exactly once as a window in one
period of the array.

As for M-sequences, we would like to have a definition for which an associ-
ated array has properties that generalize R-1, R-2, and R-3 (sec Section 2.2).
Generalizing property R-1 is straightforward. Instead of R-2 we will settle
with the window property for such arrays. Instead of R-3 we will demand a
stronger property namely, the shift-and-add property. A pseudo-random array is
an r × t binary two-dimensional cyclic array in which each one of the nonzero
n × m binary matrices appears exactly once as a window in one period of the
array and also if the array A is added to a nontrivial shift of A, then the outcome
is another shift of A. As for M-sequences, such arrays have various applications.

We start in Section 9.1 by representing the problem of finding de Bruijn
arrays and shortened de Bruijn arrays as a graph problem in a similar way as was
done for de Bruijn sequences and shortened de Bruijn sequences. Two different
representations will be presented. These representations will be of help in the
constructions that follow in the other sections.

In Section 9.2 we discuss one type of construction for perfect maps. The
construction in this section will be based on the graph whose vertices repre-
sent matrices, where each n × m binary matrix is contained exactly once in a
matrix represented by one of the vertices. A Hamiltonian cycle in this graph is
equivalent to a perfect map. The construction of the matrices for the vertices
will require a structure called a perfect factor in Gn and these factors will also
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be a subject for discussion in this section. A shortened de Bruijn array will be
constructed with a similar method, where another type of factor, namely, a zero
factor, will replace the perfect factor.

Pseudo-random arrays are shortened perfect maps with the exception that
they have the shift-and-add property as M-sequences. These arrays are the topic
of Section 9.3. A construction that is based on folding an M-sequence will yield
arrays with similar properties to those of M-sequences.

Section 9.4 is devoted to a recursive construction and also a generalization
of the operator D into two dimensions.

Section 9.5 will consider a generalization of one-dimensional difference pat-
terns into two-dimensional patterns with distinct differences.

9.1 Graph representations of perfect maps

The goal of this section is to represent de Bruijn arrays and shortened de Bruijn
arrays by graphs, similarly as was done for de Bruijn sequences and shortened
de Bruijn sequences with the de Bruijn graph. First, the formal definitions for
these arrays should be given.

Definition 9.1. A perfect map (or a de Bruijn array) is an r × t binary (dou-
bly) cyclic array, such that each binary n × m matrix appears exactly once as a
window in the array. Such an array will be called an (r, t;n,m)-PM.

The definition of a perfect map immediately implies the following lemma.

Lemma 9.1. If A is an (r, t;n,m)-PM, then

1. r > n or r = n = 1;
2. t > m or t = m = 1; and
3. rt = 2nm.

Lemma 9.1 immediately implies that both r and t must be powers of 2,
restricting the possible parameters of a perfect map.

Definition 9.2. A shortened perfect map (or a shortened de Bruijn array) is an
r × t binary (doubly) cyclic array, such that each nonzero binary n × m matrix
appears exactly once as a window in the array. Such an array will be called an
(r, t;n,m)-SPM.

The definition of a shortened perfect map immediately implies the following
lemma.

Lemma 9.2. If A is an (r, t;n,m)-SPM, then

1. r > n or r = n = 1;
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2. t > m or t = m = 1; and
3. rt = 2nm − 1.

Lemma 9.2 immediately implies that both r and s divide 2nm − 1, restrict-
ing the possible parameters of shortened perfect maps. Moreover, a shortened
perfect map cannot be constructed from a perfect map in the same way that a
shortened de Bruijn sequence is constructed from a de Bruijn sequence.

The graph that represents span n de Bruijn sequences and shortened de
Bruijn sequences is unique for each n. In contrast, the graph for de Bruijn arrays
will not be unique for each pair (n,m). The graphs for de Bruijn arrays will be
also different from the graphs for shortened de Bruijn arrays. Moreover, for a
given pair (n,m), the graph for the associated de Bruijn arrays or the associated
shortened de Bruijn arrays might not be unique. We will show that for most sets
of parameters, the graph for de Bruijn arrays is not unique. These graphs are
associated with some specific factors in Gn. We will consider first the graphs
for perfect maps.

A perfect factor PF(n, k) in Gn is a factor with 2n−k cycles of length 2k . On
each cycle in the perfect factor, one state will be chosen (arbitrarily) as a zero
state. We will choose the zero state to be the state on the cycle with minimum
value when considered as a binary number, but any other choice can be also
used. This choice will not affect the arrays that will be constructed by the graph.
The cycles of the factor will be ordered in ascending order of their zero states.
The location of a cycle ci in this order is denoted by L(ci), 1 ≤ i ≤ 2n−k , 0 ≤
L(ci) ≤ 2n−k − 1.

Example 9.1. For n = 6 and r = 2k = 8, the following eight cycles form a
perfect factor in G6, presented in their zero shift and ordered in ascending order
of their zero states:

c0 = [00000011]
c1 = [00001001]
c2 = [00010111]
c3 = [00011101]
c4 = [00101011]
c5 = [00110101]
c6 = [00111111]
c7 = [01101111]

.

For the cycle c3 = [00011101] we have that L(c3) = 3, its zero state is (000111),
and its 8 shifts are as follows:
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zero shift [00011101]
shift one [00111010]
shift two [01110100]
shift three [11101000]
shift four [11010001]
shift five [10100011]
shift six [01000111]
shift seven [10001110]

.

�

Define a graph GPF(n,k),m whose vertices are 2k ×m matrices. Each matrix is
an m-state X = (x0, (x1, s1), . . . , (xm−1, sm−1)), where xi is a cycle in PF(n, k),
represented as a column vector and si is a shift of xi compared to its zero state.
The first cycle x1 is taken with its zero shift and the other cycles are taken in
all possible shifts. An immediate consequence of this definition is the following
lemma.

Lemma 9.3. The number of vertices in the graph GPF(n,k),m is 2nm−k .

Example 9.2. For n = 6, m = 5, and r = 8 consider the factor PF(6,3) of
Example 9.1. The following three 8 × 5 arrays are vertices, i.e., m-states in
GPF(6,3),5: (c0, (c3,3), (c3,5), (c5,1), (c4,0)), (c5, (c2,5), (c1,4), (c7,0), (c7,1)),
and (c7, (c6,0), (c6,0), (c2,3), (c5,0)). These three m-states form the following
8 × 5 matrices that are vertically periodic:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
0 1 0 1 0
0 1 1 1 1
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
1 0 1 1 1
1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1
0 1 0 1 1
1 1 0 1 0
1 0 1 0 1
0 0 0 1 1
1 0 0 1 1
0 1 0 1 1
1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
1 0 0 0 0
1 1 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 1 0 1
1 1 1 0 0
1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. �

Lemma 9.4. Each n × m binary matrix is contained exactly once as a window
in one of the vertices of the graph GPF(n,k),m.

Proof. The proof is done by induction on m.
Basis: If m = 1, then each n × 1 binary matrix is contained exactly once in one
vertex since the vertices represent the cycles of the perfect factor PF(n, k) in Gn.
Induction hypothesis: Assume the claim holds for n × (m − 1) windows in
GPF(n,k),m−1.
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Induction step: Let Tm be an n × m binary matrix and let Tm−1 be the ma-
trix that consists of the first m − 1 column of Tm. By the induction hypothesis,
Tm−1 is contained exactly once in one vertex of GPF(n,k),m−1. The vertices of
GPF(n,k),m can be generated by taking the 2k × (m − 1) matrix of each vertex of
GPF(n,k),m−1 and attaching to its end all the cycles of PF(n, k) in all their 2k pos-
sible shifts. Since each binary n-tuple is contained exactly once as a window in
one of the cycles of PF(n, k), it follows that exactly one of those shifts attaches
the last column of Tm to Tm−1 and form Tm.

The graph GPF(n,k),m has 2n(m+1)−k directed edges as follows. From the ver-
tex X = (x0, (x1, s1), . . . , (xm−1, sm−1)) there exists a directed edge to the ver-
tex Y = (y0, (y1, t1), . . . , (ym−1, tm−1)) if and only if for each j , 1 ≤ j ≤ m−2,
(yj , tj ) = (xj+1, sj+1 − s1), where sj+1 − s1 is taken modulo 2k , y0 = x1,
ym−1 ∈ PF(n, k), and tm−1 ∈ {0,1, . . . ,2k − 1}. Such an edge can be rep-
resented by a 2k × (m + 1) matrix (x0, (x1, s1), . . . , (xm−1, sm−1), (xm, sm)),
where xm = ym−1, and sm = s1 + tm−1 (mod 2k). Thus we have the following
lemma.

Lemma 9.5. The out-degree of each vertex in GPF(n,k),m is 2n and this is also
the in-degree of each vertex.

Similarly to the proof of Lemma 9.4 we can prove the following lemma.

Lemma 9.6. Each n × (m + 1) binary matrix is contained exactly once as a
window in one of the edges of GPF(n,k),m.

Finally, similarly to the proof of Lemma 1.15, we have the following lemma.

Lemma 9.7. Given two vertices u,v ∈ GPF(n,k),m, there are exactly 2k paths of
length m from u to v and hence GPF(n,k),m is a connected graph.

The reason that there is no unique path from a vertex u to a vertex v in
GPF(n,k),m compared to the unique path in Gσ,n is that the vertex v can be taken
in each one of its 2k cyclic shifts compared to vertex u, and each such cyclic
shift will lead to a different path from u to v.

Corollary 9.1. There exists an Eulerian cycle in GPF(n,k),m for each m ≥ 1.

Again, similarly to Theorem 1.16, we can prove the following theorem.

Theorem 9.1. The line graph of GPF(n,k),m, is GPF(n,k),m+1.

Theorem 9.1 implies that exactly as in the de Bruijn graph, where an Eulerian
cycle in Gσ,n−1 implies the existence of a Hamiltonian cycle in Gσ,n, we have
the following corollary.

Corollary 9.2. There exists a Hamiltonian cycle in GPF(n,k),m for each m ≥ 1.
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It is tempting to say that an Eulerian cycle obtained based on Corollary 9.1
is associated with an (r, t;n,m + 1)-PM. This is usually the case, but we have
to prove that the cycle ends in the same cyclic shifts with which it began. We
will delay the proof of the related claim to Theorem 9.5 that will show that there
exists one exception to this claim. An Eulerian cycle will usually yield an asso-
ciated de Bruijn array, but to generate such an array or many such arrays in the
next section we will prefer a technique based on construction for Hamiltonian
cycles, as was done in Section 4.3 in constructions of de Bruijn sequences.

The existence of the graph GPF(n,k),m depends on the existence of a perfect
factor PF(n, k). By the definition of a perfect factor PF(n, k) there are simple
necessary conditions for the existence of such a factor.

Lemma 9.8. If there exists a perfect factor PF(n, k), then k ≤ n < 2k .

Proof. A perfect factor PF(n, k) contains 2n−k cycles of length 2k in Gn. This
immediately implies that n − k ≥ 0, i.e., n ≥ k. Since each n-tuple is contained
in one of the cycles, including the all-ones and the all-zeros n-tuples, it follows
that the length of a cycle must be larger than n, i.e., n < 2k . Thus the claim of
the lemma is proved.

Theorem 9.2. If n and k are integers such that k ≤ n < 2k , then there exists a
perfect factor in Gn with 2n−k cycles of length 2k .

Proof. We distinguish between two cases.
Case 1: 2k−1 ≤ n < 2k . An associated perfect factor, namely �(n), exists by
Corollary 5.7.
Case 2: k ≤ n ≤ 2k−1. Let S be a de Bruijn sequence of length 2k and
minimum complexity 2k−1 + k. Such a sequence exists by Theorem 5.4. By
Corollaries 4.5, 4.6, and 5.5, D−(n−k)S contains disjoint sequences (cycles)
in Gk+n−k = Gn with complexity 2k−1 + k + (n − k) = 2k−1 + n. Moreover,
since n ≤ 2k−1, it follows that 2k−1 + n ≤ 2k and hence the sequences in
D−(n−k)S are of length 2k . Also, by Corollary 5.5 there are 2n−k disjoint se-
quences in D−(n−k)S. Thus D−(n−k)S is a factor is Gn that contains 2n−k cycles
of length 2k .

Corollary 9.3. A perfect factor PF(n, k) exists if and only if k ≤ n < 2k .

By Corollary 9.3 there exists a perfect factor PF(n, k) in Gn for each set of
parameters (n, k), where k ≤ n < 2k . For most such sets of parameters, there
exist many such factors. Therefore the graph GPF(n,k),m is usually not unique. If
k ≤ n ≤ 2k−1, then using Theorems 5.4 and 9.2 we have that there exist many
such factors based on de Bruijn sequences of length 2k and minimum complex-
ity 2k−1 + k. Many such sequences were constructed in Section 5.2. Moreover,
for most parameters, other de Bruijn sequences with specified complexities can
be used. As for 2k−1 ≤ n < 2k the factor that we showed is �(n). This is just one
such factor, but many others can be constructed for some of these parameters. It
is interesting to note that the two sets of parameters intersect in n = 2k−1.
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We continue and define a related graph to form shortened de Bruijn arrays.
Instead of a perfect factor PF(n, k) with 2n−k cycles of length 2k in Gn, it will
be required to define a factor in Gn in which one of the cycles is the all-zeros
self-loop vertex and all the other cycles have the same length that divides 2n − 1.
A zero factor ZF(n, k) in Gn, where 2n − 1 = d · k, is a factor with the cycle
[0] and d simple cycles of length k. We will also say that the exponent of the
factor is k. Note that the length of a cycle in a zero factor ZF(n, k) is k, while
the length of a cycle in a perfect factor PF(n, k) is 2k .

With a zero factor ZF(n, k) we define a graph GZF(n,k),m in the same way
that we defined a graph GPF(n,k),m. For each nonzero cycle in ZF(n, k) we define
a zero state. The all-zeros cycle of the zero factor is considered exactly as all the
other d cycles of length k with one exception, it does not have distinct shifts
as all its shifts are equal. Similarly to the cycles in a perfect factor, we define a
zero state as one of the states of the cycles. The other states of a cycle will be
considered with their shifts related to the zero state. The cycles will be ordered in
some order and each cycle will be given a location in this ordering. The vertices
in GPF(n,k),m are k × m matrices, whose columns are cycles of the zero factor
ZF(n, k), where the first nonzero cycle in a matrix is taken in its zero shift and
each other cycle is taken in any one of its k shifts compared to its zero state,
except for the cycle [0], which is taken as is. Each vertex contains at least one
nonzero cycle of ZF(n, k). The edges in the graph are k × (m + 1) matrices
whose columns are cycles of the zero factor ZF(n, k), where the first m columns
are associated with the starting vertex of the edge and the last m columns are
associated with the end vertex of the edge. The shifts of the starting vertex are
the same as the shifts of the first m columns of the edge, and the related shifts
of the end vertex are the shifts of the last m columns of the edge. The following
results on GZF(n,k),m can be proved similarly to those in the lemmas associated
with GPF(n,k),m.

Lemma 9.9. The number of vertices in the graph GZF(n,k),m is d 2nm−1
2n−1 .

Proof. Each k ×m matrix has at least one column that contains a nonzero cycle.
The first such column can be in each one of the m columns. Once the first such
column is determined, there are d possible cycles that can be used for this first
nonzero column. Each one of the next columns can start with any of the 2n states
(the all-zeros state is associated with the all-zeros cycle). Therefore the number
of distinct k × m matrices is

m∑
i=1

d · 2n(m−i) = d

m−1∑
i=0

2n·i = d
2nm − 1

2n − 1
,

which is also the number of vertices in GZF(n,k),m.

The construction of the matrices associated with the vertices of GZF(n,k),m

immediately implies the following lemma.



286 Sequences and the de Bruijn Graph

Lemma 9.10. Each n×m binary matrix is contained exactly once as a window
in one of the vertices of GZF(n,k),m.

Unfortunately, we cannot generalize Lemma 9.5 on the in-degree and the
out-degree of each vertex in GPF(n,k),m. The degrees in GZF(n,k),m are given in
the following lemma.

Lemma 9.11. The in-degree of a vertex in GZF(n,k),m whose last m−1 columns
are all-zeros is 2n and the out-degree of such a vertex is d . The in-degree of a
vertex in GZF(n,k),m whose first m − 1 columns are all-zeros is d and the out-
degree of such a vertex is 2n. For the other vertices of GZF(n,k),m the in-degree
of each vertex is 2n and this is also its out-degree.

Proof. To each vertex v of GZF(n,k),m whose last m − 1 columns contain only
zeros we can add any one of the d nonzero cycles of ZF(n, k) as the new last
column. The shift in which such a cycle is added can be ignored since all these
shifts are the same as related to the previous m − 1 consecutive m − 1 all-zeros
columns. Therefore the out-degree of such vertex v is d . The first column of v

must be nonzero and hence before the first column, we can add any cycle with
all possible shifts and hence its in-degree is 2n. The same arguments hold for
the in-degree and the out-degree of a vertex whose first m − 1 columns contain
only zeros. Hence, the in-degree of a such vertex is d and its out-degree is 2n.
For any other vertex v the same arguments hold and since neither all its first
m − 1 columns nor all its last m − 1 columns are zeros, it follows that the in-
degree of v is 2n and the same holds for its out-degree.

Similarly to Lemma 9.7, we have the following lemma.

Lemma 9.12. Given two vertices u,v ∈ GZF(n,k),m, there are exactly k paths of
length m from u to v and hence GZF(n,k),m is a connected graph.

In view of Lemma 9.11 there is no Eulerian cycle in GZF(n,k),m. Moreover,
Lemma 9.6 cannot be generalized for GZF(n,k),m since all the n × (m + 1) ma-
trices whose either first m columns are all-zeros or last m columns are all-zeros
do not appear as n × (m + 1) windows of some edges in GZF(n,k),m. On the
other hand, in view of Lemma 9.10 a Hamiltonian cycle in GZF(n,k),m will be
associated with a shortened de Bruijn array and its construction will be the same
as the construction of de Bruijn arrays. For both graphs defined (for perfect fac-
tors and zero factors), a necklaces factor will be defined for the construction.
The construction of a necklaces factor for GPF(n,k),m and for GZF(n,k),m will be
described in the next section.

The next step is to construct zero factors in Gn in the same way that perfect
factors were constructed. Unfortunately, unlike perfect factors that exist for all
possible parameters, there is still a considerable gap in the knowledge on zero
factors in Gn. The theory of LFSRn presented in Section 2.1 implies some types
of zero factors.
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Theorem 9.3. If the characteristic polynomial f (x) of a shift register is irre-
ducible, then the shift register produces a zero factor with exponent k, where k is
the smallest integer such that f (x) divides xk − 1.

Proof. The claim follows immediately from Definition 2.1, Theorem 2.3, and
Corollary 2.2.

The following Theorem is an immediate observation from Corollary 2.6.

Theorem 9.4. Let fi(x), 1 ≤ i ≤ r , be r different irreducible polynomials of
degree n, and let their corresponding shift registers have zero factors with expo-
nent e. Then, the feedback shift register that has the characteristic polynomial∏r

i=1 fi(x) produces a zero factor with exponent e.

Example 9.3. To obtain a zero factor with 9 cycles of length 7 in G6 we consider
the two primitive polynomials of degree 3 and their associated M-sequences of
length seven. These two M-sequences are S1 = [0011101] and S2 = [0010111].
We multiply these two polynomials and obtain the characteristic polynomial

(x3 + x2 + 1)(x3 + x + 1) = x6 + x5 + x4 + x3 + x2 + x + 1,

whose LFSR6, which is the PSR6, forms the nine cycles

1) [0001010]
2) [0101101]
3) [1100011]
4) [1111110]
5) [1000100]
6) [0110000]
7) [1011001]
8) [0011101]
9) [0010111]

.

These cycles can be also obtained by applying Lemma 2.5 and Theorem 2.5 on
the two M-sequences of length 7, as follows:

S1 + S2 = [0011101] + [0010111] = [0001010]
ES1 + S2 = [0111010] + [0010111] = [0101101]

E2S1 + S2 = [1110100] + [0010111] = [1100011]
E3S1 + S2 = [1101001] + [0010111] = [1111110]
E4S1 + S2 = [1010011] + [0010111] = [1000100]
E5S1 + S2 = [0100111] + [0010111] = [0110000]
E6S1 + S2 = [1001110] + [0010111] = [1011001]
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S1 + [0] = [0011101] + [0000000] = [0011101]
[0] + S2 = [0000000] + [0010111] = [0010111].

�
We continue with another graph representation for de Bruijn arrays and

shortened de Bruijn arrays.
We define a graph Gn,m(V,E1,E2), where V is the set of all n × m binary

arrays, E1 and E2 are sets of edges defined as follows. There is an edge in E1
from the n × m binary array A1 to the n × m binary array A2 if and only if
the (n − 1) × m array obtained from the last n − 1 rows of A1 is equal to the
(n − 1) × m array obtained from the first n − 1 rows of A2. There is an edge
in E2 from the n × m binary array B1 to the n × m binary array B2 if and only
if the n × (m − 1) array obtained from the last m − 1 columns of B1 is equal
to the n × (m − 1) array obtained from the first m − 1 columns of B2. We have
that the edges of E1 are vertical edges and the edges of E2 are horizontal edges
related to the vertices of size n × m.

An (r, t;n,m)-PM is represented by a subgraph of Gn,m(V,E1,E2) that
contains all the vertices of V , a factor in Gn,m(V,E1,E2) that contains t cy-
cles of length r with edges only from E1, and a factor in Gn,m(V,E1,E2) that
contains r cycles of length t with edges only from E2. The edges from E1 of
the factor are determined by the order of the n × m windows projected by any
m consecutive columns of the array. The edges from E2 of the factor are deter-
mined by the order of the n × m windows projected by any n consecutive rows
of the array. However, not every two such factors can form an (r, t;n,m)-PM.

An (r, t;n,m)-SPM is represented by a subgraph of Gn,m(V \ {0},E1,E2)

that contains all the vertices of V , except of the all-zeros vertex, a factor
in Gn,m(V \ {0},E1,E2) that contains t cycles of length r with edges only
from E1, and a factor in Gn,m(V \ {0},E1,E2) that contains r cycles of length t

with edges only from E2. The edges from E1 of the factor are determined by
the order of the n × m windows projected by any m consecutive columns of the
array. The edges from E2 of the factor are determined by the order of the n × m

windows projected by any n consecutive rows of the array.
The degree of a vertex in Gn,m(V,E1,E2) is easily computed. We distin-

guish between the degree associated with the set E1 and the degree associated
with the set E2.

Lemma 9.13. The in-degree of a vertex v ∈ V of Gn,m(V,E1,E2) with edges
from E1 is 2m. The out-degree of a vertex v ∈ V of Gn,m(V,E1,E2) with edges
from E1 is 2m. The in-degree of a vertex v ∈ V of Gn,m(V,E1,E2) with edges
from E2 is 2n. The out-degree of a vertex v ∈ V of Gn,m(V,E1,E2) with edges
from E2 is 2n.

The two distinct graph representations defined for de Bruijn arrays and short-
ened de Bruijn arrays will be used to construct such arrays in the following
sections.
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9.2 Constructions by merging cycles

We will generalize a construction from Section 4.3 for generating de Bruijn
sequences to a construction for perfect maps and shortened perfect maps. For
this purpose, we will use a graph GPF(n,k),m and find a Hamiltonian cycle in it
by merging cycles of a factor in the graph using the merge-or-split method.

For an m-state X, in GPF(n,k),m, where

X = (x0, (x1, s1), . . . , (xm−1, sm−1)),

the set of companions X′ is a set of m-states, where

(y0, (y1, t1), . . . , (ym−1, tm−1)) ∈X
′

if and only if yi = xi and ti = si , 1 ≤ i ≤ m − 2, ym−1 ∈ PF(n, k), y0 = x0, and
one of the following holds:

• ym−1 �= xm−1 and tm−1 ∈ {0,1, . . . ,2k − 1};
• ym−1 = xm−1, tm−1 ∈ {0,1, . . . ,2k − 1}, and tm−1 �= sm−1.

A cycle C = [T (1), T (2), . . . , T (�)] in GPF(n),m contains � ordered vertices,
where T (i), 1 ≤ i ≤ �, are the consecutive vertices of the cycle and there is a
directed edge between any two consecutive vertices cyclically. The cycle C will
be represented also by an 2k × (� + m − 1) matrix

R(C) =
(
T

(1)
0 , T

(2)
0 · · ·T (�−1)

0 , T
(�)
0 , T

(�)
1 · · ·T (�)

m−1

)
,

where T
(j)
i corresponds to the ith column of T (j), and each m consecutive

columns are associated with a vertex in GPF(n),m. Note that we can erase the
last m − 1 columns if they are in the same shift as the first m − 1 columns and
consider the 2k × � matrix R as a doubly periodic matrix. To avoid any confu-
sion, however, we will not erase those columns unless the matrix corresponds to
a perfect map.

We continue to explore the connection between an (r, t;n,m)-PM and a
Hamiltonian cycle in GPF(n,k),m.

Theorem 9.5. A sufficient condition for the existence of a (2k,2nm−k;n,m)-PM,
where n < 2k ≤ 2n and m �= 2 if k = n, is the existence of a Hamiltonian cycle
in GPF(n,k),m.

Proof. By the definition of the matrix representation R(C) of a cycle C and
by Lemma 9.4, each n × m window appears in the matrix representation R(C)

of the Hamiltonian cycle in GPF(n,k),m. Hence, we only have to prove that the
last m − 1 columns of R(C), are in the same shift as the first m − 1 columns
of R(C); this would imply that we can erase the last m − 1 columns of R(C)

to obtain a (2k,2nm−k;n,m)-PM. For this, we have to sum the shifts of the
columns in R(C), where the shift of a column is relative to the shift of the pre-
vious column.
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In R(C) there are 2nm−k + m − 1 columns. Each of the first 2nm−k columns
is associated with a different vertex in GPF(n,k),m. There are 2k possible shifts.

Each shift appears 2nm−k

2k = 2nm−2k times. Hence, the sum of all the shifts is
equal to

2nm−2k(0 + 1 + 2 + 3 + · · · + (2k − 2) + (2k − 1)) = (2k − 1)2nm−k−1.

Since the vertical size of the array is 2k , it follows that the sum of the shifts
should be taken modulo 2k . To obtain the last m−1 columns in the same shift as
the first m − 1 columns, we must have that the sum of the shifts is 0 modulo 2k ,
i.e., (2k − 1)2nm−k−1 ≡ 0 (mod 2k), which is equivalent to nm − k − 1 ≥ k.
Since n > 1 and m > 1, it implies that a (2k,2nm−k;n,m)-PM will be generated
whenever n < 2k ≤ 2n, unless both k = n and m = 2.

To generate a Hamiltonian cycle, we take a factor in GPF(n,k),m and join its
cycles into a single Hamiltonian cycle. This is done using the following theorem,
which is analogous to Lemma 1.19.

Theorem 9.6. Two cycles C1 and C2 in a factor of GPF(n,k),m, with an m-state X

on C1 and an m-state Y on C2 such that Y ∈ X
′, form a single cycle when the

predecessors of X and Y are interchanged.

The necklaces factor (NF) is a factor of GPF(n,k),m that is defined by the
following property: The two m-states X = (x0, (x1, s1), . . . , (xm−1, sm−1)) and
Y = (y0, (y1, t1), . . . , (ym−1, tm−1)) are on the same NF-cycle if and only if
X is a cyclic shift of Y , i.e., there exists an i such that y0 = xi and for each
j , 1 ≤ j ≤ m − 1, (yj , tj ) = (xi+j , si+j − si), where subscripts are taken mod-
ulo m and si+j − si is taken modulo 2k .

For an m-state X = (x0, (x1, s1), . . . , (xm−1, sm−1)), the σ -weight, wtσ (X),
of X, where for each xi , 1 ≤ i ≤ m − 1, L(xi) ≤ σ , is the number of entries
in X for which L(xj ) = σ . The σ -weight wtσ (C) of a cycle C from the NF is
the σ -weight of each of its m-states. Clearly, for a given σ , 0 ≤ σ ≤ 2n−k −2, the
σ -weight is defined only for some of the m-states of GPF(n,k),m. For σ = 2n−k − 1
the σ -weight is defined for all the m-states.

Lemma 9.14. Let C1 be a cycle from the NF of σ -weight ω, where σ > 0 and
ω > 0. Then, there exists an m-state X on C1 with an m-state Y ∈ X

′ such that
Y is an m-state on a different cycle C2 whose σ -weight is ω − 1.

Proof. Since wtσ (C1) = ω > 0, it follows that there exists on C1 an m-state of
the form X= (x0, (x1, s1), . . . ,(xm−2, sm−2),(xm−1, sm−1)), where L(xm−1)=σ .
Hence, each m-state of the form

Y = (x0, (x1, s1), . . . , (xm−2, sm−2), (ym−1, tm−1)),

where L(ym−1) < σ , has σ -weight ω − 1. Therefore Y is an m-state on an
NF-cycle C2 with wtσ (C2) = ω − 1 and Y ∈X

′.
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The shift weight, swt(X), of an m-state X = (x, (x, s1), . . . , (x, sm−1)),
where L(x) = 0, is the number of values of i for which si �= 0. The shift weight
swt(C) of a cycle from the NF, where wt1(C) = 0 (i.e., wt0(C) = m), is the min-
imum shift weight among its m-states. For any other m-state, the shift weight is
not defined.

Lemma 9.15. If C1 is a cycle from the NF, whose shift weight is ω > 0, then
there exists an m-state X on C1 with an m-state Y ∈ X

′ such that Y is on a
different cycle C2 whose shift weight is ω − 1.

Proof. Since swt(C1) = ω > 0, it follows that there exists an m-state of the form
X = (x, (x, s1), . . . , (x, sm−2), (x, sm−1)) on C1, where L(x) = 0, swt(X) = ω,
and sm−1 > 0 (if sm−1 = 0, then we can take on C1 another m-state, e.g.,
X = (x, (x,0), (x, s1), . . . , (x, sm−2))), where swt(X) = ω (and this process
continues if sm−2 = 0). Hence, the m-state Y = (x, (x, s1), . . . , (x, sm−2), (x,0))

is an m-state on another NF-cycle C2 for which swt(C2) = ω−1 and Y ∈ X
′.

Construction merge NF:
Lemmas 9.14 and 9.15, along with Theorem 9.6, suggest a simple method

of joining all the NF-cycles to construct a Hamiltonian cycle in GPF(n),m. At
each step, we have a main cycle obtained in the previous steps by joining
a subset of the NF-cycles. Initially, the main cycle contains all the m-states
of 1-weight zero. This cycle is constructed in m + 1 initial steps. In initial
step 0, the main cycle is the unique cycle of 1-weight zero and shift weight
zero. Before initial step �, 1 ≤ � ≤ m, the main cycle contains all the m-states
with 1-weight zero and shift weight less than or equal to � − 1. In step �

we extend the main cycle by joining to it all the NF-cycles of 1-weight zero
and shift weight � in an arbitrary order. This is always possible because the
current main cycle contains all the states whose shift weight is less than �

and since each NF-cycles of shift weight � ≥ 1 contains an m-state of the
form X = (x, (x, s1), . . . , (x, sm−2), (x, sm−1)), where L(x) = 0, sm−1 > 0, and
swt(X) = �. It can be joined (see Theorem 9.6 and Lemma 9.15) to the cur-
rent main cycle. After all the NF-cycles with 1-weight zero have been joined
to the main cycle, the main cycle is extended by adjoining all the cycles of
1-weight one. In general step jm + i, 0 ≤ j ≤ 2n−k − 2, 1 ≤ i ≤ m, we extend
the main cycle by adjoining all the NF-cycles of (j + 1)-weight i in arbitrary
order. This is always possible because the current main cycle contains all the
states whose (j +1)-weight is less than i and since each of (j +1)-weight i ≥ 1
has an m-state of the form X = (x, (x1, s1), . . . , (xm−2, sm−2), (xm−1, sm−1)),
where L(xm−1) = j + 1, it can be joined (see Theorem 9.6 and Lemma 9.14) to
the current main cycle. This procedure ends when all the NF-cycles have been
joined together. �

An immediate consequence is the following theorem.

Theorem 9.7. Construction merge NF yields a Hamiltonian cycle in GPF(n,k),m.
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A specific procedure for generating the bits of the perfect maps can be given
in a way similar to the procedure for generating t-ary de Bruijn cycles, as ex-
plained in Section 4.3. There are many ways to choose the bridging states. Thus
many perfect maps can be efficiently constructed in this way.

We continue to discuss shortened de Bruijn arrays. The difference between
a de Bruijn sequence and a shortened de Bruijn sequence is the all-zeros n-tuple
that is not contained in a shortened de Bruijn sequence. The same difference is
between de Bruijn arrays and shortened de Bruijn arrays, where the all-zeros
n × m binary matrix is not contained in a shortened de Bruijn array.

It is quite easy to verify that in a sequence of length 2n − 1 in which all
the windows of length n are distinct, the only missing n-tuple is either the all-
zeros n-tuple or the all-ones n-tuple. Just consider a graph obtained from Gn−1,
where one edge was removed. Unless the removed edge is one of the self-loops,
the obtained graph does not have an Eulerian cycle. The analogous proof for the
two-dimensional arrays is slightly more complicated.

Lemma 9.16. If in an r × t array, r > n and t > m, rt = 2nm − 1, all the n×m

windows are distinct, then the only n × m window that does not appear in the
array is either the all-zeros matrix or the all-ones matrix.

Proof. Consider the graph Gn,m(V,E1,E2) and assume, on the contrary, that
there exists such an array A without the n×m window associated with a vertex v

that is not the all-zeros matrix or the all-ones matrix.
Let v → u be an edge in E1. By Lemma 9.13, there are 2m out-edges from v

in E1. Let U � {u1 = u,u2, . . . , u2m} be the set of vertices such that v → ui ,
1 ≤ i ≤ 2m (the n × m matrices associated with these vertices have the same
projection of their first n − 1 rows). By Lemma 9.13 there are 2m in-edges to u

in E1. Let V � {v1 = v, v2, . . . , v2m} be the set of vertices such that vi → u,
1 ≤ i ≤ 2m (the n × m matrices associated with these vertices have the same
projection of their last n − 1 rows). By the definition of Gn,m(V,E1,E2) we
have that vi → uj for all 1 ≤ i, j ≤ 2m and there are no other out-edges in E1
for any of the vis and no other in-edges in E1 for any of the uj s.

If such an r×t array A exists, then there exists a factor in Gn,m(V \{v},E1,E2)

with t cycles of length r and edges in E1. Since all the out-edges from V are
to vertices in U and all the vertices in U are contained in A (unless v ∈ U), it
follows that to have such a factor we must have that v ∈ U (as otherwise there
will be no edge v′ → u′ for some u′ ∈ U). However, a vertex v is in V and also
in U if and only if it is either the all-zeros vertex or the all-ones vertex.

The construction for a shortened de Bruijn array from a graph GZF(n,k),m

is identical to the construction of a de Bruijn array from a graph GPF(n,k),m.
A necklaces factor (NF) in GZF(n,k),m is defined in the same way that it is de-
fined in GPF(n,k),m, where two m-states X = (x0, (x1, s1), . . . , (xm−1, sm−1))

and Y = (y0, (y1, t1), . . . , (ym−1, tm−1)) are on the same NF-cycle if and only
if X is a cyclic shift of Y , i.e., there exists an i such that y0 = xi and for each j ,
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1 ≤ j ≤ m − 1, (yj , tj ) = (xi+j , si+j − si), where subscripts are taken modulo
m and si+j − si is taken modulo k.

Merging all the cycles of the NF in GZF(n,k),m is done by the merge-or-split
method, exactly in the same way it was done in the NF of the graph GPF(n,k),m.
We have to prove an analog to Theorem 9.5 that is even easier for GZF(n,k),m

since the last m − 1 columns are always in the same shift as the first m − 1 col-
umn. This is because each shift appears the same number of times and for each
shift of size �1, there exists a shift of size �2, such that �1 + �2 = k. Therefore
we have the following theorem.

Theorem 9.8. If there exists a zero factor ZF(n, k), where n < k < 2n, and a
Hamiltonian cycle in GZF(n,k),m, then there exists a (k, (2nm−1)/k;n,m)-SPM.

9.3 Pseudo-random arrays

A pseudo-random array is a shortened perfect map that has the shift-and-add
property. In other words, A is a pseudo-random array if it is a shortened de
Bruijn array, and for each cyclic horizontal and cyclic vertical shift A1 of A

(which together do not form a trivial shift), we have that A2 = A+A1 is another
such shift of A. Such an array will be called an (r, t;n,m)-PRA.

A shortened perfect map is related to a perfect map exactly like a short-
ened full cycle is related to a full cycle. However, only a small fraction of these
shortened full cycles are M-sequences. Similarly, only a small fraction of the
shortened perfect maps are pseudo-random arrays. One construction for these
arrays will be based on the folding of M-sequences into rectangular arrays.

Assume that η = 2k1k2 − 1, r = 2k1 − 1, and t = η
r

, where g.c.d.(r, t) = 1.
Let S = s0s1s2 · · · be a span k1k2 M-sequence obtained from a primitive poly-
nomial p(z) of degree k1k2. Write S down the right diagonals of an r × t array
B = {bij }, 0 ≤ i ≤ r −1, 0 ≤ j ≤ t −1, starting at b00, b11, b22 and so on, where
the last position is br−1,t−1. After bij we continue to write bi+1,j+1, where i +1
is taken modulo r and j + 1 is taken modulo t .

Example 9.4. For k1 = k2 = 2, r = 3, and t = 5, consider the span 4
M-sequence S = [000111101011001], with positions numbered from 0,1, up
to 14. Consider now the 3 × 5 array B with the entries bij , 0 ≤ i ≤ 2, 0 ≤ j ≤ 4,
where the positions 0 through 14, of the sequence, are folded into B as follows:

B =
⎡
⎣ b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

⎤
⎦ ,

⎡
⎢⎣

0 6 12 3 9
10 1 7 13 4
5 11 2 8 14

⎤
⎥⎦ .
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The M-sequence S is folded into the array B keeping the order of the entries
in S according to the order defined by B. The outcome is the array⎡

⎢⎣
0 1 0 1 0
1 0 0 0 1
1 1 0 1 1

⎤
⎥⎦ ,

which forms a (3,5;2,2)-PRA. �
A horizontal shift and/or a vertical shift of the array will be equivalent to

an array obtained by folding from another point of the M-sequence. Since the
M-sequence has the shift-and-add property, it follows that if we make any such
shift, the two arrays will sum to another shift of the array. This is the shift-and-
add property of the array.

Example 9.5. Consider the array and the M-sequence S of Example 9.4. We
shift the array horizontally by 2 and vertically by 1 and add them as follows,
where the first bit of S is in bold:⎡

⎢⎣
0 1 0 1 0
1 0 0 0 1
1 1 0 1 1

⎤
⎥⎦ +

⎡
⎢⎣

1 1 1 1 0
1 0 0 1 0
0 1 1 0 0

⎤
⎥⎦ =

⎡
⎢⎣

1 0 1 0 0
0 0 0 1 1
1 0 1 1 1

⎤
⎥⎦ .

The M-sequence S starts in the leftmost array in b00, in the middle array at b12,
and in the rightmost array at b04. �

To verify that in general, the constructed array has the k1 × k2 window
property we have to use the Chinese reminder theorem (see Theorem 1.9 and
Corollary 1.2). Note that for our purpose we need Corollary 1.2 only for s = 2,
but it can be used for any s, i.e., the results can be generalized for s-dimensional
arrays. We write the M-sequence S in an r × t array B, where s�, 0 ≤ � < η, is
written in bij , where

� ≡ i (mod r)

� ≡ j (mod t)
.

The array B can be represented as a polynomial (generating function),
b(x, y), where xr = 1 and yt = 1.

b(x, y) =
r−1∑
i=0

t−1∑
j=0

bij x
iyj .

If s(z) is the polynomial (generating function) representing the M-sequence
S = s0s1s2 · · · of length η = 2k1k2 − 1 and b(x, y) is the polynomial that rep-
resents the r × t array B, then b(x, y) = s(z), where z = xy. The term s�z

� is
replaced by the term bij x

iyj , where � ≡ i (mod r), 0 ≤ i < r and � ≡ j (mod t),
0 ≤ j < t . Thus s� will be the value of bij as required.
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Example 9.6. Consider the (3,5;2,2)-PRA

⎡
⎢⎣

0 1 0 1 0
1 0 0 0 1
1 1 0 1 1

⎤
⎥⎦

of Example 9.4, where x3 = 1 and y5 = 1. Clearly,

b(x, y) = (y + y3) + x(1 + y4) + x2(1 + y + y3 + y4).

For the associated M-sequence S = 000111101011001 we have

s(z) = z3 + z4 + z5 + z6 + z8 + z10 + z11 + z14

and

s(xy) = y3 + xy4 + x2 + y + x2y3 + x + x2y + x2y4 = b(x, y),

as required. �

Theorem 9.9. Each k1 × k2 binary nonzero matrix is contained as a window in
the r × t array B, where r = 2k1 − 1 and t = (2k1k2 − 1)/r , exactly once.

Proof. Let α be a primitive element in GF(2k1k2 ) and let S be its associated
M-sequence. Furthermore, let G be a (k1k2) × (2k1k2 − 1) generator matrix for
a [η = 2k1k2 − 1, k1k2,2k1k2−1] simplex code C (see Definition 2.9). This gener-
ator matrix can be taken as a (k1k2)× (2k1k2 −1) matrix defined by k1k2 consec-
utive shifts of the M-sequence S. The columns of G can be rearranged in a way
that they are considered as the representation of α0, α1, α2, . . . , αη−1 in this or-
der. Let �(i, j) ≡ i (mod r), �(i, j) ≡ j (mod t), where 0 ≤ �(i, j) < 2k1k2 − 1.

We claim that the k1k2 columns of G associated with the elements α�(i,j),
where �(i, j) ≡ i (mod r), �(i, j) ≡ j (mod t), 0 ≤ i ≤ k1 −1 and 0 ≤ j ≤ k2−1,
are linearly independent. These columns are associated with the k1 × k2 sub-
array in the upper left corner of B.

Assume, on the contrary, that

k1−1∑
i=0

k2−1∑
j=0

cijα
�(i,j) = 0,

where not all the cij are zeros. Since g.c.d.(r, t) = 1, it follows by Theorem 1.5
that there exist two integers μ and ν such that μr + νt = 1. Let β = ανt ,
γ = αμr , which implies that β is an element of order r and γ is an ele-
ment of order t since rt = 2k1k2 − 1 and hence αrt = 1. This also implies
that α = αμr+νt = βγ and, hence, α�(i,j) = β�(i,j)γ �(i,j) = βiγ j . Moreover,
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rt = 2k1k2 −1 implies that αrt = 1 and, hence, βr = ανtr = 1 and γ t = αμrt = 1.
Therefore we have

0 =
k1−1∑
i=0

k2−1∑
j=0

cijα
�(i,j) =

k1−1∑
i=0

k2−1∑
j=0

cij (βγ )�(i,j) =
k2−1∑
j=0

⎛
⎝k1−1∑

i=0

cijβ
i

⎞
⎠γ j . (9.1)

The order of β is r = 2k1 − 1, and, hence, β is a primitive element in F2k1 .
Therefore the coefficient of γ j in Eq. (9.1) is an element of F2k1 . Let m be the
smallest integer such that γ 2m−1 = 1.

Clearly, αμr(2m−1) = γ 2m−1 = 1 and since the order of α is rt , it follows
that rt divides μr(2m − 1) and t divides 2m − 1 (since by μr + νt = 1 we

have that g.c.d.(μ, t) = 1). The binary representation of t = η
r

= 2k1k2−1
2k1−1

is

10k1−110k1−11 · · ·0k1−11, where the number of ones in this representation is k2.
Hence, this binary representation contains k1(k2 − 1)+ 1 digits. The binary rep-
resentation of 2m − 1 is 11 · · ·1, where the number of ones in this representation
is m. Hence, by considering binary multiplication, the smallest m for which t di-
vides 2m − 1 is k1k2. Thus m = k1k2 is the smallest positive integer such that
γ 2m = γ and the k2 elements

γ, γ 2k1
, γ 22k1

, . . . , γ 2(k2−1)k1

are distinct. Therefore
k2−1∏
i=0

(x − γ 2ik1
)

is the minimal polynomial of γ in F2k1 . This polynomial has degree k2 in F2k1 .
Now, the polynomial in Eq. (9.1) is a polynomial in γ with a smaller de-
gree k2 − 1 that equals zero. This implies that all the coefficients of γ j in
Eq. (9.1) are equal to zero. Therefore for each 0 ≤ j ≤ k2 − 1 we have

k1−1∑
i=0

cijβ
i = 0,

a contradiction since this is a polynomial in β of degree less than k1 and the
minimal zero polynomial of β has degree k1. This completes the proof of the
claim that the k1k2 columns of G associated with the elements α�(i,j), where
�(i, j) ≡ i (mod r), �(i, j) ≡ j (mod t), 0 ≤ i ≤ k1 − 1 and 0 ≤ j ≤ k2 − 1, are
linearly independent.

This claim implies that the k1 × k2 array in the upper leftmost corner of B is
nonzero. This k1 × k2 window can be chosen arbitrarily since the M-sequence
can start at any nonzero initial (k1k2)-tuple. This k1 × k2 window determines
the rest of the codeword of the simplex code C. Hence, by the shift-and-add
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property, there are no two equal k1 × k2 windows, as otherwise we can have an
all-zeros k1 × k2 window by adding the associated to such shifts with two equal
k1 × k2 windows. Thus we have the window property.

9.4 Recursive constructions for perfect maps

This section is devoted to several recursive constructions of perfect maps with
various parameters.

The first method is to construct (2n,2n(m−1);n,m)-PM, where m ≥ 3. The
method will be based on two de Bruijn sequences. Let K = [k1k2 · · · k2n(m−1) ]
be a span m − 1 de Bruijn sequence over Z2n and let S be a span n binary de
Bruijn sequence defined as a column vector. Let EiS denote the shift of S (as a
column vector) by i positions and define the following 2n × 2n(m−1) array

A =
[

Ek1S Ek1+k2S Ek1+k2+k3S · · · E
∑2n(m−1)

i=1 ki S

]
. (9.2)

Theorem 9.10. The array A defined in Eq. (9.2) is a (2n,2n(m−1);n,m)-PM.

Proof. As in the proof of Theorem 9.5 we show that the array A is cyclic, i.e.,
the first m − 1 columns are in the appropriate shift related to the last m − 1

columns, i.e., k1 + ∑2n(m−1)

i=1 ki ≡ k1 (mod 2n), i.e.,
∑2n(m−1)

i=1 ki ≡ 0 (mod 2n).
This is an immediate consequence as each symbol of Z2n is contained exactly
2n(m−1)

2n = 2n(m−2) times in K . Therefore summing all the shifts we have (recall
that m ≥ 3)

2n(m−1)∑
i=1

ki =
2n−1∑
i=0

(2n(m−2) · i) ≡ 0 (mod 2n),

which implies that the array A is cyclic.
The number of entries in the array A is 2n · 2n(m−1) = 2nm and hence to

complete the proof it is sufficient to show that each n×m binary matrix appears
as a window in A. Let X = (x1, x2, . . . , xm) be such an n × m matrix, where xj ,
1 ≤ j ≤ m, is a column vector of length n. Let ij , 1 ≤ j ≤ m, be the position
of xj in the span n binary de Bruijn sequence S. Let

Y = D(i1, i2, . . . , im) = (i2 − i1, i3 − i2, . . . , im − im−1),

where the computations are performed modulo 2n. The m-tuple (i1, i2, . . . , im)

represents the consecutive shifts in which the sequence S is taken in A. The
(m − 1)-tuple Y also represents these shifts, where ij − ij−1 is the shift of
the j th column of A related to the (j − 1)th column of A, associated with
the n × m array X in A. The (m − 1)-tuple Y is contained in a window
(kδ+1, kδ+2, . . . , kδ+m−1) of the span m − 1 de Bruijn sequence K , where
each kj is considered as an integer in Z2n . Consider the sub-matrix of A,
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B = (Bδ,Bδ+1, . . . ,Bδ+m−1), which is a projection of m columns of A that
starts at column δ and ends at column δ + m − 1. By the definition of A we
have that B� = Ek�B�−1, for δ + 1 ≤ � ≤ δ + m − 1. Therefore the matrix X is
contained in the sub-matrix B as an n × m window.

Example 9.7. Let n = 2, m = 3,

S = [0011]
and

K = [0032112331022013].
The array A with the 2 × 3 window property, obtained from the construction in
Eq. (9.2), is

A =

⎡
⎢⎢⎢⎣

0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0
1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1
1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1

⎤
⎥⎥⎥⎦ .

�

Theorem 9.11. If there exists an (r, t;n,m)-PM whose columns are sequences
with period r and even weight, then there exists an (r,2mt;n + 1,m)-PM.

Proof. Let A be an (r, t;n,m)-PM whose columns are sequences with period r

and even weight and define

A � [
2m times of A︷ ︸︸ ︷
A A · · · A].

Clearly, A is an r × (2mt) array. Theorem 4.4 and Corollary 4.5 imply that if we
apply the operator D−1 on a column from A, the outcome is two complementary
sequences of the same length r . These sequences will be used to construct a new
array B. By Theorem 4.4, all these sequences have period r . Let

S = [s0, s1, . . . , s2m−1]
be a span m binary de Bruijn sequence whose first m bits are zeros and hence
the sequence [s1, s2, . . . , s2m−1] is the shortened de Bruijn sequence obtained
from S. Define the sequence

B � (

t times︷ ︸︸ ︷
0,0, . . . ,0,

t times of s1,s2,...,s2m−1︷ ︸︸ ︷
s1, s2, . . . , s2m−1, s1, s2, . . . , s2m−1, . . . , s1, s2, . . . , s2m−1)

of length t + (2m − 1)t = 2mt and denote B = (b1, b2, . . . , b2mt ).
We define a new array B. Let the ith column of B, Bi = D−1

bi
Ai , where

Ai is the ith column of A and 1 ≤ i ≤ 2mt . Clearly, B is an r × (2mt) array and
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hence it has r2mt windows of size (n+1)×m. Since r2mt = 2m2nm = 2(n+1)m,
it follows that to complete the proof it is sufficient to show that either each
(n + 1) × m binary array is contained at least once as an (n + 1) × m window
in B or that all the (n + 1) × m windows of B are distinct.

Assume, on the contrary, that there exist two (n + 1) × m windows X and
Y in B for which X = Y . Let X and Y be the two n × m arrays obtained from
X and Y , respectively, by applying D on the columns of X and Y , respectively
(note that these columns are acyclic sequences). Clearly, if X = Y , then X = Y .
Since A is an (r, t;n,m)-PM, it follows that all its n × m windows are distinct
and hence X = Y implies that they are obtained from the same position of A

in different locations of A. Moreover, X = Y implies that they are in columns
of B projected from two sets of m columns associated with the same m-tuple
in B. Recall that t is a power of 2 and hence g.c.d.(t,2m − 1) = 1. This implies
that the projection of two sets of m columns on A and B (where the two sets of
columns from A yield the same r × m window) cannot yield the same pair of
m-tuples from B and hence cannot yield the same pair of (n + 1) × m sub-
matrices in B, a contradiction. Thus B is an (r,2mt;n + 1,m)-PM.

In the conditions of Theorem 9.11 it is required that if A is the (r, t;n,m)-PM
from which the new perfect map is constructed, the columns of length r will
have even weight. This is indeed the case in the array defined in (9.2) and in
most of the de Bruijn arrays constructed from perfect factors in Section 9.2. In
all the perfect factors, constructed in the proof of Theorem 9.2, we have that all
the sequences have the same period r = 2k and the same linear complexity. Only
when the linear complexity is also 2k we have that the weight of the sequences
is odd.

Theorem 9.12. If there exists an (r, t;n,m)-PM whose column weights are odd,
then there exists a (2r,2m−1t;n + 1,m)-PM.

Proof. The proof goes along the same lines as the proof of Theorem 9.11, but
there are some important delicate differences.

Let A be an (r, t;n,m)-PM whose columns are sequences with period r and
odd weight and define

A � [
2m−1 times of A︷ ︸︸ ︷
A A · · · A ].

Clearly, A is an r × (2m−1t) array. By Theorem 4.5, we have that applying D−1

on a column of A, the result is a self-dual sequence of double length 2r . Each
such sequence can start with a zero or a one, depending on whether we use D−1

0
or D−1

1 , respectively. These sequences will be used to construct a new array B.
By Theorem 4.5, all these sequences have period 2r . Let

S = [s0, s1, . . . , s2m−1−1]
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be a span m half de Bruijn sequence (see Definition 4.2) whose first m bits are
zeros and hence the sequence [s1, s2, . . . , s2m−1−1] is the “shortened” half de
Bruijn sequence obtained from S. Define the sequence

B�(

t times︷ ︸︸ ︷
0,0, . . . ,0,

t times of s1,s2,...,s2m−1−1︷ ︸︸ ︷
s1, s2, . . . , s2m−1−1, s1, s2, . . . , s2m−1−1, . . . , s1, s2, . . . , s2m−1−1 )

of length t + (2m−1 − 1)t = 2m−1t and define B = (b1, b2, . . . , b2m−1t ).
We define a new array B as follows. Let the ith column of B be D−1

bi
Ai ,

where Ai is the ith column of A and 1 ≤ i ≤ 2m−1t . Clearly, B is an
(2r) × (2m−1t) array and hence it has 2r2m−1t windows of size (n + 1) × m.
Since 2r2m−1t = 2m2nm = 2(n+1)m, it follows that to complete the proof it is
sufficient to show that either each (n + 1) × m binary array is contained at least
once as a (n+ 1)×m window in B or that all the (n+ 1)×m windows of B are
distinct.

Assume, on the contrary, that there exist two (n + 1) × m windows X and Y

in B for which X = Y . Let X and Y be the two n × m arrays obtained from
X and Y , respectively, by applying D on the columns of X and Y , respectively
(note that these columns are acyclic sequences). Clearly, if X = Y , then X = Y .
Since A is an (r, t;n,m)-PM, it follows that all its n × m windows are distinct
and hence X = Y implies that they are obtained from the same position of A in
different locations of A. Moreover, X = Y implies that they are in columns of B
projected from two sets of m columns associated with the same m-tuple in B.
Recall that t is a power of 2 and hence g.c.d.(t,2m−1 − 1) = 1. This implies
that the projection of two sets of m columns on A and B (where the two sets of
columns from A yield the same r × m window) cannot yield the same pair of
m-tuples from B and hence cannot yield the same pair of (n + 1) × m sub-
matrices in B, a contradiction. Thus B is a (2r,2m−1t;n + 1,m)-PM.

The various constructions for de Bruijn arrays that were presented can be
iterated to obtain such arrays with various parameters. Moreover, the transpose
of each such array can be also used for such purpose. Finally, there are many
ad-hoc constructions for small perfect maps on which the constructions can be
applied.

9.5 Two-dimensional arrays with distinct differences

There is no two-dimensional concept of a difference set, but there are some
structures that consider two-dimensional arrays with distinct differences. The
rulers that are derived from difference sets (see Example 2.10) can be general-
ized to arrays with distinct differences as follows.

Definition 9.3. An n × m distinct difference configuration (DDC) is an n × m

array in Z
2 containing dots, such that any two lines connecting two dots are

distinct in their length or their slope.
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FIGURE 9.1 An array in which every 6 consecutive columns form a 6 × 6 Costas array obtained
from the singly periodic Welch construction.

Definition 9.3 is the most general definition that generalizes the definition
of a ruler. Examples of DDCs are each 6 × 6 array obtained from 6 consecutive
columns in Fig. 9.1 and the arrays in Fig. 9.5. Later in this section and also in the
next chapter we will generalize this definition for other shapes and also present
an alternative definition for a set of dots without a specific shape (instead of the
n × m rectangle). We can consider the dots in Z

2 in two equivalent ways. The
first one is to put the dot on the points of Z2. The second one, which will be
used in this chapter and the next one, is as follows. Consider the unit square
whose end-points are (i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1). A dot at
point (i, j) for the second option is at the center of this unit square. However, we
start with a more specific definition of a structure that has several applications,
has symmetry associated with rows and columns, and finally the structure can
be described also by a one-dimensional sequence, which defines a permutation.

A Costas array of order n is an n×n permutation matrix with n dots, where
the

(
n
2

)
vectors connecting two dots in the matrix are all distinct as vectors (in

their magnitude or their slope). The matrix will be also defined as a binary ma-
trix with ones in the positions of the dots.

There are two basic constructions of Costas arrays, the Welch construction
and the Golomb construction.
The Welch construction:

Let α ∈ Fp be a primitive root modulo the prime p, and c a constant integer.
Define the (p − 1) × (p − 1) binary matrix A by

A(j, i + c) = 1 if and only if αi+c ≡ j (mod p) 1 ≤ i, j ≤ p − 1.

�
The one when A(j, i) = 1 (the same as aj,i = 1) is in row j , column i, which

means that the dot in the grid is in point (coordinate) (i, j). An example of an
array derived from the Welch construction is depicted in Fig. 9.1.

Theorem 9.13. The array A defined by the Welch construction is a Costas array
of order p − 1.

Proof. Since α is a primitive root modulo p, it follows that p − 1 successive
powers of α form the multiplicative group modulo p, i.e., these p − 1 consecu-
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tive powers are distinct nonzero residues modulo p and hence A is a permutation
matrix.

Assume, on the contrary, that A is not a Costas array. This implies that we
can find two distinct pairs of entries with ones (dots) as follows:

{(i + c,αi+c), (i + δ + c,αi+δ+c)} {(� + c,α�+c, (� + δ + c,α�+δ+c)},
where 1 ≤ i < �, 1 ≤ δ ≤ p − 3, � + δ ≤ p − 1, and the associated vectors
(δ,αi+δ+c − αi+c) and (δ,α�+δ+c − α�+c) are equal. This implies that

αi+c(αδ − 1) = α�+c(αδ − 1).

Since αδ − 1 �≡ 0 (mod p), it follows that αi = α� and hence i = �, a contradic-
tion. Thus A is a (p − 1) × (p − 1) Costas array.

The Golomb construction:

Let α,β be two primitive elements in Fq (not necessarily distinct). Define
the binary (q − 2) × (q − 2) matrix A by

A(j, i) = 1 if and only if αi + βj = 1 1 ≤ i, j ≤ q − 2.

The dot is at coordinates (i, logβ(1 − αi)). �

Theorem 9.14. The array A defined by the Golomb construction is a Costas
array of order q − 2.

Proof. Clearly, each one of the sets {αi : 1 ≤ i ≤ q−2} and {βj : 1 ≤ j ≤ q−2}
contains Fq \ {0,1}. This implies that for αi , 1 ≤ i ≤ q − 2, there exists exactly
one j such that αi + βj = 1 and therefore A is a permutation matrix.

For αi + βj = 1 let j = logβ(1 − αi). Assume, on the contrary, that A is not
a Costas array. Hence, there exist two pairs of points with vectors having the
same magnitude and slope as follows:

(i, logβ(1 − αi)), (i + δ, logβ(1 − αi+δ)),

(�, logβ(1 − α�)), (� + δ, logβ(1 − α�+δ)),

where 1 ≤ i < �, 1 ≤ δ ≤ q − 4, � + δ ≤ q − 2 and the corresponding vectors,

(δ, logβ(1 − αi+δ) − logβ(1 − αi))

and

(δ, logβ(1 − α�+δ) − logβ(1 − α�))

are equal. This implies the following equalities

logβ

1 − αi+δ

1 − αi
= logβ

1 − α�+δ

1 − α�
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1 − αi+δ

1 − αi
= 1 − α�+δ

1 − α�

αi(αδ − 1) = α�(αδ − 1) .

Since αδ − 1 �= 0, it follows that αi = α� and hence i = �, a contradiction. Thus
A is a (q − 2) × (q − 2) Costas array.

One interesting question is the periodicity of a Costas array, i.e., can these
arrays be made singly periodic or doubly periodic? The first natural related ques-
tion to ask is whether it is possible to put dots in Z

2 in such a way that each n×n

window defines an n × n Costas array. Unless, n = 1 or n = 2, where the con-
struction is trivial, we will prove that there is no such filling of the space. We can
continue and ask whether there exists an n×∞ array such that each n×n array
is a Costas array. We will prove that the Welch construction produces such an
array. However, before that, we will give a weak definition for a doubly periodic
array.

Definition 9.4. An n × n Costas array is weakly doubly periodic with period
(n1, n2), where n ≤ n1, n2 ≤ n + 1, if copies of the Costas array can be placed
in Z

2 in such a way that each n2 × n1 window is a DDC, it contains n dots, no
row has more than one dot, and no column has more than one dot.

Definition 9.5. Let α be a primitive root modulo a prime p. We define the Welch
periodic array to be the set

Lp � {(i, j) ∈ Z
2 : αi ≡ j (mod p)}.

The array Lp is weakly doubly periodic with period (p − 1,p), i.e., if
Lp contains a dot at position (i, j) then it also contains dots at all positions
of the form (i + λ(p − 1), j + μp), where λ,μ ∈ Z. It has a distinct difference
property up to its periodicity with a proof that is almost the same as the proof of
Theorem 9.13.

Theorem 9.15. The array of dots Lp obtained by Definition 9.5, is a weakly
doubly periodic Costas array with period (p − 1,p).

Definition 9.6. We say that dots A and A′ at positions (i, j) and (i′, j ′),
of the Welch doubly periodic array, are equivalent, and we write A ≡ A′, if
i′ = i + λ(p − 1) and j ′ = j + μp for some λ,μ ∈ Z.

Lemma 9.17. Let d and e be positive integers such that d �≡ 0 (mod p − 1)

and e �≡ 0 (mod p). Suppose that Lp contains dots A and B at positions (i1, j1)

and (i1 + d, j1 + e), respectively, and dots A′ and B ′ at positions (i2, j2) and
(i2 + d, j2 + e), respectively. Then, A ≡ A′ and B ≡ B ′.

Proof. By the definition of Lp we have

j1 ≡ αi1 (mod p)
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j2 ≡ αi2 (mod p)

j1 + e ≡ αi1+d (mod p)

j2 + e ≡ αi2+d (mod p).

By eliminating j1 and j2 from these equations we have that

αi1 + e ≡ αi1+d (mod p)

αi2 + e ≡ αi2+d (mod p),

which implies that

αi2 − αi1 ≡ (αi2 − αi1)αd (mod p)

and hence

(αd − 1)(αi1 − αi2) ≡ 0 (mod p).

Since d �≡ 0 (mod p−1), it follows that i1 ≡ i2 (mod p−1), which also implies
that j1 ≡ j2 (mod p).

Thus A ≡ A′ and B ≡ B ′.

Definition 9.7. The unordered pair {(i, j), (i + d, j + e)} will be referred to in
the following also as the vector (d, e).

By Definition 9.5, we have that if Lp contains dots at (i, j) and (i + d, j),
then d ≡ 0 (mod p − 1) and if it contains dots at (i, j) and (i, j + e) then
e ≡ 0 (mod p). Therefore a vector (d, e) (a vector between a point (i, j) and
a point (i + d, j + e)) can occur at most once as a difference between two of the
dots of Lp that lie within any particular p × (p − 1) rectangle.

Definition 9.8. An n×n Costas array A is called a singly periodic Costas array
if there exist an n × ∞ array of dots (or an ∞ × n array of dots) in which any
n × n sub-array is a cyclic shift of A.

Corollary 9.4. The (p − 1) × (p − 1) Costas array constructed by the Welch
construction is singly periodic. It can be extended to a (p − 1) × ∞ array of
dots in which each (p − 1) × (p − 1) sub-array is a Costas array.

Fig. 9.1 demonstrates the middle section of the 6×∞ singly periodic Costas
array from the Welch construction.

Definition 9.9. Let α be a primitive element of Fq , where q is a power of a
prime. We define the Golomb periodic array to be the set

Gq � {(i, j) ∈ Z
2 : αi + αj = 1}.

Similarly to the proof of Theorem 9.14 we can prove the following theorem.
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Theorem 9.16. The Golomb periodic array Gq is weakly doubly periodic with
period (q − 1, q − 1), where columns and rows of Z2, whose indices are con-
gruent 0 modulo q − 1 are empty.

Definition 9.10. An n × n Costas array A is called a doubly periodic Costas
array if we can assign dots to Z

2 such that any n × n sub-array is a cyclic shift
(possibly horizontally and vertically) of A.

In other words, an n × n weakly doubly periodic Costas array with period
(n1, n2), where n = n1 = n2, is a doubly periodic Costas array. Does there exist a
doubly periodic n×n Costas array? It is easy to verify that there are such arrays
for n = 1 and for n = 2. Unfortunately, there are no such arrays for larger n.

Theorem 9.17. Unless n = 1 or n = 2, there is no array of dots in Z
2, in which

each n × n sub-array is a Costas array.

Proof. The proof for n = 3 and n = 4 can be carried out in many ways and it is
left as an exercise. Assume now that there exists a doubly periodic Costas array
of order n > 4. By definition, each n × n window in such an array is an order n

Costas array. We can color the dots in n colors, 1, 2, 3, and so on up to n such
that each n × n window contains exactly one dot from each color.

The number of distinct possible difference vectors for which the two dots
connected by a difference vector fit into a k × k window is 2(k − 1)2. This
can be verified by noting that each such difference vector can be fit into a k × k

window, where one of the dots is either in the bottom left corner or in the bottom
right corner.

Assume now that each such difference vector appears exactly once between
two different colors, i.e., a repeat of such a vector does not occur within an
n×n sub-array. We distinguish now between n odd and n even to show that our
assumption is incorrect.
Case 1: Assume that n = 2k − 1.

We can count how many such difference vectors occur in a doubly periodic
(2k − 1) × (2k − 1) Costas array. For each color, we can form a (2k) × (2k)

array whose four corners have four dots colored by the same color. Inside the
array, there are all the other 2k −2 dots, each one forms such a difference vector
(fits into a k × k window) with one of the corner dots as depicted in Fig. 9.2 for
a total of 2k − 2 distinct difference vectors, confined to a k × k window. This
can be done for each one of the n = 2k − 1 colors, taken as corner dots. Since
each difference vector will be counted twice for each color on its end-point dots,
it follows that the total number of such vectors is (2k−1)(2k−2)

2 . However,

(2k − 1)(2k − 2)

2
= 2(k − 1)2 + k − 1 > 2(k − 1)2,

a contradiction.
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FIGURE 9.2 Each color such as the white in a black circle dot has to occur exactly once inside
the (2k) × (2k) window having the four dots colored by black.

FIGURE 9.3 At most two colors like the a and b in the two dots fall outside every k × k window
containing a dot colored by black in the (2k) × (2k) window having the four dots colored by black.

Case 2: Assume that n = 2k.
We can count how many such difference vectors occur in a doubly periodic

(2k) × (2k) Costas array. For each color, we can form a (2k + 1) × (2k + 1)

array whose four corners have four dots colored by the same color. Inside the
array, there are all the other 2k − 1 dots, each one, except one or two in the
middle row and the middle column, forms such a difference vector with one
of the corner dots, as depicted in Fig. 9.3 for a total of at least 2k − 3 distinct
difference vectors, confined to a k × k window. This can be done for each one of
the n = 2k colors. Since each such difference vector will be counted twice for
each color on its end-point dots, it follows that the total number of such vectors
is at least 2k(2k−3)

2 . However,

2k(2k − 3)

2
= 2(k − 1)2 + k − 2 > 2(k − 1)2,

a contradiction.
Therefore by Case 1 and Case 2, there exists a repeat of a difference vector

confined to a k × k window with vectors whose end-points dots have different
colors.

We will prove now that there exists an n × n window in which there is such
a repeated vector. This repeat cannot use only three colors, i.e., the two equal
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difference vectors share a point, as it will be confined to a (2k − 1) × (2k − 1)

window, and hence also to an n × n window, which defines a Costas array.
Therefore the repeat consists of four dots colored with different colors. Since

each n × n window contains all the n colors, it follows that we can choose such
a window with one of these two difference vectors. W.l.o.g. we can assume that
these two vectors are {(0,0), (d1, d2)}, where 0 < d1, d2, (the two dots are col-
ored with b and d) and ϒ = {(i1, i2), (i1 +d1, i2 +d2)} (the two dots are colored
with a and c), where d1 and d2 are positive integers such that 0 < d1, d2 ≤ k −1.
This scenario is depicted in Fig. 9.4. Note again that the array is doubly periodic
with horizontal period (0, n) and vertical period (n,0), and distinguish between
two cases depending on whether n is odd or even.

FIGURE 9.4 The two repeated vectors having four different colors.

Case 1: If n = 2k − 1, then the four points are within an n × n array
if −(k − 1) ≤ i1, i2 ≤ k − 1. Since the two points (−(k − 1),−(k − 1)) and
(k − 1, k − 1) are the bottom left point and the upper right point, respectively, of
an n × n array, it follows with the appropriate periodicity of the vector ϒ , that
w.l.o.g. −(k − 1) ≤ i1, i2 ≤ k − 1.
Case 2: If n = 2k, then the four points are within an n×n array if −k ≤ i1, i2 ≤
k. Since the two points (−k,−k), (k, k) are the bottom left point and the up-
per right point, respectively, of an (n + 1) × (n + 1) array, it follows with the
appropriate periodicity of the vector ϒ , that w.l.o.g. −k ≤ i1, i2 ≤ k.

Both cases imply that the four points are within an n × n window and hence
the repeated difference vector appears twice in the same n × n window, a con-
tradiction.

Thus there is no n × n doubly periodic Costas array for n > 2.

Now, we generalize the notion of Costas arrays and DDCs to other two-
dimensional patterns with distinct differences.

Definition 9.11. A DDC DD(m, r) is a set of m dots placed on Z
2 such that the

following two properties are satisfied:

1. Any two of the dots in the configuration are at a (Euclidean) distance at most
r apart.
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2. All the
(
m
2

)
differences between pairs of dots are distinct either in length or

in slope.

Definition 9.11 can be slightly relaxed as follows. A DDC DD(m) is a set of
m dots on Z

2, with the property that the lines joining distinct pairs of dots are
all different in length or slope. This DDC can be in any shape S and it is called
an S-DDC.

The motivation for generalizing the definition of a Costas array to DD(m, r)

and DD(m) is for two reasons. One is just from a combinatorial point of view
that these structures are interesting. The other is for an application that will be
explained in Section 10.2. One question that can be asked is as follows. For a
given integer r , what is the maximum integer m such that a DD(m, r) exists?
The DDCs for the maximum m and 2 ≤ r ≤ 11, are depicted in Fig. 9.5.

FIGURE 9.5 DD(m, r) with the largest possible m for r = 2,3, . . . ,11.

Let A be a (generally infinite) array of dots in Z
2, and let η and κ be positive

integers. We say that A is doubly periodic with period (η, κ) if

A(i, j) = A(i + η, j) and A(i, j) = A(i, j + κ)

for all integers i and j . Assume that each κ × η sub-array of A has exactly
d dots. We define the density of A to be d/(ηκ). We write (i, j) + S for the
shifted copy {(i + i′, j + j ′) : (i′, j ′) ∈ S} of S . Let A be a doubly periodic
array. We say that A is a doubly periodic S-DDC if the dots contained in every
shift (i, j) + S of S form a DDC.

The following theorem is an immediate consequence of the discussion on
the Welch periodic arrays and the Golomb periodic arrays.
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Theorem 9.18.

• The Welch periodic array Lp is a doubly periodic DDC whose period is
(p − 1,p) and its density is 1/p.

• The Golomb periodic array Gq is a doubly periodic DDC whose period is
(q − 1, q − 1) and its density is (q − 2)/(q − 1)2.

Doubly periodic DDCs will be used to prove the existence of the DDCs
with some given shape and a large number of dots. This will be done using the
following theorem.

Theorem 9.19. Let S be a shape, and let A be a doubly periodic S-DDC of
density δ. Then, there exists a set of at least 
δ|S|� dots contained in S that form
a DDC.

Proof. Let the period of A be (η, κ). Let mi,j be the number of dots of A con-
tained in the shift (i, j) + S of S . Since A is doubly periodic, it follows from
the definition of the density of A that

η∑
i=1

κ∑
j=1

mi,j = (ηκ)δ|S|.

Hence, the average size of the integer mi,j is δ|S|. This implies that there exists
an integer mi′,j ′ such that mi′,j ′ ≥ 
δ|S|�. The mi′,j ′ dots in (i′, j ′) + S form
a DDC, by our assumption on A, and so the appropriate shift of these dots
provides a DDC in S with at least 
δ|S|� dots, as required.

Next, we illustrate a general technique to construct a DD(m, r) with m as
large as possible.

Let R = �r/2
, and let S be the set of points (a shape) in Z
2 that are con-

tained in a circle of radius R about the origin. We construct a DDC contained
in S with many dots. Such a configuration is a DD(m, r) for some value of m.
The most straightforward approach is to find a large square contained in S
(which will have sides of length

√
2R). Within this square, we define a Costas

array of the largest order (whose order is smaller or equal to
√

2R). This will
produce a DD(m, r), where

m = √
2R − o(R) = 1√

2
r − o(r) ≈ 0.707r.

To motivate a better construction, we proceed as follows. We find a square
of side n, where n >

√
2R, that partially overlaps the circle (see Fig. 9.6). The

constructions of doubly periodic arrays based on Costas arrays show that there
exist doubly periodic n × n DDCs that have density approximately 1/n (see
Theorem 9.18). Hence, Theorem 9.19 shows that for any shape S ′ within the
square, there exist DDCs in S ′ that have at least |S ′|/n dots. Let S ′ be the inter-
section of the square with the circle S with radius R. Defining θ as in Fig. 9.6,
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FIGURE 9.6 Square intersecting a circle.

some basic geometry shows that the area of S ′ is

|S ′| =
π
2 − 2θ + sin 2θ

2 cos2 θ
|S| = 2R2

(π

2
− 2θ + sin 2θ

)
.

Since n = 2R cos θ , it follows from Theorem 9.19 that the density of dots
within S ′ can be about 1/n = 1/(2R cos θ) when n is large. Hence, we can
hope for at least μR dots, where μ is the maximum value of

(π/2 − 2θ + sin 2θ) / cos θ

on the interval 0 ≤ θ ≤ π/4. A value of μ ≈ 1.61589, is achieved when
θ ≈ 0.41586 (and for this value we have n = r cos θ = cr , where c ≈ 0.915).

Theorem 9.20. Let μ be defined as above. There exists a DD(m, r) in which
m = μr

2 − o(r) ≈ 0.808r .

Proof. Define c ≈ 0.915 as above. Let q be the smallest prime power such
that q > cr . By Theorem 1.26 on the gaps between primes we have that
cr < q < cr + (cr)5/8 and hence q ∼ cr . By Theorem 9.18, there exists a dou-
bly periodic (q − 1) × (q − 1) DDC A of density (q − 2)/(q − 1)2. Let S ′ be
the intersection between S and a circle of radius �r/2
 about the origin. There-
fore A is a doubly periodic S ′-DDC. By Theorem 9.19, there exists a DDC
in S ′ with at least m dots, where m = |S ′|(q − 2)/(q − 1)2. However, the geo-
metric argument above shows that |S ′|(q − 2)/(q − 1)2 ∼ μr

2 , and the theorem
follows.

9.6 Notes

The necessity for solutions of two-dimensional and multi-dimensional coding
problems that are generalizations of one-dimensional coding problems have
been increasing from the last decades of the 20th century and into the 21st
century. Such problems include error correction of burst errors, where the
one-dimensional case was solved, for example, in Abdel-Ghaffar [1], Abdel-
Ghaffar, McEliece, Odlyzko, and van Tilborg [2], and Reiger [50] and the
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two-dimensional case was considered, for example, in Breitbach, Bossert,
Zyablov, and Sidorenko [5], Etzion and Yaakobi [14], Imai [30], and Roth
and Seroussi [54]. Another problem concerns the capacity and coding for con-
strained channels, where the one-dimensional case is almost completely solved
and has hundreds of research papers that are well documented in Marcus, Roth,
and Siegel [36]. The two-dimensional case is far from being solved, but still has
many papers, such as Etzion [11], Sharov and Roth [55], and Tal, Etzion, and
Roth [60].

Randomness properties of two-dimensional arrays can be defined by win-
dow properties or by distinct differences. Combinatorics of such arrays were
considered by Siu [56].

Section 9.1. Perfect factors, the graphs GPF(n,k),m, zero factors, and the graph
GZF(n,k),m were defined by Etzion [10]. The graph Gn,m(V,E1,E2) was defined
by Fan, Fan, Ma, and Siu [15]. The existence of perfect factors for all admis-
sible parameters was proved by Etzion [10]. Non-binary perfect factors were
considered and constructed by Mitchell [37], Mitchell and Paterson [41], and
Paterson [46]. For most parameters, binary perfect factors are not unique. It is
not difficult to verify that PF(2k − 1, k) is unique and contains all the sequences
of length 2k with odd weight. However, generally, we have the following ques-
tion.

Problem 9.1. For which n and k, is PF(n, k) unique?

As for zero factors, except for the factors that are guaranteed by Theo-
rems 9.3 and 9.4, which were mentioned in Etzion [10], the only other zero
factors are obtained by the following theorem mentioned in Etzion [10], which
is credited to Golomb [19].

Theorem 9.21. Every factor e of 2n −1 that is not a factor of any number 2d −1
with d < n occurs as the exponent of a zero factor that corresponds to an irre-
ducible polynomial of degree n. There are φ(e)

n
irreducible polynomials that

correspond to zero factors with exponent e.

The first set of parameters where a zero factor is not known to exist is
ZF(12,15). This leads to the first specific open problem.

Problem 9.2. Does there exist a ZF(12,15)?

Problem 9.3. Provide new constructions for zero factors. Analyze all param-
eters for which zero factors exist (or those parameters where their existence is
unknown). Are there n, d , and k, such that 2n −1 = d ·k, where k > n, and there
is no zero factor with d cycles of length k in Gn?

A graph in which a Hamiltonian cycle is associated with an (r, t;n,m)-PM
can be defined without perfect factors. The vertices of the graph are r × m ma-
trices, where each n × m matrix is contained in exactly one vertex. There is an
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edge u → v if the last m − 1 columns of u are equal to the first m − 1 columns
of v. A similar definition can be given to constructed shortened perfect maps.
Perfect factors lead to a construction of such a graph.

Problem 9.4. Provide a general construction of such a graph that is not derived
from a perfect factor and not from given perfect maps.

Section 9.2. The representation of the perfect map as a graph and a generaliza-
tion of the D-morphism for two-dimensional arrays was introduced by Fan, Fan,
Ma, and Siu [15]. The construction based on perfect factors, zero factors, and
the necklaces factor was given in Etzion [10].

The first example of a perfect map was presented by Reed and Steward [49]
who presented a (4,4;2,2)-PM. They were later considered by Gordon [25] and
by Clapham [6]. Non-binary perfect maps were constructed by Cock [7], Hurl-
bert and Isaak [28], Hurlbert, Mitchell, and Paterson [29], and Paterson [47,48].
Multi-dimensional perfect maps were considered in Hurlbert and Isaak [27]. All
the perfect maps that are discussed in this section and all these papers are pe-
riodic. One-dimensional de Bruijn sequences are periodic and their aperiodic
version is equivalent to the periodic one. This is not the case for perfect maps.
Aperiodic perfect maps can be derived from periodic ones, but there can be
aperiodic ones that are not derived from periodic arrays. Moreover, there are
parameters of aperiodic perfect maps for which the aperiodic perfect maps can-
not be obtained from periodic perfect maps. This is also true if the arrays are
periodic only in one of the dimensions. This was considered by Mitchell [39]
who proved that the necessary conditions for the existence of binary aperiodic
perfect maps, in one or two dimensions, are also sufficient.

Choosing the appropriate perfect factors for the construction of associated
perfect maps yields perfect maps that can be encoded and decoded more effi-
ciently, as was described by Mitchell [38] and Mitchell and Paterson [40].

Section 9.3. The folding of an M-sequence into a rectangular array was carried
out by MacWilliams and Sloane [35]. A generalization of the technique using
irreducible polynomials to obtain a set of arrays that together have the window
property can be given too. Folding M-sequences into arrays of different sizes
is of interest. For example, folding an M-sequence of length 255 into a 5 × 51
rectangle yields some pseudo-random arrays, but the necessary theory was not
developed. Some of these arrays, for example, can have the 4 × 2 window prop-
erty, but not the 2 × 4 window property. Such a generalization can also use the
lemmas of Section 7.2. The constructed arrays can be obtained also as what are
called maximum-area matrices by Nomura, Miyakawa, Imai, and Fukuda [44].
Different definitions and constructions for pseudo-random arrays were given by
Spann [59], by van Lint, MacWilliams, and Sloane [33], and by Soloveychik,
Xiang, and Tarokh [57,58].

Problem 9.5. Provide new constructions for pseudo-random arrays.
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Problem 9.6. Provide constructions for sets of arrays of the same size in which
each n × m binary matrix is contained in exactly one array in a set. The same
problem when only the nonzero n × m binary matrix is not contained in these
arrays.

Section 9.4. The recursive construction based on two de Bruijn sequences is due
to Ma [34]. The other recursive constructions were presented in Fan, Fan, Ma,
and Siu [15]. Paterson [45] proved that the necessary conditions of Lemma 9.1
are sufficient. This was done by first constructing (r, t;n,m)-PM for some small
values of n and m to use them as initial conditions for a recursive construction.
After that, Paterson [45] applied the recursive constructions of Fan, Fan, Ma,
and Siu [15] with appropriate arrays, or more precisely appropriate columns
of the arrays, as was done in the constructions associated with Theorems 9.11
and 9.12. By using the transpose of these arrays, the conditions on the columns
yield the same conditions on the rows. One of the keys in the construction is
that all columns (rows) have the same appropriate linear complexities and this
can be done by initially using the arrays obtained from the perfect factors in
Sections 9.1 and 9.2.

Section 9.5. The Welch construction for Costas arrays was presented first by
Golomb and Taylor [22], where also the construction due to Lempel was pre-
sented. The construction of Lempel considers β = α in the Golomb construc-
tion. The generalization for β �= α was given by Golomb [20]. There are many
variants for these constructions, some of which were presented in Golomb [20],
but more detailed variants and an excellent early survey on these arrays, their
structure and properties, were given by Golomb and Taylor [23].

The proof of Theorem 9.17 was carried out by Taylor [61]. Freedman and
Levanon [16] proved that any two Costas arrays of order n have at least one
vector in common. This property was also solved by Taylor [61].

There are a few types of arrays with distinct differences. A sonar sequence
is an n×m DDC in which each column has exactly one dot. The main objective
is for a given n to find the largest m such that an n × m sonar sequence exists.
A bound

m < n + 3n2/3 + 2n1/3 + 9

was proved by Erdös, Graham, Ruzsa, and Taylor [8] using the method of Erdös
and Turán [9] who presented bounds for arrays of dots with distinct slopes
or lengths. Construction of sonar sequences from M-sequences was done by
Games [17]. Moreno, Games, and Taylor [42] presented a table for constructions
of n × m sonar sequences up to m = 100. Moreno, Golomb, and Corrada [43]
consider a generalization of sonar sequences into arrays in which some columns
with no dots are permitted.

Robinson [51] considered and analyzed two other types of rectangles. The
first one was n×m binary arrays with exactly one one in each column and there
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were no repeated vectors when the array was shifted only horizontally. Such ar-
rays are called radar arrays. The second type of array was n × m arrays with
dots such that there are no repeated difference vectors in each such array. Such
arrays are called Golomb rectangles. Construction of Golomb rectangles by
the folding of Golomb rulers was presented by Robinson [52]. Robinson [53]
considered efficient ways to find these types of arrays by computer search.
Constructions and bounds for radar arrays were also given by Blokhuis and
Tiersma [4], Ge, Ling, Miao [18], Hamkins and Zeger [26], and Zhang and
Tu [62]. The difference triangle presented in Section 2.5 is a tool to check
whether DDCs like sonar sequences have distinct differences. Some of the
DDCs are periodic arrays and instead of the difference triangle, we should con-
sider the difference cylinder.

Thus far, all the two-dimensional arrays that were discussed are defined on
the square grid. However, for some applications, it is preferable to use other
grids. In computer applications, pixels are circles that are the smallest address-
able element in an image. It is desirable to pack them as densely as possible on
a grid. It is easy to verify that they will have higher density if they are packed
in a hexagonal grid rather than in a square grid, as depicted in Fig. 9.7 using
associated DDCs.

FIGURE 9.7 DD∗(m, r) with the largest possible m for r = 2,3, . . . ,10.

Definition 9.12. A hexagonal DDC DD∗(m, r) is a set of m dots placed on the
hexagonal grid such that the following two properties are satisfied:
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1. Any two dots in the configuration are at Euclidean distance at most r apart.
2. All the

(
m
2

)
differences between pairs of dots are distinct either in length or

in slope.

The DDCs in the hexagonal grid for the maximum m and 2 ≤ r ≤ 10, are
depicted in Fig. 9.7. This model and other related models were discussed and
analyzed by Blackburn, Etzion, Martin, and Paterson [3].

Let S1, S2, . . . be an infinite sequence of similar shapes (same shape scaled in
size), where |Si+1| > |Si |. Using the technique of Erdös and Turán [8,9] that was
also used for a similar purpose by Erdös, Graham, Ruzsa, and Taylor [8], and for
which a detailed proof is given in Blackburn, Etzion, Martin, and Paterson [3],
it was proved by Etzion [12] that

Theorem 9.22. An upper bound on the number of dots in Si , i → ∞, is
limi→∞(

√|Si | + o(
√|Si |)).

Finally, we note that the problem of points with distinct differences is of
interest also from a discrete geometry point of view. Some similar questions can
be found in Lefmann and Thiele [32].

After it was proved in Theorem 9.17 that there is no doubly periodic Costas
array, we want to find whether there exist singly periodic Costas arrays, except
for those generated by the Welch construction (see Corollary 9.4). A step toward
an answer to this question will be given using the concept of Tuscan squares
introduced by Golomb and Taylor [24]. An n×n array is a Latin square if each
one of the symbols 0,1, . . . , n − 1 appears exactly once in each row and each
column. An Italian square is an n × n array in which each one of the symbols
0,1, . . . , n−1 appears exactly once in each row. A Tuscan-k square is an Italian
square in which for any two symbols a and b, and for each t from 1 to k, there
is at most one row in which b is the t th symbol to the right of a.

A Tuscan-(n − 1) square is called a Florentine square. If the square is also
Latin, then it will be called a Vatican square.

A circular Tuscan-k array is an n × (n + 1) array in which each of the
n+ 1 symbols 0,1, . . . , n− 1,∗ appears exactly once in each one of the n rows,
and in which the Tuscan-k property holds when the rows are taken to be circular.

A polygonal path X1,X2, . . . ,Xn is a permutation of 0,1, . . . , n−1. A Latin
square A defined by a polygonal path X1,X2, . . . ,Xn is defined as follows:

A(i, j) ≡ Xj + i − 1 (mod n), 1 ≤ i, j ≤ n.

Polygonal path constructions and properties of the constructed arrays were ana-
lyzed by Golomb, Etzion, and Taylor [21].
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Example 9.8. Let n = 8 and consider the permutation 0,7,1,6,2,5,3,4. The
Latin square obtained from this permutation is

0 7 1 6 2 5 3 4
1 0 2 7 3 6 4 5
2 1 3 0 4 7 5 6
3 2 4 1 5 0 6 7
4 3 5 2 6 1 7 0
5 4 6 3 7 2 0 1
6 5 7 4 0 3 1 2
7 6 0 5 1 4 2 3

.

This Latin square is a Tuscan-1 square as each ordered pair (i, j) appears as two
consecutive elements in some row of the array exactly once.

The following lemma can be readily verified.

Lemma 9.18. A necessary and sufficient condition that the polygonal path
X1,X2, . . . ,Xn forms a Tuscan-1 square is that

{Xi+1 − Xi (mod n) : 1 ≤ i ≤ n − 1} ≡ {i : 1 ≤ i ≤ n − 1}.
In other words, Lemma 9.18 implies that to form a Tuscan-1 square by a

polygonal X1,X2, . . . ,Xn all the consecutive differences Xi+1 − Xi must be
distinct modulo n. Similarly, we have a condition to obtain a circular Tuscan-k
array and a circular Vatican array.

Lemma 9.19. A necessary and sufficient condition that the polygonal path
X1,X2, . . . ,Xn forms a Tuscan-k square is that for each j , 1 ≤ j ≤ k

{Xi+j − Xi (mod n) : 1 ≤ i ≤ n − 1} ≡ {i : 1 ≤ i ≤ n − 1},
where subscripts are taken modulo n + 1.

Corollary 9.5. A necessary and sufficient condition that the polygonal path
X1,X2, . . . ,Xn forms a circular Vatican arrays is that for each k, 1 ≤ k ≤ n−1

{Xi+k − Xi (mod n) : 1 ≤ i ≤ n − 1} ≡ {i : 1 ≤ i ≤ n − 1},
where subscripts are taken modulo n + 1.

One can easily verify that the construction presented in the following theo-
rem yields a circular Vatican array. This construction is akin to the construction
of a singly periodic Costas array by the Welch construction.

Theorem 9.23. If p is a prime and α is a primitive root modulo p, then the
polygonal path X1,X2, . . . ,Xp−1 defined by

Xi = j if αj ≡ i (mod p), 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 2

forms a (p − 1) × p circular Vatican array.
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Lemma 9.20. If X1,X2, . . . ,Xn is a polygonal path that forms a Tuscan-1
square, then n is even.

Proof. By Lemma 9.18, each nonzero residue modulo n appears as a difference
of the form Xi+1 − Xi (mod n), 1 ≤ i ≤ n − 1, exactly once. This implies that

Xn ≡ X1 +
n−1∑
i=1

i ≡ X1 + n(n − 1)

2
(mod n).

If n is odd, then n(n−1)
2 ≡ 0 (mod n) and hence Xn = X1, which contradicts the

fact that X1,X2, . . . ,Xn is a permutation of 0,1, . . . , n− 1. Thus n is even.

Lemma 9.21. If a polygonal path X1,X2, . . . ,Xn produces an n × (n + 1)

circular Tuscan-k array, then for each i, 1 ≤ i ≤ k,

Xn+1−i ≡ Xi + n

2
(mod n).

Proof. Letting the symbol ∗ be X0 we will confine our attention to the sequence
X0,X1,X2, . . . ,Xn that we may assume in the top row of the n×(n+1) circular
Tuscan-k array. For a fixed i, with 1 ≤ i ≤ k, look at all the distinct cycles (one
or more depending on the divisors of n + 1) of the form Xt,Xt+i ,Xt+2i , . . .,
for some 0 ≤ t ≤ n, where the subscripts are taken modulo n + 1. Every sym-
bol is hit exactly once by one of these cycles, and since the array is a circular
Tuscan-i array, each one of the differences 1,2, . . . , n − 1 modulo n must occur
exactly once in only one cycle as Xt+(r+1)i −Xt+ri (the differences with X0 are
ignored). Note that the sum of all these differences, in a cycle that does not con-
tain X0, is congruent to 0 modulo n. The one cycle that does hit X0 will contain
. . . ,Xn+1−i ,X0,Xi, . . . successively, which accounts for the two pairs of sym-
bols, successive in a cycle, to which we assign no difference value modulo n.
The remaining differences therefore sum to n

2 (mod n) since for even n

n−1∑
i=1

i = n(n + 1)

2
≡ n

2
(mod n). (9.3)

Hence, we can calculate

(Xn+1−i − Xn+1−2i )+(Xn+1−2i − Xn+1−3i ) + · · · + (X3i − X2i )+(X2i − Xi)

= Xn+1−i − Xi ≡ n

2
(mod n),

since again we have the equality in Eq. (9.3) when n is even.

The following theorem makes use of the amazing Theorems 1.27 and 1.28
proved by Kelly [31] in 1954 to show a connection between the size of Floren-
tine arrays and some primes. The theorem was proved by Etzion, Golomb, and
Taylor [13].
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Theorem 9.24. If there exists an n × (n + 1) polygonal path for a circular
Florentine array, then n + 1 is prime.

Proof. Using Lemma 9.21 we aim to satisfy the conditions of Theorems 1.27
and 1.28.

Assume that the polygonal path X0,X1,X2, . . . ,Xn has X0 = ∗, X1 = 0,
and that X2, . . . ,Xn is a permutation of the integers 1,2, . . . , n − 1. Let

A � {i : Xi is even}, B � {i : Xi is odd}.
With the subscripts taken modulo n + 1 it is clear that A ∩ B = ∅,

A∪B = {1,2, . . . , n}, and 1 ∈A. Since n is even, it follows that |A| = |B| = n
2 .

If we take any subscript t ∈ A ∪ B, it will partition X0,X1, . . . ,Xn into
cycles of the form

. . . ,Xi−t ,Xi,Xi+t ,Xi+2t , . . .

Furthermore, since the polygonal path generates a circular Tuscan-n array, it
follows that the successive differences in cycles, Xi+t − Xi , will take each of
the values 1,2, . . . , n − 1 exactly once, and take no values for Xt − X0 and
X0 − X−t because X0 = ∗. Thus in both cases analyzed below, there will be n

2
odd differences and n

2 − 1 even differences.
One more general fact will be taken for granted. In any cycle of odd and

even integers that does not contain X0 = ∗, the number of times an odd integer
is followed by an even integer equals the number of times even is followed by
odd. We distinguish now between two cases depending on whether n + 1 is
congruent to 1 modulo 4 or congruent to 3 modulo 4.
Case 1: n + 1 = 4k + 1. In this case n/2 is even, so we know by Lemma 9.21
that Xt ≡ X−t (mod 2). This tells us that in the cycle that contains X0 = ∗ (as
well as in all the other cycles if there are any) it will occur the same number
of times that Xi is odd and Xi+t is even as that Xi is even and Xi+t is odd.
Consequently, there are k subscripts in the set {i : i ∈ A, i + t ∈ B} as well as k

subscripts in the set {i : i ∈ B, i + t ∈A}, since the number of odd differences
all together is 2k = n/2. Considering the 2k − 1 even differences depend on t as
follows:

1. If t ∈ A, then Xt is even, so X−t is even, X−t+t = X0 = ∗ is not even. This
guarantees that only k − 1 of the remaining subscripts for which i ∈ A are
such that i + t ∈ A. Thus we infer that there are exactly k subscripts for
which i ∈ B and i + t ∈ B. In other words, one condition of Theorem 1.27 is
satisfied.

2. If t ∈ B, then Xt is odd, so X−t is odd, X−t+t = X0 = ∗ is not odd, and only
k − 1 of the remaining subscripts for which i ∈ B are such that i + t ∈ B.
Thus we infer that there are k subscripts for which i ∈ A and i + t ∈ A. In
other words, the second condition of Theorem 1.27 is satisfied.

Thus n + 1 is prime in this case.
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Case 2: n+ 1 = 4k − 1. In this case n/2 is odd, hence we know by Lemma 9.21
that Xt �≡ X−t (mod 2).

1. We already know that |A| = |B| = 2k − 1.
2. If t ∈A, then Xt is even, so X−t is odd, X−t+t = X0, −t ∈ B, and 0 ∈ t +B.

From this, we can also see that k − 1 is the number of times that Xi is odd
and Xi+t is even, while k is the number of times that Xi is even and Xi+t

is odd. The 2k − 2 = n
2 − 1 even differences can only be accounted for by

having k − 1 times that Xi is even and Xi+t is even, beside k − 1 times
that Xi is odd and Xi+t is odd. Altogether, there is one subscript i ∈ B such
that i + t = 0, k − 1 subscripts for which i ∈ B and i + t ∈ A, and k − 1
subscripts for which i ∈ B and i + t ∈ B. In other words, the conditions of
Theorem 1.28 are satisfied.

Thus n + 1 is prime in this case.
Therefore if an n × (n + 1) polygonal path circular Florentine array exists,

then n + 1 is prime.

Theorem 9.25. A Vatican square defined by the polygonal path X1,X2, . . . ,Xn

exists if and only if a singly periodic Costas array C1,C2, . . . ,Cn exists, where
Ci is the row in which the dot is located in the ith column.

Proof. Assume first that X1,X2, . . . ,Xn is a polygonal path pattern for a Vati-
can square. Define Cj = i if and only if Xi = j , 1 ≤ i, j ≤ n and C� = C�+n for
each integer �. Assume, on the contrary, that C1,C2, . . . ,Cn does not define an
n × ∞ singly periodic Costas array. Then, we can find three integers i, j , and δ,
where 1 ≤ i < j < j + δ ≤ i + n − 1, where

Ci+δ − Ci = Cj+δ − Cj .

If we denote k2 = Ci+δ , k1 = Ci , r2 = Cj+δ , r1 = Cj , then

Xk2 − Xk1 ≡ Xr2 − Xr1 ≡ δ (mod n)

for

k2 − k1 = r2 − r1,

where the computation is performed modulo n since i + δ, j, j + δ might be
larger than n, but C� = C�+n for any integer �. Therefore X1,X2, . . . ,Xn is not
a polygonal path pattern for a Vatican square, a contradiction.

Assume now that C1,C2, . . . ,Cn and C� = C�+n for each integer �, is an
n × ∞ singly periodic Costas array. Define Xi = j if and only if Cj = i,
1 ≤ i, j ≤ n. Assume, on the contrary, that X1,X2, . . . ,Xn is not a polygonal
path pattern for an n × n Vatican array. Then, we can find three integers i, j , δ

such that 1 ≤ i ≤ j < j + δ ≤ n such that

Xi+δ − Xi ≡ Xj+δ − Xj (mod n).
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If we denote k2 = Xi+δ , k1 = Xi , r2 = Xj+δ , r1 = Xj , then 1 ≤ k1, k2, r1, r2 ≤ n

and

Ck2 − Ck1 = Cr2 − Cr1 = δ

for

k2 − k1 ≡ r2 − r1 (mod n).

We distinguish between two cases:
Case 1: If r2 − r1 = k2 − k1, then Ck2 − Ck1 = Cr2 − Cr1 = δ implies that
C1,C2, . . . ,Cn does not define an n × n Costas array, a contradiction.
Case 2: Either r2 − r1 + n = k2 − k1 or r2 − r1 = k2 − k1 + n and w.l.o.g. we
assume that r2 − r1 = k2 − k1 + n that implies that k2 < k1.

If k2 < r1, then Ck2+n = Ck2 , r1 < r2, k1, k2 + n ≤ r1 + n − 1, and

Ck2+n − Ck1 = Cr2 − Cr1

with

(k2 + n) − k1 = r2 − r1

and hence C1,C2, . . . ,Cn and C� = C�+n for each integer �, does not define an
n × ∞ singly periodic Costas array, a contradiction.

If r1 < k2 < r2, then Cr1+n = Cr1 , k2 < r2, k1, r1 + n ≤ k2 + n − 1, and

Ck1 − Ck2 = Cr1+n − Cr2

with

k1 − k2 = (r1 + n) − r2

and hence C1,C2, . . . ,Cn and C� = C�+n for each integer �, does not define an
n × ∞ singly periodic Costas array, a contradiction.

The two parts of the proof complete the proof of the theorem.

To examine whether an n × n Costas array is singly periodic we can use
the difference cylinder. Assume we consider the array of dots as an n × ∞
array. We consider any n consecutive columns of the array with dots at rows
C0,C1, . . . ,Cn−1 in this order. In the j th row of the difference cylinder,
1 ≤ j ≤ n − 1, the calculated differences are Ci+j − Ci , 0 ≤ i ≤ 2n − j , in this
order, where subscripts are taken modulo n. For the array to be a singly periodic
Costas array, it is required that any n − j consecutive differences in the j th row
must be distinct (this is true for any n − j consecutive differences in a row).
A proof that goes similarly to that of Theorem 9.25 yields the following slightly
stronger result than the one of Theorem 9.25.

Theorem 9.26. An n × (n + 1) circular Vatican array with the polygonal path
X1,X2, . . . ,Xn exists if and only if there exists a singly periodic Costas array
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C1,C2, . . . ,Cn and C� = C�+n for each integer �. In such a Costas array for
each j , 1 ≤ j ≤ n − 1, every n − j integers in the j th row of the difference
cylinder are different modulo n + 1, i.e., it is a weakly doubly periodic array
with period (n,n + 1).

Corollary 9.6. If there exists a singly periodic Costas array C1,C2, . . . ,Cn

and C� = C�+n for each integer �, such that for each j , 1 ≤ j ≤ n − 1, all the
n − j consecutive integers in the j th row of the difference cylinder are different
modulo n + 1, then n + 1 is a prime.

Problem 9.7. Do there exist more singly periodic Costas arrays of order n ex-
cept for those constructed from the Welch construction? Distinguish between
the cases where n + 1 is a prime and n + 1 is not a prime.
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Chapter 10

Two-dimensional applications
Self-location, secure sensor networks, folding

In this chapter, we consider applications and techniques associated with two-
dimensional arrays that have a two-dimensional window property or distinct
differences property.

Section 10.1 considers the basic problem of how to find a position in a large
area. The solution will be to use the uniqueness of windows in an array that maps
the area. We will consider a simple scheme that can be encoded and decoded
efficiently. The shape of the windows will be a type of cross and all possible
windows with this shape will be considered. When we consider possible errors
in the shape from which we want to recover the position, a rectangular window
will be used and we show its optimality in error correction with rather a naive
algorithm.

Section 10.2 considers an application of two-dimensional patterns with dis-
tinct differences in key-predistribution schemes for wireless sensor networks.
We will show that Costas arrays are very efficient for this purpose, particularly
those schemes obtained from the Welch construction.

Finally, Section 10.3 presents a method to obtain two-dimensional arrays
having distinct differences with various shapes. This section will present un-
bounded two-dimensional arrays in which any window of the given shape has
a pattern with distinct differences. The method is based on folding a one-
dimensional sequence with either pattern with distinct differences or with a
window property, into a two-dimensional array with the same property. The
folding will be based on a tiling for the two-dimensional shape with a lattice. A
generalization for multi-dimensional arrays will be also discussed. Also, differ-
ent shapes with the window property can be obtained by this method, but this
will not discussed in this chapter

10.1 Robust self-location two-dimensional patterns

Take a blindfolded man on a random one-hour walk around town and then re-
move his blindfold. How will he know where he is? He has several options,
based on the information he can gather. The man could carefully count his steps
and take note of every turn during the blindfolded walk to know his location
relative to the beginning of his trip. Armed with a navigation tool such as a sex-
tant or GPS unit, he could ask the stars or the GPS satellites where he is. Lastly,
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he could simply look around for a reference, such as a street sign, a landmark
building, or even a city map with a little arrow saying “You are here.”

There are numerous applications where a similar problem is encountered.
We need to somehow measure the position of a mobile or movable device, using
some sort of sensory input. Wheeled vehicles can count the turns of their wheels
much like the man counting his steps. Similarly, many devices, from industrial
machine stages to ball mice, employ sensors that are coupled with the mechanics
and count small physical steps of a known length, in one or more dimensions.
The small relative position differences can be accumulated to achieve relative
self-location to a known starting point. Technologies such as those found in
optical mice, use imaging sensors instead of mechanical encoders to estimate
the relative motion by constantly inspecting the moving texture or pattern of the
platform beneath them. We elaborate more on this in Section 10.4.

This section proposes a product construction to generate two-dimensional
binary patterns for absolute self-location. We start by presenting the product
construction based on two sequences with some one-dimensional window prop-
erties. A two-dimensional array with optimal self-location based on sensing a
cross shape is obtained by this construction. After that, it will be proved that
the same construction can be used for reasonably effective error correction of
self-location with a rectangular shape.

The approach that we use for building two-dimensional arrays with self-
location properties is based on a product of two sequences, one of which is a de
Bruijn sequence and the other a half de Bruijn sequence.

For two binary sequences T = [t1, . . . , tK ] and S = [s1, . . . , sN ] the product
T ⊗ S is a K × N array R in which ri,j , 1 ≤ i ≤ K , 1 ≤ j ≤ N , contains the
value ti + sj .

Take a span k half de Bruijn sequence T = [t1, . . . , tK ] and a span n de
Bruijn sequence S = [s1, . . . , sN ], of lengths K = 2k−1 and N = 2n, respec-
tively, and let R= T ⊗S . Clearly, each row in R equals either S or S̄ . Similarly,
each column of R equals either T or T̄ . Thus each row and each column retain
their window property and can serve for self-location in each dimension.

Theorem 10.1. Each cross-shaped pattern with k vertical entries and n hori-
zontal entries appears exactly once as a pattern in the array R.

Proof. Let X be a column vector of length k and Y be a row vector of length n.
By the definition of a half de Bruijn sequence, we have that either X or X̄ is
contained in the sequence T . Let X be the pattern that appears. Both Y and Ȳ

appear in the sequence S . Crosses with vertical vector X and horizontal vector Y

appear in R only in the portions related to Z1 � X ⊗ Y and Z2 � X ⊗ Ȳ .
Moreover, the crosses in Z1 are complements of the crosses in Z2. For each
cross inside Z1 and Z2, there are two possible assignments, depending on the
mutual entry of the vertical and horizontal components X and Y , respectively.
Each one of these assignments appears in either Z1 or Z2.
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By Theorem 10.1, we can use a cross-sensor array to sample k vertical pixels
and n horizontal pixels (with one mutual pixel) to obtain self-location.

Corollary 10.1. The proposed method is optimal in terms of the number of
sampled pixels required to achieve self-location with a cross of vertical length k

and horizontal length n.

Corollary 10.2. In the array R each possible sampled k × n window has a
unique location.

Remark. In practice, the planar domain is generally not cyclic as we have con-
sidered it by using the cyclic sequences T and S . To retain the ability to sense all
2k−1 · 2n possible locations with a sensor whose footprint is k × n pixels array,
we extend T and S by appending their first k−1 bits and n−1 bits, respectively,
to their ends. The result is now a (2k−1 + k − 1) × (2n + n − 1) array.

Example 10.1. An example of the proposed two-dimensional grid pattern can
be seen in Fig. 10.1. It was generated using a span 5 half de Bruijn sequence in
the vertical axis and a span 4 de Bruijn sequence in the horizontal axis, resulting
in a cyclic array of 16×16 pixels. The first column and the first row in the figure
contain the location indexes. The second column and the second row contain
T and S , respectively. From the bit values inside the grid, we can decode our
position. Examples of the readout for two such different sensors are marked in
Fig. 10.1 with an underlined red color. The sensors are 5 × 4 crosses. In both,
the vertical readout is 11101, and the horizontal readout is 1100 and its unique
position can be easily decoded from T and S .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

2 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

3 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

4 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

5 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

6 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

7 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

8 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

9 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

10 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

11 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

12 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

13 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

14 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

15 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

16 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

FIGURE 10.1 The 16 × 16 product array of R = T ⊗S. The marked cells illustrate a readout by
two possible cross-shaped sensors.

�
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The first step in the proposed method recovers the one-dimensional sub-
sequences that correspond to the location in each dimension. Essentially, the
two-dimensional problem is now reduced to two independent one-dimensional
decoding problems. Decoding the location of a subsequence in a de Bruijn se-
quence is a well-known problem. Decoding of a half de Bruijn sequence is
carried out similarly.

The cross-shaped sensor is rather ‘spread out’, so it might be a disadvantage
in applications. This weakness becomes an advantage for robust self-location
when a rectangular-shaped sensor is used. If we use a k × n pixel sensor (see
Corollary 10.2), we can utilize the inherent redundancy within the kn bits to
decode the location while overcoming a considerable number of faulty bit read-
ings. This is also a very practical choice, considering that two-dimensional rect-
angular sensor grids are the most common variety and are the standard choice
for most applications.

We assume that fewer than one-quarter of the bits in each row and fewer than
one-half of the bits in each column of the k × n input array (which we want to
locate) are in error. This is a fair assumption that can account for quite strong
noise in practical terms. The following presented algorithm to obtain robust self-
location is based on a simple majority decoding as follows.
Robust self-location algorithm:

The input for the algorithm is a rectangle

Z � {zij : 1 ≤ i ≤ k,1 ≤ j ≤ n} = (X ⊗ Y) + E,

where X is a vertical k-tuple of a given vertical span k half de Bruijn se-
quence T ; Y is a horizontal n-tuple of a given span n horizontal de Bruijn
sequence S; E is a k × n error pattern. We assume that fewer than n

4 of the bits
in each row of E are ones and fewer than k

2 of the bits in each column of E are
ones. The output is the original vertical and horizontal subsequences X and Y ,
respectively.

• Assume that the first bit of X is b (no value is assigned to b). Let D be the
first row of Z.

• For each row A of Z (other than the first row) do

• if more than half of the bits of A+D are zeroes then the corresponding bit
of X is b;

• otherwise, the corresponding bit of X is b̄.

• Assign 0 or 1 to b to obtain X that appears in T (it is known in advance which
k-tuples appears in T , the half de Bruijn sequence).

• For each column B of Z

• if more than half of the bits of B +X are zeroes then the corresponding bit
in Y is a zero;

• otherwise, the corresponding bit in Y is a one.
• From the computed X and Y form X ⊗ Y . �
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Theorem 10.2. Let R be a 2k−1 × 2n array and let ϒ be a k × n pixel sensor.
If fewer than one-quarter of the bits in each row of R and fewer than half of
the bits in each column of R are in error, then the robust self-location algorithm
accurately decodes the sensor location.

Proof. Since the number of errors in a row of ϒ is fewer than n
4 it follows that

two rows that were originally the same will agree in more than half of their bits.
One original row and one complement row will disagree in more than half of
their bits. Therefore the related bits of the vertical k-tuple X will be the same or
different, respectively, depending on whether the two rows agree in more than
n
2 bits or disagree in at least n

2 bits, respectively. Having all the k bits of X in
terms of the variable b, there is only one assignment of a legal k-tuple (from the
two possible complement assignments associated with b = 0 and b = 1) since
the vertical sequence is a half de Bruijn sequence and it is known in advance
which k-tuples it contains.

Having the correct vertical subsequence X, since the number of errors in a
column is fewer than n

2 , it follows that if X agrees in more than n
2 bits with a

column, then the corresponding bit of Y is a zero; if it disagrees in more than
n
2 bits with a column then the corresponding bit of Y is a one.

Remark. Decoding can be done also if more than one-quarter of the bits in
some rows are in error. A slightly better condition would be to require that the
number of distinct positions in error in any two rows is fewer than n

2 . This re-
quirement can be further improved.

A similar algorithm will also work if we will exchange between rows and
columns, or equivalently if we will consider a transposed array. Therefore we
can exchange our assumption on the number of wrong bits in a row or a column.
However, having for example at least half of the bits wrong in a given column
(or a given row) will cause a wrong identification of the original subsequences.

Lemma 10.1. Let R be a 2k−1 × 2n array and let ϒ be a k × n pixel sensor. If
at least half of the bits in one of the columns of a pixel sensor are in error, then
we cannot ensure accurate decoding of the original subsequences.

Proof. Let Y and Y ′ be two n-tuples that differ only in the last bit. Both Y

and Y ′ appear as windows of length n in the span n de Bruijn sequence S . Let
X be a k-tuple that appears as a window in the sequence T . The products X ⊗Y

and X ⊗ Y ′ appear as k × n windows in the array T ⊗ S . Both k × n windows
differ only in the last column and it would be impossible to distinguish between
the two windows if half of the bits in the last column are in error. If more than
half of the bits in the last column are in error then an incorrect decoding of the
sensor location will be made. The same arguments can be applied to any other
column.

We note that by Lemma 10.1 we cannot correct
⌈

k
2

⌉
or more random errors

in a k × n input array. The reason is that the array is highly redundant. This is
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quite weak from an error-correction point of view. However, by Theorem 10.2
we can correct about kn

4 errors in an k × n array if fewer than n
4 errors occur

in a row and fewers than k
2 errors occur in a column. This result is quite strong

from an error-correction point of view. Thus the weakness for one type of error
becomes an advantage for another type of error.

Example 10.2. The following 7 × 9 input array of an 64 × 512 array R

1 0 0 1 0 1 0 0 1

0 0 0 0 0 1 1 1 0

1 0 1 0 0 0 1 1 1

0 0 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 1

0 0 1 0 1 0 1 1 0

1 0 0 1 1 0 0 0 1

has no more than two errors in a row and no more than three errors in a column.
The first row (from the top) has more than half bits in common only with the
5th and the 7th rows. Thus the vertical pattern (from the top) is (bb̄b̄b̄bb̄b)tr.
Suppose that b = 0, i.e., the vertical column is (0111010)tr. We now compare
all of the columns with (0111010)tr. If more than half of the corresponding bits
agree, the bit in the horizontal sequence is a zero; otherwise, it is a one. Thus
the horizontal sequence is 110111001. The 7 × 9 sub-array with no errors is

1 1 0 1 1 1 0 0 1

0 0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1 0

1 1 0 1 1 1 0 0 1

0 0 1 0 0 0 1 1 0

1 1 0 1 1 1 0 0 1

.

�

10.2 Key predistribution for sensor networks

A wireless sensor network (WSN) is a large collection of small sensor nodes
that are equipped with wireless-communication capability. Sensor nodes have
limited communication range and thus data transmitted over the network is typ-
ically passed from node to node in a series of hops to reach its end destination.
Such networks can be employed for a wide range of applications, whether sci-
entific, commercial, humanitarian, or military. The data being transmitted over
the wireless medium is frequently valuable or sensitive; hence, there is a need
for cryptographic techniques to provide data integrity, confidentiality, and au-
thentication.

On deployment, the sensor nodes aim to form a secure and connected net-
work. In other words, we desire a significant proportion of nodes within the
communication range to share cryptographic keys. The nodes’ size limits their
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computational power and battery capacity, so it is assumed that the sensor nodes
are unable to use public-key cryptography to establish shared keys. Hence, we
should use symmetric cryptographic keys, where two parties can communicate
only if they have the same key and are preloaded onto each node before deploy-
ment. A method for deciding which keys are assigned to a node is known as the
key-predistribution scheme (KPS). The sensor nodes are assumed to be highly
vulnerable to compromise, so a single key should not be given to too many
nodes. Another constraint is that each node can only store a limited number of
keys. The aim is to design an efficient and secure KPS so that a sensor node
can establish secure wireless links with many of its neighbors: It is important to
establish as many short secure links in the network as possible since the nodes’
capacity to relay information is very limited.

KPSs for WSNs generally assume that the precise location of nodes is not
known before deployment, hence such schemes aim to provide reasonable levels
of “average” connectivity across the entire network. However, in many applica-
tions, the location of sensor nodes can be determined before deployment. In
such cases, this knowledge can be used to improve the efficiency of the under-
lying KPS. One such scenario is that of networks consisting of a large number
of sensor nodes arranged in a square grid. There are many potential applications
for which such a pattern may be useful: monitoring vines in a vineyard or trees
in a commercial plantation or reforestation project, studying traffic or pollution
levels on city streets, measuring humidity and temperature at regular intervals
in the library shelves, performing acoustic testing on each of the seats in a the-
ater, monitoring goods in a warehouse, indeed any application where the objects
being studied are naturally distributed in a grid. For purposes of commercial
confidentiality or for protecting the integrity of scientific data it is necessary to
secure communication between sensors, and thus it is important to have efficient
methods of distributing keying material in such networks. The goal of this sec-
tion is to provide a practical key-predistribution scheme designed specifically
for square grids. We show that the highly structured topology of these networks
can be exploited to develop schemes that perform significantly better for this
application than more general techniques. The schemes are designed for homo-
geneous networks in which all sensors have the same capabilities. We assume
that the nodes have no access to an external trusted authority (such as a base
station) to establish keys once they have been deployed. We assume that the lo-
cation of each node within the grid is known before deployment, and consider
the problem of establishing pairwise keys between nodes within communication
distance of one another.

We say that a WSN is grid based if it consists of a (potentially unbounded)
number of identical sensors arranged in a square grid. If each sensor has a max-
imum transmission range r , then a sensor can communicate directly with all
nodes within the circle of radius r that surrounds it. We say that two squares oc-
cur at distance r if the distance between the centers of the squares is r . W.l.o.g.
we can scale our unit of distance so that adjacent nodes in the grid are at a dis-
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tance of 1 from each other as it removes unnecessary complications from our
discussions.

We refer to nodes within the circle of radius r centered at some node � as
r-neighbors of �. For most applications, it is useful for any two neighboring
nodes in a sensor network to be able to communicate securely. In designing a
KPS, however, we are restricted by the limited storage capacity of the sensors: if
a node has many neighbors, it may be unable to store enough keys to share a dis-
tinct key with each neighbor. We would like to design KPSs in which each node
shares a key with as many of its r-neighbors as possible while taking storage
constraints into account. (Note that we only require keys to be shared by nodes
that are r-neighbors, in contrast to a randomly distributed sensor network that
potentially requires all pairs of nodes to share keys.) One way of achieving this
is for each key to be shared by several different nodes; however, it is necessary
to restrict the extent to which each key is shared, to protect the network against
key compromise through node capture.

Now, we provide basic definitions relating to KPS and examine certain prop-
erties that must be considered when designing such schemes, before proposing
constructions of KPSs that are specifically adapted to grid-based networks.

Let K be a finite set whose elements are referred to as keys (whether they
are either actual secret keys or quantities from which such keys may be derived).
We consider a set U of wireless sensors, each of which has sufficient memory to
store m keys; after deployment, the nodes U form a WSN W .

Definition 10.1. A KPS for W is a mapping U → Km that assigns up to m keys
from K to each node of U .

Although the number of sensor nodes is finite in practice, it is convenient to
model the physical location of the nodes by the set of points of Z2. The scheme
employs a DDC to create a key-predistribution scheme in the following way.

Definition 10.2. Let D = {v1, v2, . . . , vβ} ⊂ Z
2 be a DDC. Allocate keys to

nodes as follows:

• Label each node with its position in Z
2.

• For every ‘shift’ u ∈ Z
2, generate a new key ku in K and assign ku to the

nodes labeled by u + vi , for i = 1,2, . . . , β.

Each node stores the keys assigned to it in its memory before deployment.
Once the nodes are deployed we have the following possible situations.

• Two nodes that share a common element of K can use it for secure commu-
nication.

• Two nodes that do not share a key may rely on an intermediate node with
which they both share a key to communicate securely; this is referred to as a
two-hop path.

If each k ∈ K is assigned to a set Sk ⊂ U of at most β nodes we refer to the
KPS as an [m,β]-KPS. One of the goals in the design of an [m,β]-KPS is to en-
able each node to communicate directly with as many nodes as possible, hence
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we would like to maximize the expected number of neighboring nodes that share
at least one key with a given node �. We note that when evaluating properties
of a grid-based network in which the network does not extend infinitely in all
directions, complications may arise due to nodes on the edge of the network
having a reduced number of neighbors. This can be avoided by restricting at-
tention to properties of nodes on the interior of the network (node � such that
each grid position that is within range of � contains a node of the network).
This is a reasonable restriction to make as it greatly simplifies the analysis and
comparison of KPSs, especially since for a grid-based network of any size the
edge nodes will only represent a small proportion of the network.

Theorem 10.3. When an [m,β]-KPS is used to distribute keys to nodes in a
square-grid network, the expected number of r-neighbors of a node �, in the
interior of the network, that share at least one key with � is at most m(β − 1).
The value m(β −1) is achieved precisely when the following conditions are met.

1. Each interior node stores exactly m keys, each one is shared by exactly
β nodes.

2. No pair of nodes shares two or more keys.
3. The distance between any two nodes sharing a key is at most r .

Proof. The maximum number of keys allocated to an interior node � by an
[m,β]-KPS is m; each of these keys is shared by at most β nodes (which may
or may not be r-neighbors of �). Hence, a given interior node shares keys with
at most m(β − 1) of its r-neighbors, and this maximum value is achieved if
and only if no two nodes share more than one key with �, and every node with
which � shares a key is in the r-neighbor of �. Therefore the claims in the
theorem follow directly.

Theorem 10.3 indicates that when distributing keys using an [m,β]-KPS,
limiting the number of keys shared by each pair of nodes to at most one increases
the number of pairs of neighboring nodes that share keys, hence this is desirable
from the point of view of efficiency. Now, we describe a method of constructing
[m,β]-KPSs with this property.

We propose a KPS for a grid-based network, in which the pattern of nodes
that share a particular key is determined by a Costas array. The result is an
[n,n]-KPS in which any two nodes have at most one key in common.

Construction 10.1. Let A be a n × n Costas array. Use A to distribute keys
from a key pool K to a set U of nodes arranged in a grid-based network.

• Arbitrarily choose one square of the grid to be the origin, and superimpose A
on the grid, with its lower left-hand square over the origin. Select a key k00
from K, and distribute it to nodes occurring in squares coinciding with a dot
of A (so n nodes receive the key k00).

• Similarly, for each square occurring at a position (i, j) in the grid, we place
the lower left-hand square of A over that square, then assign a key kij ∈K to
the squares that are now covered by dots of A. �
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If the dots of the Costas array occur in entries

(0, a0), (1, a1), . . . , (n − 1, an−1)

of the array, then the above scheme associates a key kij with the nodes in squares
(i, a0 + j), (i + 1, a1 + j), . . . , (i + n − 1, an−1 + j) (where such nodes exist,
i.e., the array is not periodic). We observe that the deterministic nature of this
key allocation, together with the structured topology of a square grid means that
nodes can simply store the coordinates in the grid of those nodes with which
they share keys, thus obviating the need for a shared-key discovery process with
ensuing communication overheads.

Example 10.3. Consider the 3 × 3 Costas array of Fig. 10.2.

FIGURE 10.2 A 3 × 3 Costas array.

If we use this array for key distribution as described above, each node stores
three keys. Fig. 10.3 illustrates this key distribution: each square in the grid rep-
resents a node, and each symbol contained in a square represents a key possessed
by that node. The central square stores keys marked by the letters A, B, and C;
two further nodes share each of these keys. These three keys are colored with
underlined red, while the other keys are colored black. Note that only some of
the keys are illustrated; the pattern of key sharing extends similarly throughout
the entire network.

FIGURE 10.3 Key distribution using a 3 × 3 Costas array.

�

Theorem 10.4. The key-predistribution scheme in Construction 10.1 has the
following properties:

1. Each sensor is assigned n different keys.
2. Each key is assigned to n sensors.
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3. Any two sensors have at most one key in common.
4. The distance between two sensors that have a common key is at most√

2(n − 1).

Proof.

1. There are n dots in A. For each dot in turn, if we position A so that a dot
lies over a given node �, this determines the positioning of A for which the
corresponding key is allocated to �. Hence, � stores n keys in total.

2. A key kij is assigned to n positions in the square grid, namely those that
coincide with the n dots of a fixed shift of A.

3. Suppose there exist two sensors A and B sharing (at least) two keys. These
keys correspond to different translations of the array A, hence, there exist
two translations of A in which dots occur at the positions of both A and B.
However, by the distinct differences property, two different translations of
a Costas array A can coincide in at most one dot, thus contradicting the
original assumption.

4. The two most distant sensors that have a key in common must correspond to
two dots in the same translation of A. The largest distance between two dots
in A occurs if they are in two opposite corners of the array, i.e., at distance√

2(n − 1).

Corollary 10.3. When the [n,n]-KPS of Construction 10.1 is applied to a grid-
based network then a node on the interior of the network shares keys with
n(n − 1) other nodes, the maximum possible for an [n,n]-KPS.

Remark. Construction 10.1 can be generalized by using any DD(m, r).

Now, we describe a specific KPS for a grid-based network, in which the
pattern of nodes that share a particular key is determined by a Costas array. The
result is an [n,n]-KPS in which any two nodes have at most one key in common.
For this construction, we will be able to prove a desirable two-hop coverage.

We now define a DD(m) by choosing a finite subset of the dots in the Welch
periodic array Lp (see Definition 9.5). For this definition let α be a primitive
root modulo a prime p and we will use a transpose of the array as follows:

Wp � {(i, j) ∈ Z
2 : αj ≡ i (mod p)}.

Construction 10.2. Let p be an odd prime and let α be a primitive element
modulo p. Let (i, j) ∈ Z

2 be such that Wp has dots at (i, j) and (i + 1, j + 1).
Note that such a position (i, j) exists. To see this, let i and j be integers such that

αj ≡ i ≡ 1

α − 1
(mod p).

The right-hand side of this equality is well defined and nonzero modulo p, and
so there is a suitable choice for i and j . Clearly, Wp has a dot at the posi-



336 Sequences and the de Bruijn Graph

tion (i, j). However, there is also a dot at (i + 1, j + 1) since

αj+1 ≡ α

α − 1
≡ 1

α − 1
+ 1 ≡ i + 1 (mod p).

Consider the (p−1)×p rectangle S bounded by the positions (i,j), (i+p−1,j),
(i, j + p − 2), and (i + p − 1, j + p − 2). By construction, Wp has p − 1 dots
in S. Due to its periodic nature, Wp also has dots at positions (i, j + p − 1),
(i + p, j), and (i + p + 1, j + p). We construct a configuration B by adding
these three dots to the set of dots in Wp ∩ S. �

Our configuration B is shown in Fig. 10.4. The configuration is contained in
a (p + 1) × (p + 2) rectangle. The border region of width 2 contains exactly
5 dots: A,A′,A′′,B, and B ′. The central region is a (p−3)× (p−2) rectangle.
This region contains p − 3 dots: one column is empty, but every other column
and every row contains exactly one dot. Note that A ≡ A′ ≡ A′′ and B ≡ B ′, but
there are no other equivalent pairs of dots in B.

j+p

j+p-1

j

j+1

i i+1 i+p i+p+1

�

�

p − 3

��
p − 2

central region

A�

B�

A′
�

A′′
�

B′
�

FIGURE 10.4 The configuration B. The five dots shown are the dots that lie on the border of
width 2 of the (p + 1) × (p + 2) rectangle containing the configuration.

Lemma 10.2. The configuration B is a DD(p + 2), all of whose points lie in a
(p + 1) × (p + 2) rectangle.

Proof. We have already remarked that B contains p + 2 dots, all lying in a
(p+1)×(p+2) rectangle. Hence, it remains to show that B satisfies the distinct
differences property.

Suppose, for a contradiction, that {X,Y }, and {X′, Y ′}, are distinct pairs of
dots in B with the same difference vector (d, e).

Suppose that d ∈ {0,−p,p} or e ∈ {0,−(p − 1), (p − 1)}. A difference vec-
tor between a dot in the central region of our configuration and any other dot has
x coordinate and y coordinate of absolute value at most p − 1 or p − 2, respec-
tively. Moreover, a central dot is the only dot in its row and column. Hence, our
assumption implies that none of X,X′, Y,Y ′ can lie in the central region of our
configuration. Moreover, the 5 ·4 = 20 ordered pairs of dots in the border region
all have distinct difference vectors, and so we have a contradiction in this case.
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Hence, we may assume that d /∈ {0,−p,p} and e /∈ {0,−(p − 1), (p − 1)}.
In particular, since all dots lie in a (p + 1) × (p + 2) rectangle, we see that
d �≡ 0 (mod p) and e �≡ 0 (mod (p − 1)). Lemma 9.17 now implies that X ≡ X′
and Y ≡ Y . If X = X′ then Y = Y ′, which contradicts the fact that our pairs
of dots are distinct. Hence, X �= X′. The fact that X ≡ X′ now implies that X

and X′ must lie in the border of our configuration. A similar argument implies
the same is true for Y and Y ′. As in the previous case, we now have a contradic-
tion. Thus the lemma follows.

It should be noted that the use of a DD(m, r) maximizes the number of
r-neighbors that share keys with a given node. Additionally, it is desirable to
maximize the number of r-neighbors that can communicate securely with a
given node � via a one-hop or a two-hop path. We refer to this quantity as
the two-hop r-coverage of a KPS. For our scheme, which is based on distinct-
difference configurations, we refer to the two-hop r-coverage of a DD(m, r)

to indicate the two-hop r-coverage obtained by a KPS constructed from that
configuration.

Our goal now is to show that B achieves complete two-hop coverage on a
(2p − 3) × (2p − 1) rectangle relative to the central point of the rectangle. To
demonstrate this, it is necessary to show that every vector (d, e) with |d| ≤ p−1
and |e| ≤ p − 2 can be expressed as a difference vector or a two-hop path of
difference vectors from B. The following lemma proves this for the majority of
such vectors of the form (d, e).

Lemma 10.3. Any vector of the form (d, e), where d and e are nonzero integers
satisfying |d| ≤ p − 1 and |e| ≤ p − 2, can be expressed as the sum of two
difference vectors from B.

Proof. Consider the (p − 1) × p rectangle S defined in Construction 10.2, and
let A be the restriction of Wp to the (2p − 2) × 2p sub-array whose lower
leftmost corner coincides with that of S.

We partition A into four (p − 1) × p sub-arrays as follows:

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

D3 D4

D1 D2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The periodicity of Wp means that the set of dots of Wp contained in each sub-
array is a translation of the set of dots of Wp contained in D1. Moreover, since
D1 = S, it follows that all the dots in D1 are contained in B.

We claim that each of the vectors (d, e) appears as the difference of two
points in A. Since the negative of a difference vector is always a differ-
ence vector, it follows that we may assume w.l.o.g. that d > 0. Suppose that
0 < e ≤ p − 2. There is a unique position (i′, j ′) ∈ D1 such that
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αj ′ ≡ i′ ≡ d

αe − 1
(mod p).

It is easy to check, just as in Construction 10.2, that Wp has dots at (i′, j ′) and
(i′ +d, j ′ +e). Since d and e are both positive, it follows that (i′ +d, j ′ +e) lies
in A, and so our claim follows in this case. The argument for the case when e < 0
is the same, except that now we choose (i′, j ′) ∈ D3. Hence, the claim follows.

To prove the lemma, we need to show that each difference vector (d, e) can
be written as the sum of two difference vectors of B. This follows from the
paragraph above and the following observations:

• Any vector connecting two dots of D1 is a difference vector of B by con-
struction.

• Due to the periodicity of Wp, a vector connecting a dot in D1 with a dot
in D3 (or, similarly, a dot in D2 with a dot in D4) can be expressed as the
sum of the vector (0,p − 1) (which occurs as a difference between the dots
A and A′ in B) and some other difference vector of B.

• A vector connecting a dot in D1 with a dot in D2 (or, similarly, a dot in D3
with a dot in D4) can be expressed as the sum of the difference vector (p,0)

(which occurs between A and A′′) and some other difference vector of B.
• A vector connecting a dot in D1 with a dot in D4 is the sum of the difference

vector (p,p−1) (which occurs between B and B ′) and some other difference
vector of B.

• A vector connecting a dot in D3 with a dot in D2 is the sum of the differ-
ence vector (p,−(p −1)) (which occurs between A′ and A′′) and some other
difference vector of B.

It remains to consider vectors that have a zero coordinate. We will use the
following lemma in our proof that such vectors all occur as the sum of two
difference vectors from B.

Lemma 10.4. Let t be a positive integer with t ≥ 3. Let F be a set of integers
satisfying the following properties:

(p1) |F | = t + 1;
(p2) F ⊂ {−(t − 1),−(t − 2), . . . ,−1} ∪ {1,2, . . . , t − 1} ∪ {t + 1};
(p3) {1,−(t − 1), t + 1} ⊂ F;
(p4) ∃i ∈ F \ {1,−(t − 1), t + 1} with i < 0;
(p5) if i > 0 and i ∈F \ {1,−(t − 1), t + 1}, then i − t /∈F .

Then, each positive integer γ with 1 ≤ γ ≤ t − 1 has a representation of the
form γ = j − i, where i, j ∈F .

Proof. Since by properties (p1) and (p3), we have that F \ {1,−(t − 1), t + 1}
contains t −2 elements, it follows by property (p5) that F must contain precisely
one element of each pair {i, i − t} for each i = 2,3, . . . , t − 1. Suppose, for
a contradiction, that there exists a positive integer γ ≤ t − 1 that cannot be
expressed as the difference between two elements of F .
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Suppose that γ > 1. Since 1, t + 1 ∈ F , our assumption implies that
1 − γ /∈ F and t + 1 − γ /∈ F . However, 1 − γ = (t + 1 − γ ) − t , and hence
one of these integers must be contained in F , which gives a contradiction in this
case.

Suppose that γ = 1. The assumption implies that F does not contain a pair
of integers that differ by 1. If t is odd, this implies that F \ {t + 1} contains at
most (t − 1)/2 positive integers, and at most (t − 1)/2 negative integers. Hence,
F contains at most (t − 1) + 1 = t integers, which contradicts property (p1). If
t is even, then for the size of F to be t + 1, F \ {t + 1} must contain t/2 positive
integers, all of which are odd, and t/2 negative integers that are also all odd.
This implies that for each positive odd integer 1 < i < t we have that i ∈ F and
i − t ∈F , which contradicts property (p5). Hence, the lemma follows.

We can now combine these two lemmas to obtain our desired result:

Theorem 10.5. Let p be a prime, p ≥ 5. The distinct difference configuration B
achieves complete two-hop coverage on a (2p−3)× (2p−1) rectangle relative
to the central point of the rectangle.

Proof. By Lemma 10.3, a vector (d, e) from the center of a (2p − 3) × (2p − 1)

rectangle to another point of the rectangle can be expressed as the sum of two
difference vectors of B if d and e are nonzero.

We now consider vectors of the form (0, e) with 0 < e ≤ p−2. Such a vector
can be expressed as the sum of two difference vectors of B if B has difference
vectors of the form (1, y′) and (1, y) with y′ − y = e. The second coordinates
of the set of difference vectors of B of the form (1, y) with y �= 0 satisfy the
conditions of Lemma 10.4 for t = p − 1, since:

(1) The leftmost column of the array contains two dots; all the other columns
contain a single dot apart from a single central column that is empty. Hence,
B has p difference vectors of the form (1, y) with y �= 0.

(2) Except for the vector (1,p), all difference vectors of B of the form (1, y)

with y �= 0 satisfy |y| ≤ p − 2.
(3) The vectors (1,1), (1,−(p − 2)) and (1,p + 1) are all difference vectors

of B (as they occur as differences between dots in the border region of B,
as illustrated in Fig. 10.4).

(4) The difference vectors of B of the form (1, y) cannot all satisfy y > 0. This
is obvious if the rightmost central column contains a dot. If this column
is empty and y is always positive, then the remaining (p − 3) × (p − 3)

central region must contain dots along a lower-left to top-right diagonal.
Since p ≥ 5, it follows that the two central dots have the difference vec-
tor (1,1). Since dots A and B also have this difference vector, it follows
that the distinct difference property is violated and so we have a contradic-
tion, as required.

(5) If (1, y) with y /∈ {1,p} is a difference vector of B, then (1, y − (p − 1))

is not a difference vector of B. Lemma 9.17 implies that the dots involved
must be equivalent, and so must be in the border region of our construction.
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Lemma 10.4 now implies that any vector (0, e) with 0 < e ≤ p − 2 has an ex-
pression in the form (0, e) = (1, y′) + (−1,−y), where (1, y′) and (1, y) are
difference vectors of B. Vectors of the form (0, e) with −(p − 2) < e < 0 can
be written as (1, y) + (−1,−y′).

Similarly, we can show that the first coordinates of the difference vectors
of B of the form (x,1) satisfy the conditions of Lemma 10.4 with t = p, and
hence any vector of the form (d,0) with 0 < |d| ≤ p − 1 can be written as the
sum of two difference vectors of B. Thus the result is proven.

We can thus apply the DD(m) specified in Construction 10.2 to the scheme
presented in Definition 10.2 to establish a key-predistribution scheme that guar-
antees two-hop paths between a node and all of its neighbors within a surround-
ing rectangular region. This provides a powerful notion of local connectivity to
facilitate connectivity across the wider network. The resulting scheme is also
highly configurable since the value of p can be adjusted for a tradeoff of storage
against the size of the fully connected local region.

10.3 Folding of one-dimensional sequences

In Section 9.3 we gave a construction of pseudo-random arrays based on the
folding of M-sequences. Surprisingly, folding can be also used to form two-
dimensional DDCs of various shapes from one-dimensional patterns with dis-
tinct differences. It can be used also to form pseudo-random two-dimensional
arrays with a window property when the shape of the window is not necessarily
a rectangle. The method of folding that will be discussed in this section gener-
alizes the one in Section 9.3 so that the DDCs can have different shapes. This is
especially useful for KPS when a sensor can communicate at radius r , i.e., to all
sensors in a circle of radius r around it.

Let S be a shape (a set of positions) in the square grid. We are interested in
finding DDCs that are contained in S and have many dots. We present a general
technique for showing the existence of such DDCs, using doubly periodic con-
structions. The following lemma follows straightforwardly from our definitions:

Lemma 10.5. Let A be a doubly periodic S-DDC, and let S ′ ⊆ S . Then, A is
a doubly periodic S ′-DDC.

After we examine the density of various DDCs in Section 9.5 (a square
and a circle) we intend to improve these results by using folding and also to
consider DDCs whose shape is a regular polygon. Folding a rope, a ruler, or
any other feasible object is a common action in everyday life. Folding a one-
dimensional sequence into a multi-dimensional array is very similar, but there
are a few variants. First, we will summarize three variants for folding a one-
dimensional sequence into a two-dimensional array A. The generalization for
a D-dimensional array, where D > 2, is straightforward, while the description
becomes more clumsy.
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F1. A is considered as a cyclic array horizontally and vertically in such a way
that a walk diagonally visits all the entries of the array. The elements of the
sequence are written along the diagonal of the r × t array A. This folding
will work (i.e., all elements of the sequence are written into the array) if
and only if r and t are co-prime.

F2. The elements of the sequence are written row after row (or column after
column) in A.

F3. The elements of the sequence are written diagonal after diagonal in A.

The folding defined by F1 was demonstrated in Example 9.5. The next two
examples demonstrate the folding of F2 and F3.

Example 10.4. The following sequence (ruler) of length 13 with five dots:

0 1 2 3 4 5 6 7 8 9 10 11 12
• • • • •

is folded, as described in F2, into a 3×5 array with positions ordered as follows:

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

and hence the dots in the array are as follows:

• •

• • •

and form a DDC with five dots. �
Example 10.5. The following sequence, which is the characteristic vector of a
(31,5,1) difference set, in Z31: {0,1,4,10,12,17} (can be viewed as a cyclic
ruler) is folded, as defined by F3, into an infinite array (we demonstrate part of
the array, where folding into a small rectangle is given in bold). Note that while
the folding is carried out we should consider all the integers modulo 31 (see
Fig. 10.5).
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FIGURE 10.5 Folding by diagonals.
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Tiling is one of the most basic concepts in combinatorics. We say that a
D-dimensional shape S tiles the D-dimensional space ZD if disjoint copies of S
cover ZD .

Remark. We assume that S is a discrete shape, i.e., it consists of discrete points
of ZD such that there is a path between any two points of S that consists only of
points of S . The shape S in Z

D is usually not represented as a union of points
in Z

D , but rather as a union of unit cubes in R
D with 2D vertices in Z

D . Let
A be the set of points in the first representation. The set of unit cubes by the
second representation is

{U(i1,i2,...,iD) : (i1, i2, . . . , iD) ∈ A} ,

where

U(i1,i2,...,iD) = {(i1, i2, . . . , iD) + ξ1ε1 + ξ2ε2 + · · · + ξDεD :
0 ≤ ξi < 1, 1 ≤ i ≤ D}

and εi is a vector of length D and weight one with a one in the ith position. We
omit the case of shapes in R

D , which are not of interest to our discussion.

A cover for ZD with disjoint copies of S is called a tiling of ZD with S .
For each shape S we distinguish one of the points of S to be the center of S .
Each copy of S in a tiling has the center in the same related point. The set T
of centers in a tiling defines the tiling, and hence the tiling is denoted by the
pair (T ,S). Given a tiling (T ,S) and a grid point (i1, i2, . . . , iD) we denote by
c(i1, i2, . . . , iD) the center of the copy of S for which (i1, i2, . . . , iD) ∈ S . We
will also assume that the origin is a center of some copy of S .

Remark. It is easy to verify that any point of S can serve as the center of S . If
(T ,S) is a tiling then we can choose any point of S to serve as a center without
affecting the fact that (T ,S) is a tiling.

Lemma 10.6. If (T ,S) is a tiling, then for any given point (i1, i2, . . . , iD)

in Z
D , the point (i1, i2, . . . , iD) − c(i1, i2, . . . , iD) is contained in the shape S

whose center is at the origin.

Proof. Let S1 be the copy of S whose center is at the origin and let S2 be the
copy of S with the point (i1, i2, . . . , iD). Let (x1, x2, . . . , xD) be the point in S1
related to the point (i1, i2, . . . , iD) in S2. By definition,

(i1, i2, . . . , iD) = c(i1, i2, . . . , iD) + (x1, x2, . . . , xD)

and the lemma follows.

The most common type of tiling is lattice tiling. A lattice 	 is a discrete,
additive subgroup of the real D-space R

D . W.l.o.g., we can assume that

	 = {u1v1 + u2v2 + · · · + uDvD : u1, . . . , uD ∈ Z} , (10.1)
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where {v1, v2, . . . , vD} is a set of linearly independent vectors in R
D . A lattice 	

defined by Eq. (10.1) is a sublattice of ZD if and only if {v1, v2, . . . , vD} ⊂ Z
D .

We will be interested solely in sublattices of ZD since our shapes are defined
in Z

D . The vectors v1, v2, . . . , vD are called a base for 	 ⊆ Z
D , and the D × D

matrix

G =

⎡
⎢⎢⎢⎣

v11 v12 . . . v1D

v21 v22 . . . v2D

...
...

. . .
...

vD1 vD2 . . . vDD

⎤
⎥⎥⎥⎦

having these vectors as its rows is said to be a generator matrix for 	.
The volume of a lattice 	, denoted V (	), is inversely proportional to the

number of lattice points per unit volume. More precisely, V (	) may be defined
as the volume of the fundamental parallelogram 
(	) in R

D , which is defined
by


(	) � {ξ1v1 + ξ2v2 + · · · + ξDvD : 0 ≤ ξi < 1,1 ≤ i ≤ D}.
There is a simple expression for the volume of 	, namely, V (	) = |det G|.

We say that 	 is a lattice tiling for S if the lattice points can be taken as the
set T to form a tiling (T ,S). In this case, we have that |S| = V (	) = |det G|.
Remark. Note that different generator matrices for the same lattice will result
in different fundamental parallelograms. This is related to the fact that the same
lattice can induce a tiling for different shapes with the same volume. A funda-
mental parallelogram is always a shape in R

D that is tiled by 	 (usually this
is not a shape in Z

D and as a consequence, most and usually all, of the shapes
in Z

D are not fundamental parallelograms).

Now, we will generalize the definition of folding. All the previous three
definitions (F1, F2, and F3) are special cases of the new definition. The new
definition involves a lattice tiling 	, for a shape S on which the folding is per-
formed.

A direction of length D, (d1, d2, . . . , dD), is a nonzero word of length D,
where di ∈ Z.

Let S be a D-dimensional shape and let δ = (d1, d2, . . . , dD) be a direction
of length D. Let 	 be a lattice tiling for a shape S , and let S1 be the copy of S ,
in the related tiling, which includes the origin. We define recursively a folded-
row starting at the origin. If the point (i1, i2, . . . , iD) is the current point of S1
in the folded-row, then the next point on its folded-row is defined as follows:

• If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S1 then it is the next point on
the folded-row.

• If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S2 �= S1 whose center is at
the point (c1, c2, . . . , cD) then (i1 + d1 − c1, i2 + d2 − c2, . . . , iD + dD − cD)

is the next point on the folded-row (by Lemma 10.6 this point is in S1).
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The new definition of folding is based on a lattice 	, a shape S , and a direc-
tion δ. The triple (	,S, δ) defines a folding if the definition yields a folded-row
that contains all the elements of S . It will be proved that only 	 and δ determine
whether the triple (	,S, δ) defines a folding. The role of S is only in the order
of the folded-row elements and 	 must define a lattice tiling for S . Different
lattice tilings for the same shape S can function completely differently in this
respect. Also, not all directions for the same lattice tiling of the shape S should
define (or not define) a folding.

Remark. It is not difficult to see that the three foldings defined earlier (F1, F2,
and F3) are special cases of the new definition. The definition of the generator
matrices for the three corresponding lattices is left as an exercise.

Lemma 10.7. Let 	 be a lattice tiling for the shape S . Let (d1, d2, . . . , dD) be
a direction, (i1, i2, . . . , iD) be a lattice point, and the point (d1, d2, . . . , dD) is in
the shape S whose center is at the origin. Then, the folded-rows defined by the
directions (d1, d2, . . . , dD) and (i1 + d1, i2 + d2, . . . , iD + dD) are equivalent.

Proof. This follows immediately from the observation that

c(i1 + d1, i2 + d2, . . . , iD + dD) = (i1, i2, . . . , iD).

How many different folded-rows do we have? In other words, how many
different folding operations are defined in this way? As a consequence of
Lemma 10.7 we have that there are at most |S| − 1 different folded-rows since
each point, except for (0,0) can serve for the definition of a direction. Hence, in
the following, each direction δ = (d1, d2, . . . , dD) will have the property that the
point (d1, d2, . . . , dD) will be contained in the copy of S whose center is at the
origin. If 	 with the direction (d1, d2, . . . , dD) define a folding then also 	 with
the direction vector (−d1,−d2, . . . ,−dD) define a folding. The two folded-rows
are in reverse order and they will be considered equivalent. If two folded-rows
are not equal and not a reverse pair then they will be considered to be nonequiv-
alent. The question whether for each D, there exists a D-dimensional shape S
with

⌊ |S|−1
2

⌋
nonequivalent folded-rows, will be partially answered in the fol-

lowing.
How do we fold a sequence into a shape S? Let 	 be a lattice tiling for the

shape S for which n = |S|. Let δ be a direction for which (	,S, δ) defines a
folding and let B = b0b1 . . . bn−1 be a sequence of length n. The folding of B
induced by (	,S, δ) is denoted by (	,S, δ,B) and is defined as the shape S
with the elements of B, where bi is in the ith entry of the folded-row of S
defined by (	,S, δ).

Next, we aim to find sufficient and necessary conditions that a triple
(	,S, δ) defines a folding. We start with a simple characterization of the or-
der of the elements in a folded-row.
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Lemma 10.8. Let 	 be a lattice tiling for the shape S and let δ= (d1, d2, . . . , dD)

be a direction. Let g(i) = (i · d1, . . . , i · dD) − c(i · d1, . . . , i · dD) and let i, j be
two integers. Then, g(i) = g(j) if and only if g(i + 1) = g(j + 1).

Proof. The lemma follows immediately from the observation that g(i) = g(j)

if and only if (i · d1, . . . , i · dD) and (j · d1, . . . , j · dD) are associated with the
same position in S , i.e., correspond to the same position of the folded-row.

The next two lemmas are immediate consequences of the definitions and
provide a concise condition on whether the triple (	,S, δ) defines a folding.

Lemma 10.9. Let 	 be a lattice tiling for the shape S and let δ= (d1, d2, . . . , dD)

be a direction. (	,S, δ) defines a folding if and only if the set

{(i · d1, i · d2, . . . , i · dD) − c(i · d1, i · d2, . . . , i · dD) : 0 ≤ i < |S|}
contains |S| distinct elements.

Proof. The lemma is an immediate consequence of Lemmas 10.6 and 10.8, and
the definition of folding.

Lemma 10.10. Let 	 be a lattice tiling for the shape S and δ = (d1, d2, . . . , dD)

be a direction. (	,S, δ) defines a folding if and only if

(|S| · d1, . . . , |S| · dD) − c(|S| · d1, . . . , |S| · dD) = (0, . . . ,0)

and for each i, 0 < i < |S| we have

g(i) = (i · d1, . . . , i · dD) − c(i · d1, . . . , i · dD) �= (0, . . . ,0).

Proof. Assume first that (	,S, δ) defines a folding. If for some 0 < j < |S| we
have (j ·d1, . . . , j ·dD)−c(j ·d1, . . . , j ·dD) = (0, . . . ,0), then g(j) = g(0) and
hence by Lemma 10.8 the folded-row will have at most j elements of S . Since
j < |S| we will have that (	,S, δ) does not define a folding, a contradiction.
On the other hand, Lemma 10.8 also implies that if (	,S, δ) defines a folding,
then g(|S|) = (0, . . . ,0).

Now, assume that (|S| · d1, . . . , |S| · dD) − c(|S| · d1, . . . , |S| · dD) =
(0, . . . ,0) and for each i, 0 < i < |S| we have (i · d1, . . . , i · dD) −
c(i · d1, . . . , i · dD) �= (0, . . . ,0). Let 0 < i1 < i2 < |S|; if g(i1) = g(i2) then by
Lemma 10.8 we have g(i2 − i1) = g(0) = (0, . . . ,0), a contradiction. Therefore
the folded-row contains all the elements of S and hence by definition (	,S, δ)

defines a folding.

Corollary 10.4. If (	,S, δ), δ = (d1, d2, . . . , dD), defines a folding then the
point (|S| · d1, . . . , |S| · dD) is a lattice point.

Before considering the general D-dimensional case we want to give a simple
condition to check whether the triple (	,S, δ) defines a folding in the two-
dimensional case, which is the main theme of this section.



346 Sequences and the de Bruijn Graph

Lemma 10.11. Let G be the generator matrix of a lattice 	 and let s = |detG|.
Then, the points (0, s), (s,0), (s, s), and (s,−s) are lattice points.

Proof. It is sufficient to prove that the points (0, s), (s,0) are lattice points. Let
	 be a lattice whose generator matrix is given by

G =
[

v11 v12
v21 v22

]
,

i.e., s = v11v22 − v12v21. Since v22(v11, v12) − v12(v21, v22) = (s,0) and
v11(v21, v22) − v21(v11, v12) = (0, s), it follows that the points (0, s), (s,0) are
lattice points.

Theorem 10.6. Let 	 be a lattice whose generator matrix is given by

G =
[

v11 v12
v21 v22

]
.

Let d1 and d2 be two positive integers and τ = g.c.d.(d1, d2). If 	 defines a lat-
tice tiling for the shape S , then the triple (	,S, δ) defines a folding as follows:

• with δ = (+d1,+d2) if and only if g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= 1 and

g.c.d.(τ, |S|) = 1;

• with δ = (+d1,−d2) if and only if g.c.d.
(

d1v22+d2v21
τ

, d2v11+d1v12
τ

)
= 1 and

g.c.d.(τ, |S|) = 1;
• with δ = (+d1,0) if and only if g.c.d.(v12, v22) = 1 and g.c.d.(d1, |S|) = 1;
• with δ = (0,+d2) if and only if g.c.d.(v11, v21) = 1 and g.c.d.(d2, |S|) = 1.

Proof. We will prove the case where δ = (+d1,+d2); the other three cases are
inferred or proved similarly.

Let 	 be a lattice tiling for the shape S . By Lemma 10.11 we have that
(|S| · d1, |S| · d2) is a lattice point. Therefore there exist two integers α1 and α2
such that α1(v11, v12) + α2(v21, v22) = (|S| · d1, |S| · d2), i.e., α1v11 + α2v21 =
d1|S|, α1v12 + α2v22 = d2|S|, and |S| = v11v22 − v12v21. These equations
have exactly one solution, α1 = d1v22 − d2v21 and α2 = d2v11 − d1v12. By
Lemma 10.10, (	,S, δ) defines a folding if and only if (|S| · d1, |S| · d2) =
c(|S| · d1, |S| · d2) and for each i, 0 < i < |S| we have (i · d1, i · d2) �=
c(i · d1, i · d2).

Assume first that g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= 1 and g.c.d.(τ, |S|) = 1.

Assume, on the contrary, that there exist three integers i, β1, and β2, such
that β1(v11, v12) + β2(v21, v22) = (i · d1, i · d2), 0 < i < |S|. Hence, we have
β2
β1

= d2v11−d1v12
d1v22−d2v21

= α2
α1

. Since g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= 1 it follows

that β1 = γ d1v22−d2v21
τ

and β2 = γ d2v11−d1v12
τ

, for some 0 < γ < τ . There-

fore we have i · d1 = β1v11 + β2v21 = γ d1|S|
τ

, i.e., i = γ |S|
τ

. However, since
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g.c.d.(τ, |S|) = 1 it follows that γ = ρτ , for some integer ρ > 0, a contra-
diction to the fact that 0 < γ < τ . Hence, our assumption on the existence
of three integers i, β1, and β2 is false. Thus by Lemma 10.10 we have that

if g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= 1 and g.c.d.(τ, |S|) = 1, then (	,S, δ) de-

fines a folding with the direction δ = (+d1,+d2).
Assume that (	,S, δ) defines a folding with the direction δ = (+d1,+d2).

Assume now, on the contrary, that g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= ν1 > 1 or

g.c.d.(τ, |S|) = ν2 > 1. We distinguish now between two cases.

Case 1: If g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= ν1 > 1 then β1 = d1v22−d2v21

τν1

and β2 = d2v11−d1v12
τν1

are integers. Therefore β1(v11, v12) + β2(v21, v22) =( |S|·d1
τν1

,
|S|·d2
τν1

)
. Hence, |S|

ν1
is an integer and for the integers β ′

1 = d1v22−d2v21
ν1

and β ′
2 = d2v11−d1v12

ν1
we have β ′

1(v11, v12) + β ′
2(v21, v22) =

( |S|
ν1

d1,
|S|
ν1

d2

)
, i.e.,( |S|

ν1
d1,

|S|
ν1

d2

)
is a lattice point, and as a consequence by Lemma 10.10 we have

that (	,S, δ) does not define a folding, a contradiction.
Case 2: If g.c.d.(τ, |S|) = ν2 > 1 then let β1 = d1v22−d2v21

ν2
and β2 = d2v11−d1v12

ν2
.

Hence, β1(v11, v12)+β2(v21, v22) =
( |S|

ν2
d1,

|S|
ν2

d2

)
. Clearly, β1, β2, and |S|

ν2
are

integers, and as a consequence by Lemma 10.10 we have that (	,S, δ) does not
define a folding, a contradiction.

Therefore if (	,S, δ) defines a folding with the direction δ = (+d1,+d2)

then g.c.d.
(

d1v22−d2v21
τ

, d2v11−d1v12
τ

)
= 1 and g.c.d.(τ, |S|) = 1.

The generalization of Theorem 10.6 for the D-dimensional case is presented
in Theorem 10.12. The most important types of directions (used for F1, F2,
and F3), are those in which the points P and δ + P , where δ is the direction,
are adjacent for any given point P , i.e., if δ = (d1, d2, . . . , dD), then |di | ≤ 1 for
each i, 1 ≤ i ≤ D. For these types of directions, we have the following result.

Corollary 10.5. Let δ = (d1, d2) be a direction and let 	 be a lattice whose
generator matrix is given by

G =
[

v11 v12
v21 v22

]
.

If 	 defines a lattice tiling for the shape S then the triple (	,S, δ) defines a
folding as follows:

• with δ = (+1,+1) if and only if g.c.d.(v22 − v21, v11 − v12) = 1;
• with δ = (+1,−1) if and only if g.c.d.(v22 + v21, v11 + v12) = 1;
• with δ = (+1,0) if and only if g.c.d.(v12, v22) = 1;
• with δ = (0,+1) if and only if g.c.d.(v11, v21) = 1.

There are cases when we can easily determine whether (	,S, δ) defines a
folding. It will be a consequence of the following lemmas.
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Lemma 10.12.

• The number of elements in a folded-row does not depend on the chosen point
to be the center of S .

• The number of elements in a folded-row is a divisor of |S| = V (	).

Proof. By Lemmas 10.8 and 10.10 and the definition of the folded-row, if we
start the folded-row at the origin then the number of elements in the folded-row
is the smallest t such that t · δ is a lattice point (since the folded-row starts at
a lattice point and ends one step before it again reaches a lattice point). This
implies that the number of elements in a folded-row does not depend on the
point of S chosen to be the center of S . We can make any point of S to be the
center of S and hence any point can be at the origin. Therefore all folded-rows
with the direction δ have t elements. For a given lattice 	 and a direction δ, any
two folded-rows are either equal or disjoint and those that are disjoint have the
same number of points. Hence, t must be a divisor |S| and t does not depend on
which point of S is the center.

The next lemma is an immediate consequence of the definition of a folded-
row.

Lemma 10.13. The number of elements in a folded-row is one if and only if δ

is a lattice point.

Lemmas 10.12 and 10.13 lead to the following consequence.

Corollary 10.6. Let 	 be a lattice tiling for a shape S . If the volume of 	 is a
prime number then (	,S, δ) defines a folding with any direction δ, unless δ is a
lattice point. If |S| is a prime number, then there exists |S|−1

2 different directions

that form |S|−1
2 nonequivalent folded-rows.

Lemma 10.14. Let 	 be a lattice tiling for the shape S , where n = |S|. Let
δ = (d1, d2, . . . , dD) be a direction that defines a folding and let f0f1 . . . fn−1
be its folded-row, where f0 = (0,0, . . . ,0) and f1 = (d1, d2, . . . , dD). Then, the
direction δ′ = fi defines a folding if and only if g.c.d.(i, n) = 1. If the direction
δ′ = fi defines a folding then its folded-row is f0fif2i . . . fn−i , where indices
are taken modulo n.

Proof. By definition and by Lemma 10.8 we have that

δ′ = fi = (i · d1, i · d2, . . . , i · dD) − c(i · d1, i · d2, . . . , i · dD)

and

f�·i = (� · i · d1, � · i · d2, . . . , � · i · dD) − c(� · i · d1, � · i · d2, . . . , � · i · dD).

Since the sequence f0f1 . . . fn−1 contains n distinct points of Z
D , it follows

that the sequence f0fif2i . . . fn−i contains n distinct points of ZD if and only if
g.c.d.(i, n) = 1. Thus the lemma follows.
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Corollary 10.7. Let 	 be a lattice tiling for the shape S . There exists at least
one folding associated with 	 if and only if the number of nonequivalent folding
operations associated with 	 is φ(|S|)

2 .

Corollary 10.7 implies that once we have one folding operation with its
folded-row, then we can easily find and compute all the other folding operations
with their folded-rows. It also implies that once the necessary and sufficient
conditions for the existence of one folding in the related theorems are satisfied,
then the necessary and sufficient conditions for the existence of other foldings
are also satisfied. Nevertheless, there are cases in which no direction defines a
folding.

Lemma 10.15. Let γ > 1 be a positive integer, let a1, a2, . . . , aD , be nonzero
integers, and let b1, b2, . . . , bD be nonzero integers such that either bi = ai or
bi = aiγ , for each 1 ≤ i ≤ D, and |{i : bi = aiγ, 1 ≤ i ≤ D}| = r ≥ 2. Let S be
a D-dimensional shape and 	 be a lattice tiling for S whose generator matrix
is given by ⎡

⎢⎢⎢⎢⎣
b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...

0 0 . . . bD

⎤
⎥⎥⎥⎥⎦ .

Then, there is no direction δ for which the triple (	,S, δ) defines a folding.

Proof. Let δ = (d1, d2, . . . , dD) be any direction and let σ = γ
∏D

i=1 ai . Then,
σ < |S| = ∏D

i=1 bi = γ r
∏D

i=1 ai = γ r−1σ and for any given shape S for which
	 is a lattice tiling we have

(σ · d1, σ · d2, . . . , σ · dD) − c(σ · d1, σ · d2, . . . , σ · dD) = (0,0, . . . ,0).

Hence, by Lemma 10.10, the triple (	,S, δ) does not define a folding.

The motivation for the generalization of the folding operation came from the
design of two-dimensional synchronization patterns. Given a grid and a shape S
on the grid, we would like to find what is the largest set � of dots on grid points,
where |�| = m, located in S , such that all the

(
m
2

)
lines connecting dots in �

are distinct in their length or in their slope. Such a shape S with dots is a DDC.
In the application of these patterns to the design of KPS for WSNs various
shapes might be required. This application requires in some cases to consider
these shapes in the other grid, e.g., the hexagonal grid. F3 can be used for this
application to form a DDC whose shape is a rectangle rotated at 45 degrees on
the square grid (see Fig. 10.5).

We will generalize some of the definitions given for DDCs in two-
dimensional arrays for multi-dimensional arrays. The associated results (lem-
mas and theorems) are also generalized, but most of them will not be
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stated. Let A be a (generally infinite) D-dimensional array of dots in Z
D ,

and let η1, η2, . . . , ηD be positive integers. We say that A is multi-periodic
with period (η1, η2, . . . , ηD) if A(i1, i2, . . . , iD) = A(i1 + η1, i2, . . . , iD) =
A(i1, i2 + η2, . . . , iD) = · · · = A(i1, i2, . . . , iD + ηD). We define the density of
A to be d/(
D

j=1ηj ), where d is the number of dots in any η1 × η2 × · · · × ηD

sub-array of A. Note that the period (η1, η2, . . . , ηD) might not be unique, but
that the density of A does not depend on the period we choose. We say that
a multi-periodic array A of dots is a multi-periodic n1 × n2 × · · ·nD DDC if
every n1 × n2 × · · ·nD sub-array of A is a DDC.

We write (i1, i2, . . . , iD)+S for the shifted copy {(i1+i′1, i2+i′2, . . . , iD+i′D) :
(i′1, i′2, . . . , i′D) ∈ S} of S . We say that a multi-periodic array A is a multi-
periodic S-DDC if the dots contained in every shift (i1, i2, . . . , iD) + S of S
form a DDC.

Let S and S ′ be D-dimensional shapes in a grid. We will denote by �(S,S ′)
the largest intersection between S and S ′ in all possible shifts. Bounds on the
number of dots in a DDC with a given shape are based on the following result.

Theorem 10.7. Assume we are given a multi-periodic S-DDC array A with
density μ. Let Q be another shape on Z

D . Then, there exists a copy of Q on Z
D

with at least �μ · �(S,Q)� dots.

Proof. Let Q′ be the shape such that Q′ = S ∩ Q and |Q′| = �(S,Q). By
Lemma 10.5 we have that A is a multi-periodic Q′-DDC. By Theorem 9.19,
there exists a set of at least

⌈
μ|Q′|⌉ dots contained in S that form a DDC. Thus

there exists a copy of Q on Z
D with at least �μ · �(S,Q)� dots.

To apply Theorem 10.7 we will use folding of the sequences defined as
follows. Let A be an Abelian group, and let B = {b1, b2, . . . , bm} ⊆ A be a se-
quence of m distinct elements of A. We say that B is a B2-sequence over A if
all the sums ai1 + ai2 with 1 ≤ i1 ≤ i2 ≤ m are distinct.

Lemma 10.16. A subset B = {a1, a2, . . . , am} ⊆ A is a B2-sequence over A if
and only if all the differences ai1 − ai2 with 1 ≤ i1 �= i2 ≤ m are distinct in A.

Proof. Assume first that B is a B2-sequence. Assume, on the contrary, that there
exists four elements α1, α2, α3, α4 in B such that

α4 − α3 = α2 − α1

in A, where α4 �= α2 and also α4 �= α3. This immediately implies that

α4 + α1 = α2 + α3,

a contradiction and hence all the differences are distinct in A.
Assume now that all the differences ai1 −ai2 of distinct elements in B are dis-

tinct in A. Assume, on the contrary, that there exist four elements α1, α2, α3, α4
in B such that

α1 + α2 = α3 + α4
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in A, where {α1, α2} �= {α3, α4}. This immediately implies that

α4 − α1 = α2 − α3,

a contradiction and hence B is a B2-sequences.

Note that Lemma 10.16 implies that if A is a (v,m,1)-difference set, then it
is also a B2-sequences, but the converse is not true.

Note that if B is a B2-sequence over Zn and t, r ∈ Zn, then so are the
t-shift t + B = {t + b : b ∈ B} and the r-decimation r · B = {rb : b ∈ B}.
The following theorem shows that large B2-sequences over Zn exist for many
values of n.

Theorem 10.8. Let q be a prime power. Then, there exists a B2-sequence
a1, a2, . . . , am over Zn, where n = q2 − 1 and m = q.

Proof. Let α be a primitive element in Fq2 and Fq its subfield. Define the set

B � {r : r ∈ Zn, αr − α ∈ Fq}.
We claim that B is a B2-sequence of size q in Zn, where n = q2 − 1. Clearly,
the set {β − α : β ∈ Fq2} contains exactly all the elements of Fq2 including
the q elements of Fq . Moreover, 0 − α = −α /∈ Fq and hence B contains q

elements. Now, let B = {r1, r2, . . . , rq} and αri − α = βi , where βi ∈ Fq for
1 ≤ i ≤ q. Clearly, the set {βi : 1 ≤ i ≤ q} contains q elements.

Assume, on the contrary, that B is not a B2 sequence over Zq2−1. This im-
plies that there exists in B two disjoint pairs, which can be taken w.l.o.g. as
{r1, r2} and {r3, r4}, such that

r1 + r2 ≡ r3 + r4 (mod q2 − 1).

Hence, we have that

αr1αr2 = αr3αr4

and therefore

(α + β1)(α + β2) = (α + β3)(α + β4). (10.2)

Eq. (10.2) is equivalent to

α(β1 + β2) + β1β2 = α(β3 + β4) + β3β4

and hence

α(β1 + β2 − β3 − β4) = β3β4 − β1β2. (10.3)

Assume now that the two sides of Eq. (10.3) are equal to zero. This implies that

β1 + β2 = β3 + β4 and β1β2 = β3β4
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and as a consequence

β3β4 = β1(β3 + β4 − β1),

which is equivalent to

β1(β1 − β3) = β4(β1 − β3)

and since all the βis are distinct this implies that β1 −β3 �= 0 and hence β1 = β4,
a contradiction. Hence, the two sides of (10.3) are not equal to zero.

Since βi ∈ Fq for 1 ≤ i ≤ 4, it follows that β3β4 − β1β2 ∈ Fq and
β1 + β2 − β3 − β4 ∈ Fq . Moreover, α ∈ Fq2 \ Fq and hence

α(β1 + β2 − β3 − β4) ∈ Fq2 \ Fq .

Therefore the left side of (10.3) is an element in Fq2 \ Fq while the right side
of (10.3) is an element in Fq , a contradiction.

Thus B is a B2-sequence.

Now, we will describe how we apply folding to obtain a DDC with a
shape S and a multi-periodic S-DDC. Let 	 be a lattice tiling for S and let
δ = (d1, d2, . . . , dD) be a direction such that (	,S, δ) defines a folding. We as-
sign an integer from Zn, n = |S|, to each point of Z

D . The lattice coloring
C(	, δ) is defined as follows. We assign 0 to the point (0,0, . . . ,0) and 1 to the
next element of the folded-row and so on until |S|− 1 is assigned to the last ele-
ment of the folded-row. This completes the coloring of the points in the shape S
whose center is at the origin. To position (i1, i2, . . . , iD) we assign the color of
position (i1, i2, . . . , iD)− c(i1, i2, . . . , iD). The color of position (i1, i2, . . . , iD)

will be denoted by C(i1, i2, . . . , iD).
The folding of the sequence B = b0b1 . . . bn−1 into an array colored by the

elements of Zn is defined by assigning the value bi to all the points of the array
colored with the color i. If the coloring was defined by the order of the folded-
row as described in this section, we say that the array is defined by (	,S, δ,B).
Note that we use the same notation for folding the sequence B into the shape S .
The one to which we refer should be understood from the context.

Given a point (i1, i2, . . . , iD) ∈ Z
D , we say that the set of points

{(i1 + � · d1, i2 + � · d2, . . . , iD + � · dD) : � ∈ Z}

is a row of Z
D defined by δ = (d1, d2, . . . , dD). This is also the row of

(i1, i2, . . . , iD) defined by δ.

Lemma 10.17. If the triple (	,S, δ) defines a folding, then in any folded-row
of ZD defined by δ there are lattice points.
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Proof. Given a point (i1, i2, . . . , iD) and its color C(i1, i2, . . . , iD), then by the
definitions of the folding and the coloring we have that

C(i1 + d1, i2 + d2, . . . , iD + dD) ≡ C(i1, i2, . . . , iD) + 1 (mod |S|).
Hence, the folded-row defined by δ has all the values between 0 and |S| − 1
in their natural order modulo |S|. Therefore any folded-row defined by δ has
lattice points (which are exactly the points of ZD , in this folded-row, which are
colored with zeros).

Corollary 10.8. If (i1, i2, . . . , iD), (i1 +e1, i2 +e2, . . . , iD +eD), (j1, j2, . . . , jD),
and (j1 + e1, j2 + e2, . . . , jD + eD) are four points of ZD , then

C(i1 + e1, i2 + e2, . . . , iD + eD) − C(i1, i2, . . . , iD)

≡ C(j1 + e1, j2 + e2, . . . , jD + eD) − C(j1, j2, . . . , jD) (mod |S|).
Proof. By Lemma 10.17 to each one of these four points there exists a lattice
point in its folded-row defined by δ. Let

• P1 = (i1 + α1 · d1, i2 + α1 · d2, . . . , iD + α1 · dD) be the lattice point in the
folded-row of (i1, i2, . . . , iD);

• P2 = (j1 + α2 · d1, j2 + α2 · d2, . . . , jD + α2 · dD) be the lattice point in the
folded-row of (j1, j2, . . . , jD);

• P3 = ((i1 + e1) + α3 · d1, (i2 + e2) + α3 · d2, . . . , (iD + eD) + α3 · dD) be the
lattice point in the folded-row of (i1 + e1, i2 + e2, . . . , iD + eD).

Therefore by the linearity of the lattice P4 = P2 +P3 −P1 = ((j1 + e1)+ (α2 +
α3 −α1) ·d1, (j2 +e2)+(α2 +α3 −α1) ·d2, . . . , (jD +eD)+(α2 +α3 −α1) ·dD)

is also a lattice point. P4 is a lattice point in the folded-row, defined by δ, of
(j1 + e1, j2 + e2, . . . , jD + eD). All these four points are colored with zeroes.
Hence,

C(i1, i2, . . . , iD) ≡ −α1 (mod |S|),
C(i1 + e1, i2 + e2, . . . , iD + eD) ≡ −α3 (mod |S|),

C(j1, j2, . . . , jD) ≡ −α2 (mod |S|),
C(j1 + e1, j2 + e2, . . . , jD + eD) ≡ −(α2 + α3 − α1) (mod |S|).

Now, the claim of the corollary is readily verified.

Corollary 10.9. If δ′ is an integer vector of length D, then there exists
an integer e(δ′) such that for any given point P = (i1, i2, . . . , iD) we have
C(P + δ′) ≡ C(P ) + e(δ′) (mod |S|).
Corollary 10.10. If the triple (	,S, δ) defines a folding and B is a B2-sequence
over Zn, where n = |S|, then the array A defined by (	,S, δ,B) is multi-
periodic.
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Proof. Clearly, the array has period (|S|, |S|, . . . , |S|) and the claim fol-
lows.

Theorem 10.9. If the triple (	,S, δ) defines a folding and B is a B2-sequence
over Zn, where n = |S|, then the pattern of dots defined by (	,S, δ,B) is a
multi-periodic S-DDC.

Proof. By Corollary 10.10 the constructed array is multi-periodic.
Since (	,S, δ) defines a folding it follows that the |S| colors inside the

shape S centered at the origin are all distinct. By Corollary 10.8, for the four
positions (i1, i2, . . . , iD), (i1 + e1, i2 + e2, . . . , iD + eD), (j1, j2, . . . , jD), and
(j1 + e1, j2 + e2, . . . , jD + eD), associated with two pairs of equal vectors, we
have that

C(i1 + e1, i2 + e2, . . . , iD + eD) − C(i1, i2, . . . , iD)

≡ C(j1 + e1, j2 + e2, . . . , jD + eD) − C(j1, j2, . . . , jD) (mod |S|).
Since the dots are distributed by the B2-sequence B, it follows that at most
three of these integers (colors) are contained in B. This implies that if these four
points are contained in the same copy of S on the grid, then at most three of
these points have dots. Thus any shape S on Z

D will define a DDC and the
theorem follows.

Corollary 10.11. If the triple (	,S, δ) defines a folding and B is a B2-sequence
over Zn, where n = |S|, then the pattern of dots defined by (	,S, δ,B) is a
DDC.

Note that the difference between Theorem 10.9 and Corollary 10.11 is re-
lated to the folding of B into Z

D and the folding of B into S , respectively.

Lemma 10.18. If (	,S, δ) defines a folding then the |S| colors inside any copy
of S on Z

D are all distinct.

Proof. Let S1 and S2 be two distinct copies of S on Z
D . Clearly, we have that

S2 = (e1, . . . , eD) + S1. By Corollary 10.8, we have the following equality for
each two points (i1, . . . , iD), (j1, . . . , jD) ∈ S1,

C(i1 + e1, . . . , iD + eD) − C(i1, . . . , iD)

≡ C(j1 + e1, . . . , jD + eD) − C(j1, . . . , jD) (mod |S|).
Therefore if S1 contains |S| distinct colors then also S2 contains |S| distinct
colors. The lemma follows now from the fact that (	,S, δ) defines a folding
and therefore all the colors in the shape S whose center is at the origin are
distinct.

Now, we will present some lower bounds on the number of dots in some
two-dimensional DDCs with specific shapes. In the following, we will use The-
orems 10.7 and 10.9, and Corollary 10.11 to form DDCs with various given
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shapes and a large number of dots. To examine how good the lower bounds on
the number of dots, in a DDC whose shape is Q, we should know what is the up-
per bound on the number of dots in a DDC whose shape is Q. By Theorem 9.22,
we have that for a DDC whose shape is a regular polygon or a circle, an upper
bound on the number of dots is at most

√
s + o(

√
s), where the shape contains s

points of Z2 and s → ∞. One of the main keys of our constructions, and the us-
age of the given theory, is the ability to produce a multi-periodic S-DDC, where
S is a rectangle, the ratio between its sides is close as much as we want to any
given number γ , and if its area is s, then the number of dots in it is

√
s + 1.

For the next theorem it will be required to use Theorems 1.5 and 1.25 (Euler
Theorem and Dirichlet Theorem, respectively).

Theorem 10.10. For each positive number γ and any ε > 0, there exist two
integers n1 and n2 such that γ ≤ n1

n2
< γ + ε and a multi-periodic S-DDC with√

a · bR + o(R) dots, where S is an n1 × n2 = (aR + o(R)) × (bR + o(R))

rectangle, n1n2 = p2 − 1 for some prime p, and n1 is an even integer.

Proof. Given a positive number γ and an ε > 0, it is easy to verify that there
exist two integers α and β such that

√
γ ≤ β

α
<

√
γ + ε and g.c.d.(α,β) = 2. By

Theorem 1.5, there exist two integers cα , cβ such that either cαα + 2 = cββ > 0
or cββ + 2 = cαα > 0.

Assume cαα + 2 = cββ > 0 (the case where cββ + 2 = cαα > 0 is handled
similarly). Any factor of α cannot divide cαα + 1. Since β divides cαα + 2, it
follows that a factor of β cannot divide cαα+1. Hence, g.c.d.(αβ, cαα+1) = 1.
Therefore by Theorem 1.25 there exist infinitely many primes in the sequence
αβR + cαα + 1, R = 1,2, . . . .

Let p be a prime number of the form αβR + cαα + 1. Now,

p2 − 1 = (p + 1)(p − 1)

= (αβR + cαα + 2)(αβR + cαα)

= (αβR + cββ)(αβR + cαα) = (α2R + αcβ)(β2R + βcα).

Thus a (β2R +βcα)× (α2R +αcβ) rectangle satisfies the size requirements for
the n1 × n2 rectangle of the theorem.

Let a = β2, b = α2, n1= β2R+βcα (n1 is even as required), n2 = α2R+αcβ ,
and let S be an n1 × n2 rectangle. Let 	 be the lattice tiling for S with the gen-
erator matrix

G =
[

n2
n1
2 + θ

0 n1

]
,

where θ = 1 if n1 ≡ 0 (mod 4) and θ = 2 if n1 ≡ 2 (mod 4). By Corollary 10.5,
we have that (	,S, δ), where δ = (+1,0), defines a folding.

The existence of a multi-periodic S-DDC with
√

a · bR + o(R) dots follows
now from Theorems 10.8 and 10.9.
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FIGURE 10.6 From a rectangle to a quasi-regular hexagon with the same lattice tiling.

The next key structure is a certain family of hexagons that are defined next.
We consider hexagons with three disjoint pairs of parallel sides. If the four an-
gles of two parallel sides (called the bases of the hexagon) are equal and the four
other sides are equal, then the hexagon will be called a quasi-regular hexagon
and will be denoted by QRH(w,b,h), where b is the length of a base, h is the
distance between the two bases, and b + 2w is the length between the two ver-
tices not on the bases. We will call the line that connects these two vertices, the
diameter of the hexagon (even if it might not be the longest line between two
points of the hexagon). A quasi-regular hexagon will be the shape that will have
the role of S when we apply Theorem 10.7 to obtain a lower bound on the num-
ber of dots in a shape Q that will be either a regular polygon or a circle. In the
following, we will say that β

α
≈ γ , when we mean that γ ≤ β

α
< γ + ε.

The goal now is to show that there exists a QRH(w,b,h) with approximately√
(b + w)h + o(

√
(b + w)h) dots. By Theorem 10.10, there exists a doubly pe-

riodic S-DCC, where S is an n1 ×n2 = (αR + o(R))× (βR + o(R)) rectangle,
such that n2

n1
≈ b+w

h
, n1n2 = p2 − 1 for some prime p, and n1 is an even integer.

The lattice 	 of Theorem 10.10 is also a lattice tiling for a shape S ′, where S ′ is
a QRH(w,b,h) (part of this lattice tiling is depicted in Fig. 10.6). By Corol-
lary 10.5, (	,S, δ), where δ = (+1,0), defines a folding for this shape too.
Hence, we obtain a doubly periodic S ′-DCC, where S ′ is a QRH(w,b,h) with
approximately

√
(b + w)h + o(

√
(b + w)h) dots. This construction implies the

following theorem.

Theorem 10.11. If R → ∞ then there exists a regular hexagon with sides of

length R and approximately
√

3
√

3√
2

R + o(R) dots.

Now, we can give a few examples of other specific shapes, mostly, regular
polygons. To have some comparison between the bounds for various shapes we
will assume that the radius of the circle or the regular polygons is R (the radius
is the distance from the center of the regular polygon to any one its vertices).
We also define the packing ratio as the ratio between the lower and the upper
bounds on the number of dots, which will be obtained. The shape S that we use
will always be a multi-periodic S-DDC on a multi-periodic array A.



Two-dimensional applications Chapter | 10 357

FIGURE 10.7 Intersection between a circle and a regular hexagon.

For a circle, we apply Theorem 10.7 with a multi-periodic S-DDC A, where
S is a regular hexagon with radius ρ and Q is a circle with radius R, shar-
ing the same center. By Theorem 9.22, the upper bound on the number of dots
in Q is

√
πR + o(R). By Theorem 10.10, a lower bound on the number of

dots in S is approximately
√

3
√

3√
2

ρ + o(ρ) and hence the density of A is ap-

proximately
√

2√
3
√

3ρ
. Let α be the angle between two radius lines to the two

intersection points of the hexagon and the circle on one edge of the hexagon.
The regular hexagon S and the circle Q are depicted in Fig. 10.7. We have that

�(S,Q) = (π − 3α + 3 sinα)R2 and ρ = cos α
2

cos π
6
R. Thus a lower bound on the

number of dots in Q is
√

3
√

3ρ+o(ρ)√
2|S| �(S,Q). The maximum is obtained when

α = 0.536267, yielding a lower bound of 1.70813R + o(R) on the number of
dots in Q and a packing ratio of 0.9637.

We must note again that although this construction works for infinitely many
values of R, the density for these values is quite low. This is a consequence of
Theorem 10.10 that can be applied for an arbitrary ratio γ only when the corre-
sponding integers obtained by Dirichlet’s Theorem are primes. Of course, many
possible ratios between the sides of the rectangle can be obtained for infinitely
many values. A simple example is that for any factorization of p2 − 1 = n1n2
we can form an n1 × n2 DDC and from it, we can form related quasi-regular
hexagons. We are not going to describe in detail how to obtain all these bounds
that hold asymptotically for any given R.

For regular polygons with a small number of sides, we have to use spe-
cific constructions. We consider for example a regular pentagon. Let Q be a
pentagon with radius R. The area of Q is 5

2 sin 2π
5 R2 and, hence, by Theo-

rem 9.22, an upper bound on the number of dots in Q is 1.54196R + o(R).
Let S be a quasi-perfect hexagon having a joint base with Q and two short
overlapping sides with Q, where these sides are connected to this base (see
Fig. 10.8). The distance between the base and the diameter of S is aR,

2 sin π
10 cos 3π

10 < a ≤
(

1 + sin 3π
10

)
/2. The length of the base is 2R sin π

5 and

the length of the diameter of S is 2R sin π
5 + 2aR tan π

10 . Hence, the area of S
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FIGURE 10.8 Quasi-regular hexagon intersecting a regular pentagon.

is
(
4 sin π

5 + 2a tan π
10

)
aR2 and the density of the array is 1√

4a sin π
5 +2a2 tan π

10 R
.

The area of the intersection between Q and S , �(S,Q), is computed by sub-
tracting from the area of S the area of the two isosceles triangles σ1 and σ2. The
lower bound on the number of dots is 1√

4a sin π
5 +2a2 tan π

10 R
�(S,Q). The maxi-

mum on this lower bound is obtained for a = 0.814853, i.e., the lower bound on
the number of dots in a pentagon whose radius R is 1.45992R + o(R), yielding
a packing ratio of 0.946795.

For some constructions, we need DDCs, which might need S-DDCs of other
shapes. If the number of sides in the polygon is large we will use Theorem 10.7,
where Q will be the regular polygon and S is a regular hexagon (for a small
number of sides quasi-regular hexagons will be used). A computer program was
developed to compute the packing ratios, some of which can be also obtained
by mathematical methods. Table 10.1 presents the results.

TABLE 10.1 The number of dots in an n-gon DDC.

n upper bound lower bound packing ratio

3 1.13975R 1.02462R 0.899

4 1.41421R 1.41421R 1

5 1.54196R 1.45992R 0.946795

6 1.61185R ≈1.61185R ≈1

7 1.65421R 1.58844R 0.960241

8 1.68179R 1.62625R 0.966977

9 1.70075R 1.63672R 0.96235

10 1.71433R 1.65141R 0.963297

60 1.77083R 1.70658R 0.963718

96 1.77182R 1.70752R 0.96371

circle 1.77245R 1.70813R 0.963708



Two-dimensional applications Chapter | 10 359

10.4 Notes

There are more applications for two-dimensional arrays besides those presented
and discussed in this chapter. For example, perfect maps were used in pat-
tern recognition for structured light systems, as described in Geng [19], Lin,
Nie, and Song [26], Morano, Ozturk, Conn, Dubin, Zietz, and Nissanov [33],
Salvi, Fernandez, Pribanic, and Llado [39], and Salvi, Pagès, and Batlle [40],
in transferring planar surface into a sensitive touch-screen display, see Dai
and Chung [14]. They are also used in camera localization, as described by
Szentandrasi, Zachariás̆, Havel, Herout, Dubska, and Kajan [45], in one-shot
shape acquisition, see Pagès, Salvi, Collewet, and Forest [35], in surface mea-
surements, see Kiyasu, Hoshino, Yano, and Fujimura [23] and Spoelder, Vos,
Petriu, and Groen [43], and in coded aperture imaging, see Gottesman and Fen-
imore [21]. Patterns with distinct differences were used, for example, in radar,
sonar, physical alignment, and time–position synchronization, see Golomb and
Taylor [20].

Section 10.1. It is quite obvious why there are many applications for an instru-
ment that provides your location in the area. However, sometimes the inherent
accumulating error in relative self-location methods, or some other reasons,
make them infeasible or unfit for certain applications, where we would want the
capability to obtain instant and accurate absolute self-location. Given several
visible landmarks of known locations, a mobile robot could calculate its posi-
tion through a triangulation, as in Cohen and Koss [12]. Alternatively, cleverly
designed space fiducials (e.g., see Bruckstein, Holt, Huang, and Netravali [9]),
whose appearance changes with the angle of observation can also serve for self-
location.

Much like street signs for people, there are absolute self-location methods
that provide sufficient local information to the device sensors, such that absolute
positioning can be attained. Specifically, planar patterns have been suggested,
where a small local sample from anywhere in the pattern provides sufficient
information for decoding the absolute position. A naive example could consist
of a floor filled with densely packed miniature markings, in which the exact
coordinates are inscribed inside each marking. Of course, that would require a
high sensor resolution and character-recognition capabilities. Indeed, there are
much more efficient methods, which do with considerably less geometric detail
in the pattern. Some commercial products have been utilizing this approach,
e.g., a pen with a small imaging device in its tip, writing on paper with a special
pattern printed on it, which allows full tracking of the pen’s position at any time.

A classic method for absolute self-location in one dimension is the use of
span n de Bruijn sequences. Sampling n consecutive letters somewhere in the
sequence is sufficient for perfect positioning of the sampled subsequence within
the sequence. Perfect maps and shortened perfect maps can serve as the basis for
absolute self-location on the plane. We note also that M-sequences can be used
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for robust one-dimensional location by using their error-correction properties,
as analyzed by Kumar and Wei [24].

Product constructions such as the one used in this section were used to
construct various types of two-dimensional arrays for error correction of two-
dimensional shapes. For example, similar and more sophisticated product con-
structions to generate arrays with low redundancy and effective two-dimensional
error-correction capabilities, were suggested in various papers, e.g., see Breit-
bach, Bossert, Zyablov, and Sidorenko [3], and Etzion and Yaakobi [17].

As was discussed in Chapter 4, the classic approach of creating one span n

de Bruijn sequence, requires O(n) space and O(n · 2n) time to generate the
whole sequence S . If the running time is an issue, one could create and store in
advance a look-up table that lists the locations of all subsequences. This yields
O(n) time complexity, but requires O(n · 2n) space for the table. For larger n,
a more flexible tradeoff between time and space complexity was suggested by
Petriu [36]. A partial look-up table of evenly spaced locations called milestones
is created in advance. During runtime, the algorithm that generates the sequence
is initialized with the query subsequence and then iterated until one of the mile-
stones is encountered. For example, this can yield O(n · 2

n
2 ) time complexity

and will require O(n · 2
n
2 ) space for the table.

In either case, implementation of the self-location process using modern
computer systems is feasible, at least for reasonable and practical values of n,
depending on the application. Take n = 16 for a concrete example. It allows a
definition of 216 locations, e.g., a resolution of 0.1mm over a range of about
6.5 meters. In the first approach, it would take, in the worst case, about 65k sim-
ple iterations (on a 16-bit register), which can be performed reasonably quickly
on current modest embedded processors currently clocked at about tens or hun-
dreds of Megahertz. In the second approach, the look-up table would consume
about 128k bytes (each entry being a two-byte word), which is, again, a quite
modest requirement given today’s memory capabilities.

There are some more efficient methods to generate de Bruijn sequences, e.g.,
see Mitchell, Etzion, and Paterson [30] that can be used in the case of an appli-
cation in which k and n are much larger. The problem of decoding perfect maps
was considered, for example, in Mitchell and Paterson [31]. A comprehensive
survey on this topic was given by Burns and Mitchell [10].

Self-location was considered in many papers. One-dimensional self-location
was analyzed in Kumar and Wei [24], and Wang, Hu, and Shayevitz [49]. Find-
ing a robot location using de Bruijn sequences and discrete optical sensors
was considered by Scheinerman [41]. The material in this section on two-
dimensional self-location was taken from Bruckstein, Etzion, Giryes, Gordon,
Holt, and Shuldiner [8]. This work described in the section was followed by
more papers, e.g., see Berkowitz and Kopparty [1], Chee, Dao, Kiah, Ling, and
Wei [11], Horan and Stevens [22], Mitchell and Wild [32], and Wei [50].
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Section 10.2. The material in this section is taken from the papers by Blackburn,
Etzion, Martin, and Paterson [4–6].

Wireless sensors are small, battery-powered devices with the ability to take
measurements of quantities such as temperature or pressure and to engage in
wireless communication. When a collection of sensors is deployed the sensors
can communicate with each other and thus form an ad hoc network, known as
a WSN, to facilitate the transmission and manipulation of data by the sensors.
Such networks have a wide range of potential applications, including wildlife
monitoring or pollution detection. Examples of how they have been used in
practice are described in Römer and Mattern [38].

Much of the literature on key predistribution in wireless sensor networks
deals with the case where the physical topology of the network is completely
unknown before deployment, e.g., see Delgosha and Fekri [18], Lee and Stin-
son [25], and Liu, Ning, and Li [27]. There are several examples of location-
based schemes, but in many cases, the networks consist of randomly distributed
nodes whose approximate location is known. Martin and Paterson [29] indicated
types of networks that have been considered in the WSN key-predistribution lit-
erature and suggested that there is considerable scope for the development of
schemes suited to specific network topologies, in situations where the topology
is known before sensor deployment. The application in this section provides a
solution for these scenarios.

Section 10.3. The idea of folding a one-dimensional code into a two-dimensional
array is well known in coding theory, e.g., see Etzion and Yaakobi [17]. Fold-
ings to construct pseudo-random arrays were carried out in MacWilliams and
Sloane [28]. The material of this section is due to the work by Etzion [15].

F1 was used by MacWilliams and Sloane [28] to form the pseudo-random
arrays presented in Section 9.3. Another construction of pseudo-random arrays
based on F2 was presented by Spann [44]. F2 was also used by Robinson [37]
to fold a one-dimensional ruler into a two-dimensional Golomb rectangle. The
generalization to higher dimensions is straightforward. F3 was used in Black-
burn, Etzion, Martin, and Paterson [5] to obtain some synchronization patterns
in Z

D .
There is a large variety of literature about tiling and lattices. We will refer

the reader to two of the most interesting and comprehensive books written by
Conway and Sloane [13], and by Stein and Szabó [42].

Lattice is a very fundamental structure in various coding problems, e.g., see
Tarokh, Vardy, and Zeger [46], Urbanke and Rimoldi [47], and Viterbo and
Boutros [48]. This is a small sample that is not meant to be representative. Lat-
tices are also applied in multi-dimensional coding, e.g., see Blaum, Bruck, and
Vardy [2], and Etzion and Vardy [16]. These papers exhibit an application of
lattices for multi-dimensional coding and discrete geometry problems.
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Let 	 be a D-dimensional lattice tiling for the shape S . Let G be the follow-
ing generator matrix of 	:

G =

⎡
⎢⎢⎢⎣

v11 v12 . . . v1D

v21 v22 . . . v2D

...
...

. . .
...

vD1 vD2 . . . vDD

⎤
⎥⎥⎥⎦ .

Given the direction δ = (d1, d2, . . . , dD), w.l.o.g. we assume that the first
� values of δ are nonzeros and the last D − � values are zeros. By Lemma 10.10
and Corollary 10.4, if (	,S, δ) defines a folding, then there exist D integer
coefficients α1, α2, . . . , αD such that

D∑
j=1

αj (vj1, vj2, . . . , vjD) = (|S|d1, . . . , |S|d�,0, . . . ,0)

and there is no integer i, 0 < i < |S|, and D integer coefficients β1, β2, . . . , βD

such that

D∑
j=1

βj (vj1, vj2, . . . , vjD) = (i · d1, . . . , i · d�,0, . . . ,0).

Hence, we have the following D equations:

D∑
j=1

αjvjr = |S| · dr , 1 ≤ r ≤ �, (10.4)

D∑
j=1

αjvjr = 0, � + 1 ≤ r ≤ D. (10.5)

Let τ = d1 if � = 1 and let τ = g.c.d.(d1, d2, . . . , d�) if � > 1. The D equations
defined in Eqs. (10.4) and (10.5) are equivalent to the following D equations:

∑D
j=1 αjvj1 = |S| · d1,∑D

j=1 αj
d1vjr−drvj1

τ
= 0, 2 ≤ r ≤ �,∑D

j=1 αjvjr = 0, � + 1 ≤ r ≤ D.

The analysis leads to the following theorem proved by Etzion [15].

Theorem 10.12. If 	 is a lattice tiling for the shape S , then the triple (	,S, δ)

defines a folding if and only if g.c.d.(α1
τ

, α2
τ

, . . . , αD

τ
) = 1 and g.c.d.(τ, |S|) = 1

(for this purpose g.c.d.(a,0) = 0).
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The hexagonal grid considered in Section 9.6 can be more practical for many
applications. For example, to simulate pixels in computers, the pixels that are
circles, are compressed better in the hexagonal grid. Moreover, it was proved
by Etzion [15] that the packing ratio for regular hexagons is asymptotically 1
as the packing ratio for squares (see Table 10.1). Therefore DDCs in this model
are very interesting. DDCs in this model and their constructions by folding were
considered by Etzion [15].

Finally, for a survey on B2-sequences and their generalizations, the reader
is referred to the work of O’Bryant [34]. The construction of B2-sequences in
Theorem 10.8 is due to Bose [7].
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Chapter 11

Unique path property graphs
Properties, constructions, cycles, and factors

A graph with the unique path property is a digraph in which there is a unique
directed path of a given length n from each vertex u to each vertex v. By
Lemma 1.15 such unique paths exist in Gσ,n for each σ ≥ 2 and n ≥ 1. In this
chapter, we examine the existence of other graphs with this property, check their
other properties, construct a large set of these graphs, and examine whether their
factors have some resemblance to state diagrams of FSRns. In the next chapter,
these graphs will be considered as interconnection networks for parallel compu-
tation.

In Section 11.1 we will show the representation of such a graph by its adja-
cency matrix and use this representation to prove that for some integer σ > 1,
such a graph has σn vertices, σ self-loops, and the same in-degree and out-
degree σ for all the vertices. This implies that problems on such graphs are
equivalent to related problems on the associated matrices. We then consider only
graphs for which σ = 2. We present an efficient algorithm that decides whether
two such graphs are isomorphic and we consider properties that are common to
the structure of all such graphs. We define the concept of an alternating cycle
that plays an important role in these graphs.

In Section 11.2 we consider constructions of large sets of graphs with the
unique path property. The constructions are based on removing some edges
from Gn and adding other edges that are not contained in Gn. We enumerate
the number of non-isomorphic graphs obtained by some of the proposed con-
structions.

In Section 11.3 we show that surprisingly the exact number of factors in
a graph with the unique path property depends on the number of alternating
cycles in the graph that for itself can be easily computed. Moreover, if all the
alternating cycles in the graph are of length four, then the factors are similar to
those of an FSRn, associated functions can be defined, and similar properties to
those of the feedback function of an FSRn are demonstrated.

11.1 Basic properties of UPP graphs

A directed graph G = (V ,E) is called a graph with the unique path property
(a UPP graph, in short) of order n, if for every two vertices (not necessarily
distinct) u,v ∈ V there exists a unique directed path of length n from u to v.
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Recall that if G = (V ,E) is a directed graph with an adjacency matrix A, then
by Lemma 1.14 we have that A�(u, v) is the number of distinct directed paths
of length � from u to v. This implies that A is the adjacency matrix of a UPP
graph of order n if and only if An = J , where J is the all-ones matrix. We want
to prove now that the definition of a UPP graph of order n implies the number of
vertices in the graph, the in-degree and the out-degree of each vertex, and also
the number of self-loops in the graph.

Lemma 11.1. If A is a t × t binary matrix for which An = J , then all the rows
and all the columns of A have the same number of ones.

Proof. Assume that the row with the most number of ones in A has σ ones in
columns p1,p2, . . . , pσ . Consider the product A · An−1 = J and such a row k

with σ ones in columns p1,p2, . . . , pσ . Since A ·An−1 = J has exactly one one
in each entry of the kth row, it follows that each column of An−1 has exactly
one one in exactly one of the rows p1,p2, . . . , pσ , i.e., these rows in An−1 have
ones in distinct columns and a total of t ones in all these rows since An−1 has
exactly t columns.

Consider the product An−1 · A = J . Rows p1,p2, . . . , pσ in An−1 are re-
sponsible for the ones in σ rows of J that in total have σ t ones. Since rows
p1,p2, . . . , pσ in An−1 have ones in distinct columns and each column in these
rows of An−1 has exactly one one, it follows from An−1 · A = J that A has ex-
actly σ t ones (each entry in A is multiplied exactly once by a one from one of
these σ rows of An−1). Since no row has more than σ ones, it follows that each
row of A has exactly σ ones.

By symmetric arguments, we have that each column of A has exactly σ ones.

Corollary 11.1. If G = (V ,E) is a UPP graph of order n, then the in-degree
and the out-degree of each vertex is the same integer σ .

Lemma 11.2. If G = (V ,E) is a UPP graph of order n with t vertices, where
each vertex has in-degree σ and out-degree σ , then t = σn.

Proof. Let G = (V ,E) be a UPP graph of order n with t vertices, where each
vertex has in-degree σ and out-degree σ . Let v be a vertex in V . Since each
vertex has the same out-degree σ , it follows that there are σn distinct directed
paths of length n starting at v. Since there exists exactly one directed path of
length n from v to each vertex of V , it follows that each such path ends in a
distinct vertex. Hence, the total number of vertices in V is σn.

The following lemma is required for the proof that in a UPP graph with
σn vertices, there are σ self-loops.

Lemma 11.3. An edge e is a self-loop edge in a directed graph G=(V ,E) if and
only if the vertex e is a self-loop vertex in the line graph L(G)=(V ′=E,E′).
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Proof. If e ∈ E is a self-loop edge in the directed graph G = (V ,E), then by
the definition of the line graph the vertex e ∈ V ′ is a self-loop vertex in the line
graph L(G).

Assume now that e ∈ V ′ = E is a self-loop vertex in the line graph L(G).
Clearly, e = (u1, v) is an edge in G. Since e is a self-loop vertex in L(G), it
follows by definition that there exists in G a path of length two with the two
consecutive edges e = (u1, v) and e = (v,u1). However, since e is a self-loop
vertex in L(G), it follows that u1 = v and hence e = (v, v) is a self-loop edge
in G.

Finally, before the next lemma we generalize Theorem 1.16 for de Bruijn
graphs to UPP graphs.

Theorem 11.1. If G = (V ,E) is a UPP graph of order n, then L(G) is a UPP
graph of order n + 1.

Proof. Let G = (V ,E) be a UPP graph of order n and L(G) = (V ′ = E,E′)
its line graph. To prove the claim in the theorem it is sufficient to prove that for
each two vertices e1, e2 ∈ V ′ there exists a unique path of length n + 1 from e1

to e2 in L(G). Let e1, e2 ∈ V ′ = E be two vertices of L(G), i.e., e1 = (u1, u2)

and e2 = (u3, u4) are two edges in G, where u1, u2, u3, u4 ∈ V , are vertices
of G. Since G is a UPP graph of order n, it follows that there exists a directed
path of length n from u2 to u3. This path, represented by its n + 1 vertices,
is u2, v1, v2, . . . , vn−1, u3 or, represented by its n edges, is ε1, ε2, . . . , εn. These
n edges of E are vertices in L(G) and this path of length n with n edges in G is a
path of length n− 1 with n vertices in L(G). Therefore e1, ε1, ε2, . . . , εn, e2 is a
path of length n+ 1 in L(G) represented by its n+ 2 vertices, i.e., εj ∈ V ′ = E,
1 ≤ j ≤ n.

To complete the proof we have to show that this path is unique, i.e., there is
no other path of length n+1 from e1 to e2 in L(G). Assume, on the contrary, that
there exists another such path e1, e3, e4, . . . , en+1, en+2, e2, where ej ∈ V ′ = E,
1 ≤ j ≤ n + 2, are n + 2 vertices in L(G). This implies that ε1, ε2, . . . , εn and
e3, e4, . . . , en+1, en+2 are two distinct paths of length n from u2 to u3 (each
path is represented by its edges) in G, contradicting the unique property of G.
Therefore the path from e1 to e2 in L(G) is unique.

Thus L(G) is a UPP graph of order n + 1.

It should be noted that given a graph with σn vertices, where each vertex has
in-degree σ and out-degree σ if we prove that for each pair of vertices u and v,
there exists a path of length n from u to v, then there is no other path of length
n from u to v. This property will be used later without mentioning it.

Lemma 11.4. If G = (V ,E) is a UPP graph of order n with σn vertices, then
G has exactly σ self-loops.
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Proof. Assume first that n is a prime and σ < n. Consider the paths of length n

from each vertex to itself. Each such path is a cycle. If a vertex u is on this
cycle, then this cycle forms the path of length n from u to itself. We claim that
such a cycle cannot use two distinct out-edges (or in-edges) for some vertex v.
Assume, on the contrary, that the path of length n from v to v is

v,u1, u2, . . . , u�, v,ω1,ω2, . . . ,ωk, v,

where u1 �= ω1. This contradicts the unique path property since we also have
that

v,ω1,ω2, . . . ,ωk, v,u1, u2, . . . , u�, v

is such a different path from v to v (it is the same cycle, but a different closed
path). Hence, the length of such a cycle (from a vertex to itself) is a divisor of n

(which can be only 1 or n since n is a prime). Since by Corollary 1.5, n divides
σn − σ , σ < n, n is a prime, and n must divide the number of vertices that
are not self-loops, it follows that the number of self-loops is σ + i · n for some
nonnegative integer i (taking into account that all the other paths from a vertex
to itself are simple cycles of length n).

By Lemma 11.3, an edge e is a self-loop in a directed graph G if an only if
the vertex e is a self-loop vertex in the line graph L(G). By Theorem 11.1, G is
a UPP graph of order n if and only if L(G) is a UPP graph of order n + 1. By
Lemma 11.3, we have that the number of self-loops in G equals the number of
self-loops in L(G). Let p be a prime, such that p > σ + i · n whose existence
is guaranteed by Theorem 1.3. Apply the line graph iteratively on G, L(G),
L(L(G)), and so on, until we have a UPP graph L′(G) of order p. By the same
arguments as at the start of the proof we have that the number of self-loops
in L′(G) is σ + j · p. On the other hand, since the number of self-loops in
each graph of this sequence of line graphs is the same as in G, it follows that
σ + i · n = σ + j · p, which is possible only when i = j = 0, i.e., the number of
self-loops is σ .

Assume now that n is any integer and the UPP graph G has δ self-loops. We
construct again a sequence of line graphs until we obtain a UPP graph L′(G) of
order p, p prime, p > maximum{δ, σ } and reach the same contradiction as in
the previous part of the proof.

Corollary 11.2. If G = (V ,E) is a UPP graph of order n with t vertices, then

1. The number of vertices in G is t = σn for some integers σ ≥ 2 and n ≥ 1.
2. The in-degree and the out-degree of each vertex is σ .
3. There exist exactly σ self-loop vertices in G.

Corollary 11.3. If A is a binary t × t matrix such that An = J (adjacency
matrix of a UPP graph of order n) for some positive integer n, then

1. The number of rows in A is t = σn for some integers σ ≥ 2 and n ≥ 1.
2. Each row and each column of A has exactly σ ones.
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3. There exist exactly σ ones on the main diagonal of A.

Throughout the rest of this chapter (in Sections 11.1, 11.2, and 11.3) we
consider only UPP graphs with σ = 2. We will consider some generalizations
for σ > 2 in Section 11.4, where such a graph is called a σ -UPP graph, and for
σ = 2 the graph will be called only a UPP graph.

One of the main goals of this chapter is to construct non-isomorphic UPP
graphs. Verifying that two UPP graphs are non-isomorphic is important for this
enumeration. For this purpose, we will design an algorithm that for given two
UPP graphs G(1) and G(2) determines whether G(1) and G(2) are isomorphic
or not. In this algorithm, there will be an important role for a breadth first search
(BFS) algorithm and BFS trees from the self-loops of the UPP graphs.

For a directed connected graph G = (V ,E), a BFS search starts at step 0
with a vertex v that is labeled marked and all the other vertices in the graph are
labeled unmarked. At step i, i > 0 consider all the vertices that were found and
marked at step i − 1. If u1 is such a vertex, then we consider each edge u1 → u2

for which u2 is unmarked and replace the status of u2 to marked. The algorithm
terminates when all the vertices are marked. The algorithm also generates a BFS
directed tree, whose root is v at layer 0. In layer i, i > 0 the tree contains all the
vertices that were marked at step i. Between layer i − 1 and layer i we have all
the edges that were used to mark the vertices in layer i.

For a UPP graph, we consider two BFS trees whose roots are the self-
loops of the graph. If we remove the self-loop and its out-edge (which is not
the self-loop) from the tree, then the graph that remains is a binary balanced
tree. An example of the BFS trees of G4 from the two self-loops is depicted in
Fig. 11.1.

FIGURE 11.1 The BFS trees from the two self-loops of G4.

Since there are exactly two self-loops in each UPP graph, it follows that there
are two possible bijections for the self-loop vertices of G(1) and G(2). The al-
gorithm decides if one of these two possible bijections can achieve isomorphism
between the graphs. The algorithm uses the following property of UPP graphs.
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Lemma 11.5. Let v be a vertex in a UPP graph that has out-edges to two ver-
tices u1 and u2. If r is a self-loop vertex then

d(u1, r) = n if and only if d(u2, r) < n.

Proof. If d(u1, r) = n and d(u2, r) = n, then there is no path of length n from
v to r . If d(u1, r) < n and d(u2, r) < n, then there are at least two paths of
length n from v to r , by adding to the beginning of the paths, from u1 to r and
from u2 to r , whose length is smaller than n, the edges v → u1 and v → u2,
respectively, and possibly using the self-loop edge of r a few times at the end
of the path. Hence, in both cases, we have a contradiction to the unique path
property. Thus d(u1, r) = n if and only if d(u2, r) < n.

Similarly to Lemma 11.5, we can prove the following lemma.

Lemma 11.6. Let v be a vertex in a UPP graph that has in-edges from two
vertices u1 and u2. If r is a self-loop vertex then

d(r, u1) = n if and only if d(r, u2) < n.

As noted above, given two UPP graphs, there are two possible bijections for
the self-loop vertices that can achieve isomorphism between the graphs. Algo-
rithm UPP isomorphism, given below, accepts two self-loop vertices r1 and r2
of two UPP graphs G(1) and G(2), respectively, and tries to achieve isomor-
phism with the initial bijection h(r1) = r2. Then, it defines the bijection for all
the other vertices of the graph by using Lemma 11.5 (or Lemma 11.6). Namely,
if h is defined for a vertex v ∈ G(1), which has outgoing edges to u1 and u2, then
by Lemma 11.5, u1 and u2 can be uniquely mapped to the vertices in G(2) that
have incoming edges from the vertex h(v) ∈ G(2). In algorithm UPP isomor-
phism, step (I2) assigns a necessary bijection h for all the vertices of the graph
that was imposed by the initial bijection for the self-loop vertices. In step (I3)
we check that h is a legal bijection by scanning the edge lists of G(1) and G(2).
If the bijection is illegal, then the algorithm tries the other possible initial bijec-
tion for the self-loops. If, for the other possible bijection the algorithm finds that
the bijection is illegal, then G(1) and G(2) are not isomorphic.

Algorithm UPP isomorphism:

Let r1 and r2 denote two self-loop vertices of G(1) and G(2), respectively.
The initial bijection is h(r1) = r2; for each other vertex v ∈ G(1), h(v) is unde-
fined. Initially, h is defined to be legal.

(I1) Compute the distance d(v, r1) and d(u, r2) for each vertex v and u in G(1)

and G(2), respectively, by applying the BFS procedure on the graphs of
G(1) and G(2) (for this purpose we have to reverse the direction of the
edges in G(1) and G(2) since we need the distances to r1 and r2 and not
the distances from r1 and r2).
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(I2) Scan the vertices of G(1) and G(2) from r1 and r2 = h(r1) using the
BFS procedure. Look at the stage when the BFS scans edges v → v1 and
v → v2 in G(1), where d(v1, r1) < n. Let h(v) → u1 and h(v) → u2 be
the associated edges in G(2), where d(u1, r2) < n.
If d(v1, r1) = d(u1, r2) < n, then set h(v1) := u1 and h(v2) := u2; else
h is illegal.

(I3) Scan the edges list (only the edges from the vertices of the last layer of the
two BFS trees have to be scanned as the other edges were assigned in the
previous step) of G(1) and G(2) and check for every edge (u, v) in G(1),
whether (h(u),h(v)) is an edge in G(2), until h is found to be illegal,
i.e., (h(u),h(v)) is not an edge in G(2); or all the edges were checked
and h was not found to be illegal. If h is legal, then G(1) and G(2) are
isomorphic; otherwise, try the other possible bijection for the self-loops
with the same algorithm. �

Remark. Note that in (I3) it is not required to check all the distances (from
r1 and r2) to verify if the bijection h is illegal or not, but for simplicity (of the
claims and their proofs) we check all the distances.

Theorem 11.2. Let G(1) and G(2) be two UPP graphs. By applying algorithm
UPP isomorphism with the two possible bijections on the self-loop vertices, one
decides in O(|E|) time if G(1) and G(2) are isomorphic or not.

Proof. The correctness of the algorithm follows immediately from the dis-
cussion before the description of the algorithm and from Lemma 11.5. The
complexity of each BFS procedure in (I1) and (I2) is O(|E|), and in (I3) each
graph’s edge is checked at most once. Thus the total complexity is O(|E|).

There are a few interesting properties associated with the set of vertices that
are reachable with paths of length smaller than n from a given vertex v of a UPP
graph G = (V ,E) of order n. The set of vertices that are reachable from a given
vertex v ∈ V with a path of length k will be denoted by Rk

G(v) (or usually Rk(v)

if there is no ambiguity in G), i.e.,

Rk(v) � {u : there is a directed path of length k in G from v to u}.
Lemma 11.7. For each vertex v in a UPP graph G = (V ,E) of order n, and for
each k, 0 ≤ k ≤ n, we have that

∣∣Rk(v)
∣∣ = 2k .

Proof. Since the out-degree of each vertex in G is two and R0(v) = {v}, i.e.,∣∣R0(v)
∣∣ = 1, it follows that

∣∣Rk(v)
∣∣ ≤ 2k . It is easily verified that if there exist

two distinct paths of length k from v to some vertex u ∈ V , then there exist two
distinct paths of length n from v to each vertex of V reachable from u with a
path of length n− k, violating the unique path property. Thus

∣∣Rk(v)
∣∣ = 2k .

Lemma 11.8. If v is a vertex in a UPP graph G = (V ,E) of order n, v → v1
and v → v2 are two distinct edges in G, then Rn−1(v1) ∪ Rn−1(v2) = V and
Rn−1(v1) ∩ Rn−1(v2) = ∅.
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Proof. By Lemma 11.7,
∣∣Rn−1(v1)

∣∣ = ∣∣Rn−1(v2)
∣∣ = 2n−1 and |Rn(v)| = 2n.

Since we also have that |V | = 2n, which implies that Rn(v) = V , it follows that
Rn−1(v1) ∪ Rn−1(v2) = V and Rn−1(v1) ∩ Rn−1(v2) = ∅.

All the paths of length at most k from v to the vertices of Rk(v), 0 ≤ k ≤ n,
are described by a balanced binary directed tree, T k

G(v), or T k(v) if G is un-
derstood from the context, called the reachable tree of v whose depth (height)
is k. The vertices in T k(v) are vertices from V and the edges in T k(v) are edges
in E. The tree T k(v) has k + 1 layers (of distinct vertices in each layer), where
v is the root of the tree in layer 0. In layer i, i ≤ k, of T k(v) we have all the
vertices that are reached by a path of length i from v. As argued in the proof of
Lemma 11.7 all the vertices in layer i are distinct. For each vertex u, in layer i,
0 ≤ i ≤ k − 1, of T k(v), which has the two out-edges (u,u1) and (u,u2) in G,
the same two edges also appear between layer i and layer i + 1 in T k(v). Note
that some vertices and some edges of G can appear more than once in T k(v),
but in different layers. Let V (T k(v)) denote the set of vertices in T k(v), which
are distinct vertices in V , i.e.,

V (T k(v)) =
k⋃

i=0

Ri(v).

The reachable trees T 3(0) and T 3(1) of G4 are depicted in Fig. 11.2.

FIGURE 11.2 The reachable trees T 3(0) (left) and T 3(1) (right) of G4.

An alternating cycle C = [e1, e2, . . . , e�], where e1, e2, . . . , e� ∈ E, in a di-
graph G = (V ,E) is an undirected edge-disjoint cycle (of even length) in the
underline graph of G, such that every two consecutive edges in the cycle are
in opposite directions in C. In other words, either e1 = v1 → v2, e2 = v3 → v2,
e3 = v3 → v4, and so on, or e1 = v1 → v2, e2 = v1 → v3, e3 = v4 → v3, and
so on. W.l.o.g. we assume that the first two edges e1, e2 in the representation
C = [e1, e2, . . . , e�], share their end-vertex, i.e., e1 = v1 → v2, e2 = v3 → v2,
e3 = v3 → v4, and so on. Such an alternating cycle can be represented also
by its set of consecutive vertices, i.e., C = [v1v2v3v4v5 · · · v�], � even, where
v1 → v2, v3 → v2, v3 → v4, v5 → v4, and so on until v1 → v�. This cycle C
can be also represented by a bipartite digraph whose two sides have the same
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number of vertices. In such a bipartite digraph G′ = (V ′,E′) there are two sides
A and B, where each side has half of the vertices of C (note that in a UPP graph
a vertex of V that is contained twice in C is contained in both A and B) and
the edges of G′ are exactly all the edges of the cycle C. Each edge u → v in C
is also an edge in G′, where u ∈ A, v ∈ B, and (u, v) ∈ E′. A digraph, with
in-degree two and out-degree two for each vertex, in which each edge is on a
unique alternating cycle of length four has the buddy property (also called the
Heuchenne condition). The family of UPP graphs that have the buddy prop-
erty has many interesting and unique properties, some of which will be proven
and used later in this chapter and also in the next chapter. Now, we present a
simple result on the number of edges in an alternating cycle. By its definition,
the number of edges in an alternating cycle is even. For any alternating cycle
C = [e1, e2, . . . , e�], where ei ∈ E, � is even, we define two sets of edges

Eo(C) � {ei : 1 ≤ i ≤ �, i is an odd integer}
and

Ee(C) � {ei : 1 ≤ i ≤ �, i is an even integer}.
Note that the alternating cycle C can be also written as C = [e�, . . . , e2, e1].
Hence, we can exchange between these two sets of edges (each one can be
chosen as Eo(C), which implies that the second set will be Ee(C)).

Lemma 11.9. The number of edges in an alternating cycle C = [e1, e2, . . . , e�],
of a UPP graph is a multiple of 4, i.e., � is divisible by 4.

Proof. Let C = [e1, . . . , e�] be an alternating cycle in UPP graph G = (V ,E),
where e1 = (v1, v2), e2 = (v3, v2), e3 = (v3, v4), e4 = (v5, v4), and so on. We
distinguish between two cases depending on whether v5 = v1 or v5 �= v1.
Case 1. If v5 = v1, then clearly the number of edges in this alternating cycle is
four, i.e., � = 4.
Case 2. If v5 �= v1, then by Lemma 11.8, we have that Rn−1(v2) ∪ Rn−1(v4) = V

and Rn−1(v2) ∩ Rn−1(v4) = ∅. Therefore Rn−1(v2) = V \ Rn−1(v4). Consider
now the next edge e5 = (v5, v6) of C. By Lemma 11.8, we have that

Rn−1(v4) ∪ Rn−1(v6) = V and Rn−1(v4) ∩ Rn−1(v6) = ∅.

Therefore we have that Rn−1(v6) = V \ Rn−1(v4). This immediately implies
that Rn−1(v2) = Rn−1(v6) and similarly we obtain that Rn−1(v2) = Rn−1(vs),
where s ≡ 2 (mod 4). Similarly, we have that Rn−1(v4) = Rn−1(vs), where
s ≡ 0 (mod 4). Moreover, similarly we have that Rn−1(v�−2) = Rn−1(v2) and
since Rn−1(v2) ∩ Rn−1(v4) = ∅, it follows that � is divisible by 4.

The next lemma provides an interesting property on the edge-disjoint alter-
nating cycles in some digraphs.
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Lemma 11.10. If G = (V ,E) is a digraph (with no parallel edges), where each
vertex has in-degree two and out-degree two, then E can be partitioned into
edge-disjoint alternating cycles that contain all the edges in the graph.

Proof. Given an edge e1 = (v1, v2) there is a unique edge e2 = (v3, v2) that
can follow it in an alternating cycle since the in-degree of v2 is two. The next
edge that can follow e2 is e3 = (v3, v4) since the out-degree of v3 is two. This
process of generating the alternating cycle continues in the same manner and
can end only with an edge e� = (v1, v�). This process implies that each edge
is contained in an alternating cycle. Since each edge is forced by the previous
edge (and the following edge), it follows that each edge is contained in exactly
one alternating cycle. Thus E can be partitioned into edge-disjoint alternating
cycles that contain all the edges in the graph.

11.2 Constructions for UPP graphs

How many non-isomorphic UPP graphs of order n exist? There are three such
graphs of order 3 depicted in Fig. 11.3.

FIGURE 11.3 The three non-isomorphic UPP graphs of order 3.

The line graph, will be called now the integral graph, and will be denoted
by I (G), i.e., I (G) = L(G). By Theorem 11.1, the integral graph of a UPP
graph of order n is a UPP graph of order n + 1. Moreover, by the definition of
the line graph, the following lemma is an immediate consequence.

Lemma 11.11. If G is a UPP graph of order n, then I (G) is a UPP graph of
order n + 1 with the buddy property.

Given a graph G = (V ,E) with the buddy property, we define the derivative
graph D(G) = (V̂ , Ê), where

V̂ � {c : c is an alternating cycle in G},
Ê � {(c1, c2) : ∃(v1, v2), (v2, v3) ∈ E, (v1, v2) ∈ c1, (v2, v3) ∈ c2, c1, c2 ∈ V̂ }.
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By Theorem 11.1, Lemma 11.11, the definitions of the integral graph and
the derivative graph, and using arguments similar to those used in the proof of
Theorem 11.1, we have the following theorem.

Theorem 11.3.

• If G is a UPP graph of order n, then I (G) is a UPP graph of order n+ 1 with
the buddy property and G = D(I (G)).

• If G is a UPP graph of order n, with the buddy property, then D(G) is a UPP
graph of order n − 1 and G = I (D(G)).

Corollary 11.4. The number of UPP graphs of order n equals the number of
UPP graphs of order n + 1 with the buddy property. There is a one-to-one cor-
respondence between these two sets of graphs.

Fig. 11.4 depicts a UPP graph G of order 3 and its integral graph I (G),
where if (u, v) is an edge in G, then uv denotes the associated vertex in I (G).

FIGURE 11.4 A UPP graph of order 3 and its integral graph of order 4.

We can define the kth integral of a graph G, I (k)(G), recursively as fol-
lows. The first integral of G, I (1)(G), is just I (G). Given the kth integral
of G, I (k)(G), k ≥ 1, the (k + 1)th integral of G, I (k+1)(G), is defined as
the integral of I (k)(G), i.e., I (k+1)(G) � I (I (k)(G)). Similarly, the first deriva-
tive D(1)(G) of a graph G with the buddy property is just D(G). If D(k)(G),
k ≥ 1, is defined and it has the buddy property, then D(k+1)(G) is defined by
D(k+1)(G) � D(D(k)(G)).

The integral can be defined as a mapping that can be applied to any subgraph
of a digraph G = (V ,E). If G′ = (V ′,E′), where V ′ ⊆ V and E′ ⊆ E is a sub-
graph of G, then clearly I (G′) is a subgraph of I (G). In particular, the integral
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can be applied on simple paths and simple cycles of a digraph. If P is a sim-
ple directed path of length � in G, then I (P ) is a directed path of length � − 1
in I (G). It can be also applied to cycles (not necessarily simple) of a digraph
G = (V ,E) to obtain cycles of the same length in the integral graph I (G). Given
a directed cycle C = [e0, e1, . . . , e�−1], ei ∈ E, 0 ≤ i ≤ � − 1, its integral is the
cycle I (C) = [(e0, e1), (e1, e2), . . . , (e�−1, e0)]. The kth integral of a cycle C,
I (k)(C) is defined similarly.

The definition of the integral graph implies the following simple lemma.

Lemma 11.12. C = [e0, e1, . . . , e�−1], where ei ∈ E, 0 ≤ i ≤ � − 1, is a cycle
in a digraph G = (V ,E), if and only if

I (C) = [(e0, e1), (e1, e2), . . . , (e�−2, e�−1), (e�−1, e0)]
is a cycle in I (G) = (V ′ = E,E′).

Let C = [v0, v1, . . . , vt−1] be a cycle of length t in a graph G = (V ,E),
where vi ∈ V , 0 ≤ i ≤ t − 1. The cycle C has a repeated path of length � if there
exist two integers m1, m2 such that 0 ≤ m1 < m2 ≤ t and vm1+i = vm2+i for
each 0 ≤ i ≤ �, where subscripts are taken modulo t . The repeated path can be
represented also by the sequence of its associated � edges.

Lemma 11.13. The cycle C, of a digraph G = (V ,E), does not contain a re-
peated path of length �, � ≥ 1, if and only if the cycle I (C), of the digraph I (G),
does not contain a repeated path of length � − 1.

Proof. Let G = (V ,E) be a digraph and let I (G) = (E,E′) be its integral
graph.

Assume first that C = [e0, e1, . . . , et−1], ei ∈ E, 0 ≤ i ≤ t − 1, is a cycle of
length t in G with a repeated path of length �, ei, ei+1, . . . , ei+�−1 that equals
the path ej , ej+1, . . . , ej+�−1, i �= j , where subscripts are taken modulo t . The
cycle I (C) in I (G) = (E,E′) contains the two paths

(ei, ei+1), (ei+1, ei+2), . . . , (ei+�−2, ei+�−1)

and

(ej , ej+1), (ej+1, ej+2), . . . , (ej+�−2, ej+�−1),

of length � − 1, where the ems are edges in G and vertices in I (G). These two
paths are equal and hence they represent a repeated path in I (G).

Assume now that I (C) = [e′
0, e

′
1, . . . , e

′
t−1] is a cycle of length t , in I (G),

where e′
m = (em, em+1) ∈ E′, em ∈ E, 0 ≤ m ≤ t − 1, and subscripts are taken

modulo t . Let e′
i , e

′
i+1, . . . , e

′
i+�−2 and e′

j , e
′
j+1, . . . , e

′
j+�−2, i �= j , where sub-

scripts are taken modulo t , be a repeated path of length � − 1 in I (C). Since
e′
m = (em, em+1), 0 ≤ m ≤ t − 1, where subscripts are taken modulo t , it fol-

lows that C = [e0, e1, . . . , et−1] is a cycle of length t in G, which contains the
repeated path ei, ei+1, . . . , ei+�−1 that is equal to the path ej , ej+1, · · · , ej+�−1
of length �.



Unique path property graphs Chapter | 11 379

Corollary 11.5. The cycle C, in a digraph G = (V ,E), does not contain a
repeated path of length two if and only if the cycle I (C), in the graph I (G),
does not contain a repeated edge.

Corollary 11.6. The cycle C, in a digraph G = (V ,E), does not contain a
repeated edge if and only if the cycle I (C), in the graph I (G), does not contain
a repeated vertex, i.e., I (C) is a simple cycle.

Corollary 11.7. If C is a cycle in a digraph G = (V ,E), for which the longest
repeated path contained in C has length �, then the smallest k, for which
I (k)(C) is a simple cycle in the graph I (k)(G), is k = � + 1.

The relation between cycles in the UPP graph G and the cycles in its integral
graph I (G) can be used to enumerate the number of some cycles in such graphs.
In this context, we point to an important observation from the definition of the
integral graph I (G) and the cycles of G (which was already stated for Gn) that
is given in the following theorem.

Theorem 11.4. The cycle C is an Eulerian cycle in a digraph G if and only if
I (C) is a Hamiltonian cycle in I (G).

Corollary 11.8. The number of Eulerian cycles in a digraph G is equal to the
number of Hamiltonian cycles in I (G).

The integral graph yields just one UPP graph of order n + 1 from a UPP
graph of order n. However, our goal is to construct a large set of UPP graphs.
The main constructions to obtain many non-isomorphic UPP graphs are based
on modifications of the de Bruijn graph (by exchanging the location of some
edges, i.e., by removing some edges and adding others instead). The idea of
exchanging the location of edges in UPP graphs is defined as follows.

Definition 11.1. Let G = (V ,E) be a UPP graph. Two vertices u and v in G are
input-compatible if there exist another two vertices z1 and z2 such that all the
following four vertices are distinct and (z1, u), (z1, v), (z2, u), (z2, v) are edges
in G, i.e., the vertices z1, z2, u, v define an alternating cycle of length 4. In Gn,
the vertices u and v are companion states, i.e., they differ exactly in the last bit
of their binary representation.

Definition 11.2. Let Suv = {u,v} and Sxy = {x, y} be two pairs of input-
compatible vertices with outgoing edges to the set Souv = {u1, u2, v1, v2} and
Soxy = {x1, x2, y1, y2}, respectively. These pairs are called independent if

Suv ∩ Soxy = ∅ and Sxy ∩ Souv = ∅.

Otherwise, the pair is called dependent. A set S of input-compatible vertex pairs
is called independent if every two pairs of S are independent.
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Definition 11.3. Two input-compatible vertices u and v satisfy the reach prop-
erty when the following condition holds. If (u,u1), (u,u2), (v,v1), (v,v2) are the
out-edges of u and v, then there exists i,j ∈{1,2} such that Rn−1(ui)=Rn−1(vj ).
By Lemma 11.8, this also implies that Rn−1(u3−i ) = Rn−1(v3−j ).

We are now going to use the unique structure of input-compatible vertices
and the reach property to form a large set of non-isomorphic UPP graphs of
the same order. The idea will be to have a large number of independent input-
compatible pairs of vertices and on each such set we replace two edges with
two other edges. This should be done in a way that the distances between all the
pairs of vertices that are at distance n apart will remain the same.

Let u,v be input-compatible vertices in G that satisfy the reach property, and
suppose that (u,u2) and (v, v1) are edges in E such that Rn−1(u2) = Rn−1(v1).
The exchange operation for these edges is defined by removing the edges
(u,u2) and (v, v1) from G and by adding the edges (u, v1) and (v,u2) to the
obtained graph. Equivalently, we define the graph G′ = G(ex(u, v)) = (V ,E′),
where

E′ � E \ {(u,u2), (v, v1)} ∪ {(u, v1), (v,u2)}.
This scenario of the exchange operation is depicted in Fig. 11.5. An isomorphic
graph is obtained if the following set of edges E′′ is defined instead of E′, where

E′′ � E \ {(u,u1), (v, v2)} ∪ {(u, v2), (v,u1)}
and the graph G′′ = G(ex(u, v)) = (V ,E′′). It can be immediately observed by
drawing this scenario, as is done in Fig. 11.5, that G′ and G′′ are isomorphic
graphs. Hence, there is no need to distinguish between the exchange operation
that yields G′, and the exchange operation that yields G′′.

FIGURE 11.5 The exchange operation: before on the left and after on the right.

In the rest of this section the structures that contain z1, z2, u, v,u1, u2, v1, v2
will be used with these symbols without reminders for the edges of these two
structures of Fig. 11.5. The next lemma is an immediate observation from the
exchange operation and it can be readily observed from Fig. 11.5.
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Lemma 11.14. For each path of length two in a UPP graph G = (V ,E) that
starts in a vertex α, which is either z1 or z2 and ends in a vertex β, there exists
a path of length two in G(ex(u, v)) which starts with α and ends in β.

Lemma 11.14 considers specific paths of length two. The lemma will help
to prove the existence of alternative paths of length n in G′ = G(ex(u, v)) for
each path of length n in the UPP graph G = (V ,E) of order n. The existence of
such alternative paths leads to the next lemma.

Lemma 11.15. If G = (V ,E) is a UPP graph of order n, then G′ = G(ex(u, v))

is also a UPP graph of order n.

Proof. Given the unique path P of length n from a vertex α to a vertex β is G

we have to show such a unique path of length n from α to β in G(ex(u, v)). Note
that the existence of such a path implies its uniqueness. If the path P in G does
not contain the edges (u,u2) and (v, v1), then clearly the same path P exists
also in G(ex(u, v)). Assume now that the edge (u,u2) or the edge (v, v1) (or
both) is an edge in the path P . By Lemma 11.14, any part of the path P whose
length is two and starts with either z1 or z2 can be ignored. This implies that we
have to consider the edges (u,u2) and (v, v1) only in paths that start with either
(u,u2) or (v, v1).

Assume first that the first edge in P is (u,u2), i.e., α = u and

P = u → u2, u2 → β1, β1 → β2, . . . , βn−2 → βn−1 = β.

Since Rn−1(u2) = Rn−1(v1), it follows that there exists a path P ′ of length n−1
in G that starts with v1 and ends in β. By Lemma 11.14 any part of the path P ′
whose length is two and starts with either z1 or z2 can be ignored as it can be
replaced by another path of length two. Hence, in G′ there exists a path P ′′
of length n − 1 that starts with v1 and ends in β. Therefore there exists a path
of length n in G′, which starts with the edge u → v1 and continues with the
path P ′′. This path in G′ starts with α and ends in β.

If the first edge in P is (v, v1), i.e., α = v, then we continue in a similar way
to the case when the first edge in P is (u,u2).

The idea of Lemma 11.15 can be further extended to make several exchanges
of edges in parallel and thus obtain a large set of different UPP graphs.

Lemma 11.16. Let G be a UPP graph and G′ be the graph derived from G by
an exchange operation with an input-compatible pair of vertices u and v. Then,
for each i ≥ 2, every vertex α /∈ {u,v}, and every vertex β, we have

β ∈ Ri
G′(α) if and only if β ∈ Ri

G(α).

Lemma 11.17. Let G be a UPP graph and let S be an independent set of
input-compatible vertex pairs. If {u,v} ∈ S, then in G′ = G(ex(u, v)) the set
S′ = S \ {{u,v}} is an independent set of input-compatible vertex pairs.
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Proof. Since the edges {u,u2} and {v, v1} were removed from G and the edges
{u,v1} and {v,u2} were added to obtain G′, it follows by Lemma 11.16 that
each pair {x, y} ∈ S′ satisfies the reach property. Hence, all the pairs of ver-
tices that were input-compatible in G except for the pairs with vertices from
Souv = {u1, u2, v1, v2} remain input-compatible.

Let G(ex(S)) be the UPP graph obtained from G by performing all the ex-
changes defined by a set S of input-compatible vertex pairs in an arbitrary order.

Let S be a set of input-compatible vertex pairs in Gn. The complement S̄

of S is defined as

S̄ � {{u,v} : {N − 1 − v,N − 1 − u} ∈ S} = {{u,v} : {ū, v̄} ∈ S},
whereby abuse of notation u and v are considered as integers and as binary
words. The following lemma can be easily verified from Lemma 1.16 and its
proof.

Lemma 11.18. Let S be an independent set of input-compatible vertex pairs.
Then, Gn(ex(S)) is isomorphic to Gn(ex(S̄)) under the bijection h : Vn −→ Vn,
where h(v) = N − 1 − v for all v ∈ Vn. In other words,

∀{u,v} ∈ Gn(ex(S̄)), h({u,v}) = {N − 1 − u,N − 1 − v}.
The goal of the following lemmas is to show that if we are given two

different independent sets of input-compatible vertex pairs, S1 and S2 such
that S1 �= S̄2, then the graphs G(1) = Gn(ex(S1)) and G(2) = Gn(ex(S2)) are
non-isomorphic.

Lemma 11.19. In Gn, we have that

d(2i,0) < n, d(2i,N − 1) = n, d(2i + 1,0) = n, and d(2i + 1,N − 1) < n.

Proof. This follows immediately from the observation that the binary represen-
tation of 2i ends with a zero and that the binary representation of 2i + 1 ends
with a one.

Lemma 11.20. Let S be an independent set of input-compatible vertex pairs. In
Gn(ex(S)), for each {2i,2i +1} ∈ S we have that d(2i,0) = n, d(2i +1,0) < n,
and all the other distances to the vertices 0 and N − 1 remain as in Gn.

Proof. Consider a vertex whose integer value is j , where d(j,0) = �1 and
d(j,N − 1) = �2. This vertex will be labeled by j

(�1,�2)
. By Lemma 11.19, we

can deduce that for each pair of vertices {2i,2i + 1} the labeling is as illustrated
on the left in Fig. 11.6. By Lemma 11.16, all the distances from vertices beside
vertices 2i and 2i +1, such that {2i,2i +1} ∈ S remain the same as in Gn, when
the exchange operation is applied on {2i,2i + 1}. Considering this labeling and
the exchange that was performed, one can easily verify that the new labeling
is as in the right side of Fig. 11.6. Performing all the exchanges and applying
Lemma 11.16 iteratively implies the required result.
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FIGURE 11.6 The exchange operation in terms of integer representation.

Note that after the exchange operation, we have that

d(2i,0) = d(2i,N − 1) = n, d(2i + 1,0) < n, and d(2i + 1,N − 1) < n.

These distances will be used in the proof of the non-isomorphism, for the ob-
tained graphs with different sets of independent input-compatible pairs.

Assume now that the two self-loops of two isomorphic UPP graphs, G(1)

and G(2), are 0 and N − 1. There are two possible bijections between G(1)

and G(2). Let h0 be a bijection in which h0(0) = 0 and h0(N − 1) = N − 1, and
let h1 be the bijection in which h1(0) = N − 1 and h1(N − 1) = 0.

Lemma 11.21. Let S1 and S2 be two different sets of input-compatible vertex
pairs. Then, there is no legal bijection under h0 for which G(1) = Gn(ex(S1))

is isomorphic to G(2) = Gn(ex(S2))

Proof. Assume that Algorithm UPP isomorphism finds a legal bijection h be-
tween G(1) and G(2). If h is the identity mapping, namely for each ver-
tex v ∈ Vn we have h(v) = v, then let {u = 2i, v = 2i + 1} be an input-
compatible vertex pair such that {u,v} ∈ S1 and {u,v} /∈ S2. The out-edges of
u in G(1) are to vertices 4i + 1 and 4i + 2, while in G(2) the out-edges of u

are to vertices 4i and 4i + 1, and hence h (the identity bijection) is not a legal
bijection.

Assume h is not the identity mapping. Let v be the first vertex in G(1) that is
assigned by h an assignment for which h(v) �= v. We claim that this assignment
is due to the exchange operation that is only in one of the graphs G(1) or G(2).
Let f (v) → v be the related edge in the BFS tree of G(1). h(v) is defined by
traversing the edge f (v) → v in the BFS tree of G(1) and its associated edge
in G(2). By our assumption h(f (v)) = f (v).

If f (v) and its companion (namely f (v) + 1 if f (v) is even and f (v) − 1
if f (v) is odd) are not in S1 and not in S2, then both out-edges of f (v) in
G(1) and G(2) are the same and going to the same vertices. By Lemmas 11.19
and 11.20 their distances to the self-loop vertices 0 and N − 1 are the same as
in Gn. If f (v) and its companion are contained in S1 and S2, then again in both
graphs the out-edges from f (v) are the same and going to the same vertices.
Their distance to the self-loop vertices 0 and N − 1 are changed as described
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in Lemma 11.20. In both cases, algorithm UPP isomorphism would result in
the assignment h(v) = v, a contradiction. Therefore we have that f (v) and its
companion are contained in either S1 or S2 since h(v) �= v.

W.l.o.g. assume that the pair f (v) and its companion are contained in S1.
Then, by Lemma 11.20, we have that

dG(1)(f (v),0) = dG(1)(f (v),N − 1) = n,

or

dG(1)(f (v),0) < n and dG(1)(f (v),N − 1) < n.

Similarly, by Lemma 11.20, we have that

dG(2)(f (v),0) = n and dG(2)(f (v),N − 1) < n,

or

dG(2)(f (v),0) < n and dG(2)(f (v),N − 1) = n.

This implies that h is not a legal bijection, contradicting our assumption, and
hence under h0, Gn(ex(S1)) and Gn(ex(S2)) are not isomorphic.

Lemma 11.22. Let S1 and S2 be two independent sets of input-compatible
vertex pairs. If S1 �= S2 and S1 �= S̄2, then Gn(ex(S1)) is not isomorphic to
Gn(ex(S2)).

Proof. The lemma is a consequence of the following three results.

(1) By Lemma 11.21, there is no legal bijection between Gn(ex(S1)) and
Gn(ex(S2)) under h0.

(2) By Lemma 11.18, we have that Gn(ex(S2)) is not isomorphic to Gn(ex(S̄2))

under h1.
(3) By Lemma 11.21, we have that Gn(ex(S1)) is not isomorphic to Gn(ex(S̄2))

under h0.

Hence, by (1), (2), and (3), Gn(ex(S1)) is not isomorphic to Gn(ex(S2))

Now, given two sets of independent-compatible vertex pairs S1 and S2, it
is clear that Gn(ex(S1))

R is not isomorphic to Gn(ex(S2))
R , unless S1 = S2

or S1 = S̄2. We also want to show that the intersection between the set of UPP
graphs, obtained from all the independent sets and the set of their reverse graphs,
consists only of one UPP graph, Gn.

Lemma 11.23. Let S1 and S2 be two sets of independent input-compatible
vertex pairs. Then, G′ = Gn(ex(S1)) is not isomorphic to Gn(ex(S2))

R , un-
less S1 = S2 = ∅.
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Proof. If S2 �= ∅ then by Lemmas 11.19 and 11.20, there exists a vertex u in
Gn(ex(S2)) such that d(u,0) = d(u,N − 1) = n. Therefore in Gn(ex(S2))

R

we have that d(0, u) = d(N − 1, u) = n. Similarly to Lemma 11.19 we have
that for each vertex v in Gn, d(0, v) = n if and only if d(N − 1, v) < n. By
Lemma 11.16, we have that Ri

G′(0) = Ri
Gn

(0) and Ri
G′(N − 1) = Ri

Gn
(N − 1)

for 2 ≤ i ≤ n. Also, it is clear by the definition of the exchange operation that
R1

G′(0) = R1
Gn

(0) and R1
G′(N − 1) = R1

Gn
(N − 1). Hence, in G′ for each v,

d(0, v) = n if and only if d(N − 1, v) < n. Since in Gn(ex(S2))
R we have

that d(0, u) = d(N − 1, u) = n, it follows that Gn(ex(S1)) is not isomorphic
to Gn(ex(S2))

R , unless S1 = S2 = ∅.

From Lemmas 11.22 and 11.23 we infer a concluding theorem.

Theorem 11.5. Let S1 and S2 be two independent sets of input-compatible
pairs.

• The graph Gn(ex(S1)) is not isomorphic to the graph Gn(ex(S2)) unless
S1 = S2 or S1 = S̄2;

• The graph Gn(ex(S1)) is not isomorphic to the graph Gn(ex(S2))
R unless

S1 = S2 = ∅.

Using Theorem 11.5 we want to derive a lower bound on the number of
non-isomorphic UPP graphs. We construct a dependency graph, in which each
vertex represents an input-compatible vertex pair {u,v} in Gn. Between the ver-
tex pairs {u,v} and {u′, v′} there is an undirected edge if and only if {u,v}
and {u′, v′} are dependent, i.e., each vertex {i, i + 1}, where i is even, i �= 0,
i �= N − 2, is connected to vertices {2i,2i + 1} and {2i + 2,2i + 3}. One can
easily verify, by using the substitution f (i, i + 1) = i/2, i even, i �= 0, and
i �= N − 2, that this dependency graph is the underline graph of Gn−1, without
the vertices 0 and N/2 − 1. This graph for G4 is depicted in Fig. 11.7.

FIGURE 11.7 The dependency graph for G4.

By Theorem 11.5 every two independent sets of vertices in the depen-
dency graph are associated with two non-isomorphic UPP graphs, unless their
corresponding sets of input-compatible vertices are complements. Those non-
isomorphic graphs and their reverses (except for GR

n ) induce a set of non-
isomorphic UPP graphs. Let GIS (Graphs from Independent Sets) denote the set
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of non-isomorphic UPP graphs obtained by Theorem 11.5. Let Gn \ {0,N − 1}
be the subgraph of Gn without the vertices 0 and N − 1 and their adjacent ver-
tices. Therefore we have the following theorem.

Theorem 11.6. The number of non-isomorphic UPP graphs of order n + 1
is at least 2θ(n), where θ(n) is the maximum size of an independent set
in Gn \ {0,N − 1}.
Theorem 11.7. The size θ(n) of the largest independent set in Gn, where n is
even, is at least

2n − (
n

n/2

)
2

.

Proof. Partition the set of vertices in Gn, i.e., Vn into three sets, S1, S2, and S3,
as follows:

S1 �

⎧⎨
⎩(x1, x2, . . . , xn) : xi ∈ {0,1},

n/2∑
i=1

x2i >

n/2∑
i=1

x2i−1

⎫⎬
⎭ ,

S2 �

⎧⎨
⎩(x1, x2, . . . , xn) : xi ∈ {0,1},

n/2∑
i=1

x2i <

n/2∑
i=1

x2i−1

⎫⎬
⎭ ,

S3 �

⎧⎨
⎩(x1, x2, . . . , xn) : xi ∈ {0,1},

n/2∑
i=1

x2i =
n/2∑
i=1

x2i−1

⎫⎬
⎭ .

We claim that S1 is an independent set of vertices in Gn\{0,N −1}. Assume that
(x1, x2, . . . , xn) ∈ S1, i.e.,

∑n/2
i=1 x2i >

∑n/2
i=1 x2i−1. Consider the four adjacent

vertices of (x1, x2, . . . , xn−1, xn),

Y1 = (x2, . . . , xn−1, xn,0), Y2 = (x2, . . . , xn−1, xn,1),

Y3 = (0, x1, x2, . . . , xn−1), Y4 = (1, x1, x2, . . . , xn−1).

It is easily observed that Y1 ∈ S2 and Y4 ∈ S2, while Y2 ∈ S2 ∪ S3 and
Y3 ∈ S2 ∪ S3, and hence S1 is an independent set (and also S2 is an indepen-
dent set). Clearly,

S2 = {(x1, x2, . . . , xn) : (xn, . . . , x2, x1) ∈ S1}
and hence |S1| = |S2|. We also have by the definition of S3 that

|S3| =
n/2∑
i=0

(
n/2

i

)2

=
(

n

n/2

)
.

Therefore

θ(n) ≥ |S1| =
2n − (

n
n/2

)
2

.
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Theorem 11.8. Asymptotically, we have

lim
n→∞

θ(n)

2n
= 1

2
.

Proof. First, note that on each necklace no more than half of the vertices can
be contained in an independent set of Gn \ {0,N − 1} and hence θ(n) ≤ 2n−1.
Assume now that S is an independent set in Gn \ {0,N − 1}. We claim that

S′ � {(x1, x2, . . . , xn−1, xn, b) : (x1, x2, . . . , xn−1, xn) ∈ S, b ∈ {0,1}}
is an independent set in Gn+1 \ {0,2N − 1}. We first observe that since
0,N − 1 /∈ Gn \ {0,N − 1}, it follows that there is no edge between the
vertices (x1, x2, . . . , xn,0) and (x1, x2, . . . , xn,1). Assume, on the contrary,
that S′ is not an independent set. This implies that there exists a vertex
(x1, x2, . . . , xn−1, xn) ∈ S and a vertex (x1, x2, . . . , xn−1, xn, b) ∈ S′, where
b ∈ {0,1}, for which one of its adjacent vertices is also in S′. We distinguish
between two cases:
Case 1: If (0, x1, x2, . . . , xn−1, xn) ∈ S′ or (1, x1, x2, . . . , xn−1, xn) ∈ S′, then
this implies that (0, x1, x2, . . . , xn−1) ∈ S or (1, x1, x2, . . . , xn−1) ∈ S, respec-
tively. However, (x1, x2, . . . , xn−1, xn) ∈ S, a contradiction since S is an inde-
pendent set in Gn \ {0,N − 1}.
Case 2: If (x2, . . . , xn−1, xn, b,0) ∈ S′ or (x2, . . . , xn−1, xn, b,1) ∈ S′, then this
implies that (x2, . . . , xn−1, xn, b) ∈ S. This is a contradiction since we also have
that (x1, x2, . . . , xn−1, xn) ∈ S and S is an independent set Gn \ {0,N − 1}.

Therefore S′ is an independent set in Gn+1 \ {0,2N − 1} that implies
that θ(n + 1) ≥ 2 · θ(n). Therefore the limit θ(n)

2n , where n → ∞, exists. Since
θ(n) ≤ 2n−1, θ(n + 1) ≥ 2 · θ(n), and also by Theorem 11.7 we have that

θ(n) ≥ 2n−( n
n/2)

2 , it follows that

lim
n→∞

θ(n)

2n
= 1

2
.

Lemma 11.24. All the alternating cycles in a UPP graph of order n contained
in the GIS have lengths 4 or 8.

Proof. Let S be an independent set of input-compatible vertex pairs. Consider
the two input-compatible vertex pairs {i, i + 1} and {i + N/2, i + 1 + N/2},
where i is even. Before any exchange operation, the alternating cycles associ-
ated with the out-edges of the four vertices i, i + 1, i + N/2, i + 1 + N/2 have
length 4, as depicted in Fig. 11.8(a). By an exchange operation on Gn, which
includes the input-compatible vertex pair {i, i + 1} and does not include any
vertex pair {i + N/2, i + 1 + N/2}, we obtain an alternating cycle of length 8,
as depicted in Fig. 11.8(b). Since the edges that are contained in this alternating
cycle of length 8 are out-edges of these four vertices, it follows that some of
these 8 out-edges can be removed only by an exchange on these two pairs of
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FIGURE 11.8 Two exchange operations to form an alternating cycle of length 8 and splitting it
into two alternating cycles of length 4.

input-compatible vertices. Hence, we have to use the input-compatible vertex
pair {i + N/2, i + 1 + N/2} to make another exchange. An exchange operation
on this input-compatible changes this alternating cycle by splitting it into the
two alternating cycles of length 4, as depicted in Fig. 11.8(c).

By Lemma 11.24 we have that all the alternating cycles in graphs that are
contained in the GIS have length 4 or 8. We will describe now another relatively
simple construction for UPP graphs based on another exchange of edges in Gn.
One of the advantages of this construction is that it can also yield alternating
cycles of various lengths, especially alternating cycles of long lengths. Before
introducing the general construction we will show an instance of this construc-
tion that produces alternating cycles of length 12.

Let x be a binary sequence of length n − 3 ≥ 1. Consider the structure Ex
in Gn that is depicted in Fig. 11.9, and the exchange of the location of edges in
this structure, as depicted in Fig. 11.10. Assume further that the edges that were
removed from Fig. 11.9 do not appear between the 12 vertices in the top three
layers of vertices of these two structures. We claim that the exchange of edges
carried out on Gn, to obtain the structure in Fig. 11.10 from that in Fig. 11.9,
yields a UPP graph of order n. We omit the proof as we are going to give a
more general construction with a detailed proof. This exchange of edges yields
an alternating cycle of length 12, as depicted in Fig. 11.11 (the vertices colored
with orange and their out-edges colored with dashed red) do not appear in the
structure of Fig. 11.10). The first n on which the construction can work is n = 4,
where the binary sequence of length one is x = 1.

We continue first with a simple generalization associated only with the struc-
ture of Gn depicted in Fig. 11.9. The 12 vertices in the top three layers with the
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FIGURE 11.9 The 20 vertices of the structure Ex.

FIGURE 11.10 Removing four edges and adding another four in the structure Ex of Fig. 11.9.

FIGURE 11.11 The alternating cycle of length 12 after the exchange of four edges.

edges between them should remain unchanged in the construction. Let the top
layer of the first four vertices be called layer 0, the layer of the next four ver-
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tices will be called layer 1 and the layer of the next four vertices will be called
layer 2. The last eight vertices of the structure will be associated with layer 3.
The exchange of edges, to obtain a UPP graph G of order n, will be carried
out between vertices of layer 2 and vertices of layer 3, such that the following
requirements are satisfied.

(T1) Each vertex in layer 2 has one out-edge to a vertex whose binary rep-
resentation ends with 0 and a second out-edge to a vertex whose binary
representation ends with 1.

(T2) Each vertex in layer 1 has one path of length two to a vertex whose binary
representation ends with 00, and similarly one such path to a vertex whose
binary representation ends with 01 (and the same for 10 and 11).

(T3) Each vertex in layer 0 has one path of length three to each vertex of layer 3.
(T4) Each edge between layer 2 and layer 3 that was removed is not an edge

between vertices in the first three layers (0, 1, and 2).

Theorem 11.9. If requirements (T1) through (T4) are satisfied, then the
graph G obtained from Gn is a UPP graph of order n.

The proof of the theorem will be omitted as a more general theorem will be
proved later.

Another example of an exchange in the location of four edges in the struc-
ture of Fig. 11.9 is depicted in Fig. 11.12. This exchange in the location of edges
satisfies the requirements (T1) through (T4). As a result, we obtain an alternat-
ing cycle of length 16 depicted in Fig. 11.13. We will show that this idea can
be used to obtain an alternating cycle of length 2k+1 in a UPP graph of order n,
where n ≥ 2k − 1.

FIGURE 11.12 The exchange is done by removing four edges and adding another four.
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FIGURE 11.13 The alternating cycle of length 16 after the exchange of four edges.

The same idea of this construction can be generalized to a larger structure,
which will be also called Ex, and is obtained from Gn, where x is a binary string
of length n − k. The structure Ex has k + 1 layers, denoted by layer 0 through
layer k, where each layer from layer 0 through layer k − 1 has 2k−1 vertices and
layer k has 2k vertices (the vertices in each layer are distinct, but the same vertex
can appear in a few layers). All the 2k−1 vertices in layer 0 share the last n−k+1
bits in their binary representation. These n−k +1 bits start with a zero followed
by the string x. All the 2k−1 vertices in layer k − 1 share their first n− k + 1 bits
in their binary representation. These n − k + 1 bits start with a zero followed
by the string x. All the vertices on each path P of length k − 1 in Gn between
vertices in layer 0 and vertices in layer k − 1 are contained in the structure Ex.
Each vertex on each such path P is contained in the layer associated with its
position on the path P . These edges of the path P will not be removed in the
construction. In other words, all the in-edges and out-edges between vertices of
the first k layers are as in Gn and they will remain unchanged in the construction.
All the out-edges of vertices in layer k−1 are those that are out-edges of vertices
in Gn associated with the vertices of layer k − 1. Hence, layer k has 2k vertices.
Now, we exchange the location of edges between vertices of layer k − 1 and
vertices of layer k, such that the following two requirements are satisfied:

(S1) Each vertex in layer m, 0 ≤ m ≤ k − 1, has one path of length k − m to a
vertex whose binary representation ends with b1b2 · · ·bk−m, for each one
of the 2k−m such possible binary (k − m)-tuples.

(S2) Each edge between layer k − 1 and layer k that was removed is not an
edge between vertices of the first top k layers.

One way to satisfy (S2) is to require that no vertex of layer k − 1 will be
a vertex of layers 0 through layer k − 2. However, note that this is a stronger
requirement. It is not satisfied in Fig. 11.10, but (S2) is satisfied (consider the
out-edges of vertex 0x01, where n = 4, and x = 1). For this reason, we have
required that n ≥ 2k − 1, which guarantees that (S2) is satisfied for all choices
of x, except for the all-zeros word x.

Note also that requirements (S1) and (S2) are equivalent to requirements
(T1) through (T4) that are more detailed. The following theorem is a general-
ization of Theorem 11.9.
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Theorem 11.10. If requirements (S1) and (S2) are satisfied (and the other edges
in Gn remained unchanged), then the obtained graph G is a UPP graph of or-
der n.

Proof. We have to show that after the exchange of the location of edges, there
is a directed path of length n between any two vertices of G. Let u,v be two
vertices of G (and Gn). There is such a directed path from u to v in Gn and
if none of its edges are among the edges that were exchanged, then this path
of length n exists also in G. Now, assume u and v are not vertices in the first
k layers of the structure Ex. If the path passes through all the layers of Ex, then
this part of the path P starts at layer 0, vertex i and ends at layer k, vertex j . By
requirement (S1) (using m = 0) the path P can be replaced by another path of
length k that starts at vertex i and ends at vertex j .

We continue and assume that u or v (and maybe both) is a vertex in the
first k layers of the structure. We distinguish between two cases depending on
whether u or v is a vertex in the structure.
Case 1: v is a vertex in the structure and u is not a vertex in the structure. This
implies that the path P from u to v must pass through the structure. It can go
several times from layer 0 to layer k and it must go exactly once from layer 0
and stop at v. If the path P passed from layer 0 to layer k, then by (S1) this part
of P can be replaced by an alternative path of length k. Since the path ends at v

it should pass through layer 0 before it reaches v, but by (S2) the edges of this
part of the path were not changed and hence this part of the path will remain
unchanged.
Case 2: The path starts at vertex u that is a vertex in one of the first k layers of
the structure. The path is of length n > k and hence it reaches layer k. When the
path reaches layer k for the first time (it might reach layer k more than once) it
has length �, for some 1 ≤ � ≤ k, and it reaches a vertex ω, in layer k, whose
binary representation ends with b1b2 · · ·b�. This implies that the binary repre-
sentation of v starts with b1b2 · · ·b� since the path is from u to v and its section
from ω to v has length n − �. By (S1) there is an alternative path from u that
reaches a vertex ω′ in layer k whose binary representation ends with b1b2 · · ·b�.
Clearly, in Gn there exists a path of length n − � from ω′ to v (since ω′ ends
with b1b2 · · ·b� and v starts with b1b2 · · ·b�). This path might still have some
edges that were exchanged, but alternate sections to replace these edges can be
found based on the arguments used in the previous parts of the proof.

Thus G is a UPP graph of order n.

We will describe now how to form a graph with an alternating cycle of
length 2k+1 in a UPP graph of order n ≥ 2k − 1, where k ≥ 3. This construction
will be called the Long Cycle Construction. We choose x to be the all-ones string
of length n − k. We have to describe the exchange of edges between layer k − 1
and layer k. A vertex in layer k −1 has the binary representation 0xb1b2 · · ·bk−1

and it will have two out-edges, one whose end-vertex is xb1b2 · · ·bk−11 and a
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second whose end-vertex is xc1c2 · · · ck−10, where

c1c2 · · · ck−1 = b1b2 · · ·bk−1 + 0 . . .01.

The addition in this computation is an integer addition (and not a vector addi-
tion), where 1 · · ·11 + 0 · · ·01 = 00 · · ·0.

Theorem 11.11. The alternating cycle obtained via the long cycle construction
has length 2k+1.

Proof. Consider an ordering of the following 2k+1 vertices in two lists, list A
and list B. List A contains the 2k−1 vertices of layer k − 1 and their conjugates.
List B contains the 2k vertices of layer k.

In list A, the binary representation of the (2i)th vertex, 0 ≤ i ≤ 2k−1 − 1,
starts with 1x followed by the binary representation of the integer i. These
vertices are not contained in the (k − 1)th layer of Ex. In list A, the binary
representation of the (2i + 1)th vertex, 0 ≤ i ≤ 2k−1 − 1, starts with 0x fol-
lowed by the binary representation of the integer i. These vertices whose binary
representation starts with 0x are exactly the vertices in the (k − 1)th layer of Ex.

In list B, the binary representation of the ith vertex, 0 ≤ i ≤ 2k − 1, starts
with x followed by the binary representation of the integer i. These vertices are
exactly the vertices in the kth layer of Ex.

In the long cycle construction, the edges from vertices of list A, which con-
tains the vertices of the (k − 1)th layer and their conjugates, and the vertices of
list B, which contains the vertices of the kth layer are defined as follows. There
is an edge from the ith vertex of list A to the ith vertex of list B for each i,
0 ≤ i ≤ 2k − 1. There is an edge from the ith vertex of list A to the (i + 1)th
vertex of list B for each i, 0 ≤ i < 2k −1. There is an edge from the last vertex of
list A to the first vertex of list B. It is now easily verified that the edges defined
by the two lists form an alternating cycle of length 2k+1.

An example of the alternating cycle of length 2k+1 obtained via the construc-
tion is depicted in Fig. 11.13 for k = 3. One can use the exchange of edges in
this new construction on a few structures using a set S of strings of length n − k

and for each string x ∈ S to form the structure Ex. Requirements (S1) and (S2)
must be satisfied for each exchange of edges done on each structure Ex. How-
ever, it is also required that the edges that were removed in structure Ex1 for
some x1 ∈ S are not edges between the vertices of the first k layers of any struc-
ture Ex2 for some x2 ∈ S. We will not do the exact computation of the exact
number of non-isomorphic UPP graphs of order n obtained by this construc-
tion. This number is similar to that obtained for the first construction exchange
of edges. This construction generalizes the construction with an exchange of
out-edges of input-compatible vertex pair. Moreover, we can combine the two
constructions and also use generalized constructions with structures of different
sizes. The following problems are left as research problems.
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Problem 11.1. Find weak conditions to combine all the constructions that in-
volve the exchanging of edges. What is the lower bound on the number of UPP
graphs of order n obtained by such a combined construction?

Problem 11.2. Do there exist UPP graphs of order n ≤ 2k − 3 with alternating
cycles of length larger than 2k?

11.3 Cycles and factors in UPP graphs

We turn now to two basic concepts in digraphs; cycles and factors. Recall that a
factor in a digraph is a set of vertex-disjoint directed cycles that contain all the
vertices in the graph. A factor F in a graph G can be represented by its set of
cycles. The in-degree and the out-degree of each vertex in a factor F (considered
as a subgraph of G) is one. Since the in-degree and the out-degree of each vertex
in F is one, it follows that F can be represented with no ambiguity only by the
set of edges that are contained in the cycles of F . Hence, another equivalent
definition for a factor in a graph G = (V ,E) is as follows: a factor in a graph
G = (V ,E) is a subgraph G′ = (V ,E′), where E′ ⊆ E and each vertex in G′ has
in-degree one and out-degree one. The concept of a factor is extremely important
in UPP graphs.

The first interesting factor in a UPP graph G = (V ,E) of order n, is the
equivalent of the state diagram of the PCRn. The cycles in this factor are based
on the paths of length n from each vertex v ∈ V to itself. Each vertex v ∈ V is
on exactly one such path and all these paths are vertex-disjoint cycles. Therefore
these cycles form a factor. If G = Gn, then this factor is the state diagram of the
PCRn. Hence, in a UPP graph, this factor will be called the pure cycling factor.
With similar arguments as in the proof of Lemma 3.3, it can be proved that all
these cycles in the factor are of a length that is a divisor of n.

There are interesting results on factors in UPP graphs that connect them to
the alternating cycles in the graph. Moreover, we can easily find the number of
factors in a UPP graph.

Lemma 11.25. Let G=(V ,E) be a UPP graph and let C=[e1, e2, e3, e4, · · · , e�]
be an alternating cycle in G. If F is a factor in G, then, exactly one set of edges
from the two sets Ee(C), Eo(C) is contained in F and no edge from the other set
is contained in F .

Proof. Since the in-degree and the out-degree of a vertex in a UPP graph is two
and in-degree and the out-degree of a vertex in any factor is one, it follows that
half of the edges from E are contained in the cycles of F . Moreover, since the
out-degree of each vertex in F is one, it follows that exactly half of the edges
of an alternating cycle C are contained in F , where from each two consecutive
edges of C one edge must appear in F and the second one cannot appear in F .
Since the in-degree of each vertex in F is also one and the consecutive edges
in C are in opposite directions, it follows that exactly one set of edges from
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the two sets Ee(C), Eo(C) is contained in F and no edge from the other set is
contained in F .

The fact that all the edges of a UPP graph can be partitioned into edge-
disjoint alternating cycles (see Lemma 11.10) guarantees the existence of factors
in the graph. By Corollary 1.14, the number of distinct factors in Gn is 22n−1

and
this result is generalized for any UPP graph as follows.

Lemma 11.26. The number of distinct factors in a UPP graph G = (V ,E) is
a power of two. A UPP graph G has k alternating cycles if and only if G has
2k distinct factors.

Proof. Note again that half of the edges from E are contained in any factor F .
By Lemma 11.25, for each alternating cycle C exactly one set of edges of

either Ee(C) or Eo(C) is contained in F . If we choose the edges of either Ee(C)

or Eo(C) from each alternating cycle C, to form a subgraph G′ of G, then each
vertex of G′ will have an in-degree one and an out-degree one and a factor
F � G′ will be obtained. It follows that if G has k alternating cycles, then there
are 2k such choices and hence there exist 2k distinct factors in G.

From each alternating cycle, no two consecutive edges (which have different
directions) can be in a factor F . Hence, all the factors in G are constructed in the
same way of taking either Ee(C) or Eo(C) from each alternating cycle C. This
implies also that if there exist 2k distinct factors in G, then there are k alternating
cycles in G. Thus the claims of the theorem follow.

Corollary 11.9. The number of distinct factors in a UPP graph of order n that
has the buddy property is 22n−1

.

Proof. A UPP graph G of order n has 2n vertices and 2n+1 edges. Each edge is
contained in exactly one alternating cycle and since G has the buddy property, it
follows that this alternating cycle has length 4. Hence, the number of alternating
cycles in the graph is 2n−1. Therefore Lemma 11.26 implies that the number of
distinct factors in G is 22n−1

.

There are tight connections between some of the factors in a UPP graph. Let
F be a factor in a UPP graph G = (V ,E). Let Fc � {e : e ∈ E, e /∈ F}, i.e.,
Fc contains all the edges of G that are not contained in F .

Theorem 11.12. If F is a factor in a UPP graph G, then Fc is also a factor
in G.

Proof. Since the in-degree and the out-degree of each vertex of G is two and
the in-degree and the out-degree of each vertex of G in F is one, it follows that
the in-degree and the out-degree of each vertex of G in Fc is also one. Thus Fc

is a factor in G.
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In view of Theorem 11.12 the factor Fc will be called the complement factor
of F . In Gn, the complement factor of the pure cycling register is the factor of
the complemented cycling register whose cycles have lengths that divide 2n.
Unfortunately, this is not the case in general UPP graphs (see the UPP graphs in
Fig. 11.4).

Problem 11.3. Can factors and cycles of a UPP graph be analyzed in the same
way as those in Gn?

By Theorem 11.3, the integral graph I (G) of a UPP graph G of order n is a
UPP graph of order n + 1. Moreover, by Lemma 11.12, C is a cycle in G if and
only if I (C) is a cycle in I (G). This is the motivation to define the integral of a
factor F , I (F), by I (F) � {I (C) : C ∈ F}.
Lemma 11.27. If F is a factor in a UPP graph G = (V ,E) of order n, then
I (F) ∪ I (Fc) is a factor in the UPP graph I (G) of order n + 1.

Proof. By Theorem 11.3, if G is a UPP graph of order n, then I (G) is a UPP
graph of order n + 1. By the definition of the integral graph, we have that
I (G) = (V ′,E′), where V ′ = E. By Corollary 11.6, if C is a simple cycle in G,
then I (C) is a simple cycle in I (G), where the edges of G are the vertices
of I (G). This implies that the cycles of a factor in G form a set of vertex-
disjoint cycles in I (G). The factors F and Fc in G contain disjoint sets of edges
and hence in I (G) their two associated sets of vertices are disjoint. Moreover,
E = F ∪Fc and F ∩Fc = ∅ and hence in I (G) the two related sets of cycles
I (F) and I (Fc) contain all the vertices of I (G) and no repeated vertices. Thus
I (F) ∪ I (Fc) is a factor in I (G).

There is another possible definition for complement factors that is the usual
one for complements in the de Bruijn graphs. If there exists an isomorphism h

from G to itself under which r2 = h(r1), where r1 and r2 are the two self-loops
of G, then the digraph G will be called a self-complement UPP graph. Let G be
a self-complement UPP graph with the isomorphism h from G to itself, which is
not the identity isomorphism. If F is a factor in G, then the binary complement
factor F̄ of F is defined by

F̄ � {h(C) : C is a cycle in F},
where

h(C) = [(h(v0), h(v1)), (h(v1), h(v2)), . . . , (h(vr−1), h(v0))]
for each cycle

C = [(v0, v1), (v1, v2), . . . , (vr−1, v0)]
of F .
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11.4 Notes

The first comprehensive work on UPP graphs was done by Mendelsohn [26]
who also pointed to the connection to the adjacency matrices. His work started
with properties of the de Bruijn graph Gσ,n and followed by generalizations
(if possible) of these properties for σ -UPP graphs. UPP graphs were consid-
ered later in the connection of multistage interconnection networks by Sridhar
and Raghavendra [29,30] and further discussed in Goldfeld [11] and Goldfeld
and Etzion [12]. Another application of these graphs for cellular automata was
found by Boykett [3]. A comprehensive study on these graphs was given later
in Etzion [7]. All these studies considered the properties of the graph mainly
from a graph point of view, although some results were proved using algebraic
techniques, mainly in Mendelsohn [26]. In parallel, there has been much work
on n × n matrices A for which An = J , which represent adjacency matrices
of UPP graphs of order n. Such a direction of study was carried out, for ex-
ample, in Boykett [4], Curtis, Drew, Li, and Pragel [6], King and Wang [14],
Knuth [15], Kündgen, Leander, and Carsten [16], Ma and Waterhouse [22],
Ryser [27], Shader [28], Wang [32,33], and Wu, Jia, and Li [34]. Similar matri-
ces were also considered, for example, by Lam [19] and Lam and van Lint [20].

Section 11.1. Reachable trees have some interesting properties and it is ques-
tionable if the structure of these trees characterizes the associated UPP graphs.
The following related questions were discussed in Etzion [7]. How many distinct
vertices of V can be reached from a vertex v ∈ V with paths of length at most k,
where k < n, i.e., what is that size of V (T k(v))? What is the minimum number
of such vertices, and what is the maximum number? These questions were con-
sidered for k = n − 1, which is the most interesting case since |V (T n(v))| = 2n

by the unique path property. These two questions are associated with the set of
trees {T n−1(v) : v ∈ V } of a UPP graph G = (V ,E).

Theorem 11.13. Let G = (V ,E) be a UPP graph of order n,

1. For each vertex v ∈ V ,
∣∣V (T n−1(v))

∣∣ ≤ 2n − 1. Moreover, we have that∣∣V (T n−1(v))
∣∣ = 2n − 1 if and only if r → v, where r is a self-loop in G

(and clearly v is not a self-loop in G).
2. For each vertex v ∈ V ,

∣∣V (T n−1(v))
∣∣ ≥ 2n−1. Moreover, we have that∣∣V (T n−1(v))

∣∣ = 2n−1 if and only if v is a self-loop in G.

Theorem 11.13 can be examined in the context of de Bruijn graph Gn.
Clearly, from the self-loop vertex (α,α, . . . , α) = (αn), α ∈ {0,1}, of Gn, paths
of length n−1 or less cannot reach vertices that start with an ᾱ, but reach all the
vertices that start with an α with such a path. Hence,

∣∣V (T n−1(αn))
∣∣ = 2n−1.

For any other vertex v = (v1, . . . , vn−1, α), where one of the vis is not an α,
all the vertices whose representation starts with an α are reached by paths of
length n − 1 and at least one vertex that starts with an ᾱ is reached from v via a
path whose length is smaller than n−1. Hence,

∣∣V (T n−1(v))
∣∣ > 2n−1. From the
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vertex (α,α, . . . , α, ᾱ) = (αn−1ᾱ) all vertices except for (αn) are reached with
paths whose length is at most n − 1 and, hence,

∣∣V (T n−1(αn−1ᾱ)))
∣∣ = 2n − 1.

Similarly, for each other vertex v in Gn we have that
∣∣V (T n−1(v))

∣∣ ≤ 2n − 1.
We would like also to apply the results from the previous sections for σ -UPP

graphs of order n for which σ > 2. The line graph of a σ -UPP graph of order n

is a σ -UPP graph of order n + 1 with a similar proof to that of Theorem 11.1.
The definition of an alternating cycle for a larger alphabet is the same as for the
binary alphabet, but for σ > 2 a more generalized definition will be required and
it will be given when factors in these graphs will be considered.

The proof for the length of an alternating cycle cannot be generalized based
on the same arguments given in the proof of Lemma 11.9. By definition, the
length of an alternating cycle is even, but the proof of Lemma 11.9 might not
be generalized at all. The proof of Lemma 11.9 is based on the definition of a
reachable tree and on Lemma 11.8 that are generalized straightforwardly for a
σ -UPP graph, where the only difference is that the out-degree of each vertex in
the tree is σ compared to two in the binary case. Lemma 11.8 has a straightfor-
ward generalization with a similar proof to that of Lemma 11.8.

Lemma 11.28. If v is a vertex of a σ -UPP graph G = (V ,E) and
v → v1, v → v2, . . ., v → vσ are σ distinct edges in G, then

⋃σ
i=1 Rn−1(vi) = V

and Rn−1(vi) ∩ Rn−1(vj ) = ∅, for each 1 ≤ i < j ≤ σ .

All these generalizations were considered in Etzion [7]. As noted before,
the first paper, written by Mendelsohn [26], examined UPP graphs and their
properties from both algebraic and combinatoric points of view. More algebraic
properties of such graphs were analyzed in Malyshev [23] and Malyshev and
Tarakanov [24]. The algorithm to check whether two UPP graphs are isomor-
phic was given in Goldfeld and Etzion [12]. Corollaries 11.2 and 11.3 were
stated in Mendelsohn [26] who claimed that they can be proved by elemen-
tary matrix theory (for example, the connection between the trace of a matrix
and its eigenvalues are required). The proofs that we gave are combinatorial,
as was done throughout the book, and they do not require to define more ele-
ments of matrix theory and linear algebra. The buddy property was defined by
Agrawal [2] in the context of interconnection networks, which is the topic of
the next chapter. It was called the Heuchenne condition since it was also defined
by Heuchenne [13]. This was independently considered before in graph theory
and especially in connections to line graphs. Alternating cycles were considered
first in Sridhar and Raghavendra [29] who also defined the set of reachable ver-
tices Ri(v). Reachable trees and their properties are considered by Etzion [7].

The adjacency matrix A of a UPP graph of order n satisfies An = J . This
type of matrix and its associated matrices for which An = λJ were exten-
sively studied, especially those with some circulant structure, e.g., see King and
Wang [14], Ma and Waterhouse [22], Trefois, van Dooren, and Delvenne [31],
Wang [32,33], and Wu, Jia, and Li [34]. Similar graphs for which the adja-
cency matrix A satisfies An = J − I were studied, for example, in Lam and
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van Lint [20]. These papers are more concerned with the algebraic structure of
the adjacency matrix A and not with the graphical properties or constructions
of non-isomorphic UPP graphs. Other papers, like the one by Gimbert [10],
considered other types of adjacency matrices, like an adjacency matrix A for
which Ak + Ak+1 + · · · + An = J . The solution for the matrix equation A1 = J

implies that A = J and the associated UPP graph is an n-UPP graph of or-
der 1, which is a complete graph with n vertices, in which each vertex is a
self-loop vertex. It was proved by Knuth [15] that solutions for the matrix equa-
tion A2 = J , where A is a binary matrix, is equivalent to the existence of a
central groupoid that is an algebraic system with one binary operation satisfying
the identity (x · y) · (y · z) = y for all x, y, and z in the system. These matrices,
groupoids, and other generalizations were also considered in a few papers, e.g.,
Curtis, Drew, Li, and Pragel [6] Fletcher [8,9], Lam [19], and Ryser [27]. They
also have some surprising connections to cyclic difference sets, as was presented
in Lam [17,18]. The idea of a groupoid was generalized for a matrix A for which
An = J and n > 2 in Mendelsohn [25]. It was further analyzed in Fletcher [8].

Section 11.2. Non-isomorphic σ -UPP graphs of order n can be constructed sim-
ilarly to those in Section 11.2. In the paper of Mendelsohn [26], it was already
mentioned that the number of solutions for An = J is very large. For example,
he mentioned that for σ = 3 and n = 2, there are 6 non-isomorphic solutions
given by the following six 9 × 9 adjacency matrices over F3:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 1 1

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 1 1

1 0 1 0 1 0 0 0 0

0 1 0 1 0 1 1 0 0

0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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A5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1

0 0 0 0 0 1 1 1 0

0 1 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 0 0 0 1 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1

1 0 1 0 0 0 0 1 0

0 0 0 1 1 1 0 0 0

0 1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Construction for a large set of UPP graphs of order n, using graph theory, i.e.,
using the exchange operation, was given first by Sridhar and Raghavendra [29],
who defined the concept of input-compatible vertex pairs. An improvement
based on independent sets of input-compatible vertex pairs was carried out in
Goldfeld and Etzion [12]. They found the connection of their asymptotic num-
ber to the size of the largest independent set in the de Bruijn graph. In parallel,
Fletcher [8,9] considered the same method of exchange, but using the adjacency
matrix. He has considered switching zeros and ones in a 2×2 sub-matrix of A to
obtain non-isomorphic adjacency matrices of UPP graphs, but the number of ad-
jacency graphs obtained was not computed. The size of the largest independent
set in the de Bruijn graph was considered first in Bryant and Fredricksen [5] who
looked at a slightly different problem that also yields an independent set. The
bound given in Theorem 11.8 was proved by Ahlswede, Balkenhol, and Khacha-
trian [1]. The same bound was found later in Lichiardopol [21] with a more
general result on the size of independent sets of iterated line graphs. Further
construction with alternating cycles of length 12 was given by Goldfeld [11].
The more generalized construction that yields UPP graphs with alternating cy-
cles of different sizes was presented in Etzion [7].

Section 11.3. The first question to be answered is the number of factors in a
σ -UPP graph of order n. For σ = 2 the answer is related to the number of alter-
nating cycles in the graph. Hence, we would like to generalize the definition of
alternating cycles for σ -UPP graphs.

The definition of an alternating cycle for a larger alphabet is the same as
for the binary alphabet. The definition of the integral graph (line graph) is the
same for all σ -UPP graphs. However, for the derivative of a UPP graph, we
have to generalize the definition of the buddy property for σ -UPP graphs, where
σ > 2, since the definition referring to alternating cycles in this case, is not good
enough.

Definition 11.4. A σ × σ alternating subgraph, in a digraph G, is a complete
bipartite digraph with two sides A and B, where each one of the two sides has
σ vertices. The edges are directed from vertices of A to vertices of B.

In the binary case such a 2 × 2 alternating subgraph is exactly an alternating
cycle of length four. A σ -UPP graph G has the buddy property if each edge of G
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is contained in exactly one σ × σ alternating subgraph (note, that if σ > 2, then
each edge is contained in a few alternating cycles.). Now, the definition of the
derivative graph for a UPP graph with the buddy property is generalized trivially
to σ -UPP graphs from that for the binary case, where the σ × σ alternating
subgraphs take the role of the alternating cycles of length four. Note that a vertex
of the σ -UPP graph G can appear on the two sides of some σ × σ alternating
subgraph associated with G.

In the binary case, the set of edges in each alternating cycle is partitioned into
two subsets, where each factor contains all the edges from one of these subsets
and no edge from the other subset. For σ -UPP graphs with the buddy property
each perfect matching of a σ × σ alternating subgraph can be used to generate
a factor. If we choose a perfect matching from each σ × σ alternating subgraph,
then the union of the chosen perfect matchings forms a factor. Moreover, all the
factors in a σ -UPP graph with the buddy property are formed in this way. There
are σ ! distinct perfect matchings in any σ × σ alternating subgraph. Therefore
while the generalization of Lemma 11.26 is not straightforward (since not all
the edges lie in a σ × σ alternating subgraph), Corollary 11.9 is generalized as
follows.

Theorem 11.14. The number of distinct factors in a σ -UPP graph of order n

that has the buddy property is (σ !)σn−1
.

Proof. A σ -UPP graph of order n contains σn+1 edges and each σ × σ alter-
nating subgraph contains σ 2 edges. Furthermore, since the graph has the buddy
property, it follows that each edge is contained in exactly one σ × σ alternat-
ing subgraph. Hence, a σ -UPP graph of order n with the buddy property has
σn−1 pairwise edge-disjoint σ × σ alternating subgraphs. Each perfect match-
ing in an alternating subgraph can be used to form a factor. There are σ ! distinct
perfect matchings, from the σ inputs to the σ outputs, in each such alternating
subgraph. Therefore the number of distinct factors in a σ -UPP graph of order n

that has the buddy property is (σ !)σn−1
.

For each factor F of a binary UPP graph, there exists a complement fac-
tor Fc. There is no obvious generalization for the concept of the complement
factor for σ -UPP graphs (although some generalizations can be given). The
complement factor is used in Lemma 11.27. Fortunately, the lemma can be gen-
eralized for σ -UPP graphs without the definition of complement factors. This
generalization is based on a partition of the edges in each σ × σ alternating
subgraph into σ pairwise disjoint perfect matchings.

Lemma 11.29. Assume G is a σ -UPP graph of order n with the buddy property.
Assume further that each σ × σ alternating subgraph of G is partitioned into
σ pairwise disjoint perfect matchings. For each i, 1 ≤ i ≤ σ , let Fi be the union
of the edges in the ith perfect matching (of this partition) from each alternating
subgraph of G. Then,
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1. Fi is a factor of G.
2.

⋃σ
i=1 I (Fi ) is a factor in I (G).

Proof.

1. Each vertex of G is contained exactly once in the left side of one σ × σ alter-
nating subgraph and exactly once in the right side of one σ × σ alternating
subgraph (when each alternating subgraph is considered as a complete bi-
partite digraph). Hence, each vertex has in-degree one and out-degree one
in Fi , and therefore Fi is a factor of G.

2. For the given partition, each edge of G is contained in exactly one factor Fi ,
1 ≤ i ≤ σ , of G. This implies that each vertex of I (G) is contained in exactly
one set I (Fi ). Moreover, for each cycle C of G, I (C) is a cycle of I (G). Thus⋃σ

i=1 I (Fi ) is a factor in I (G).

In Chapter 3 we considered the number of simple cycles of a given length
in Gn. It is natural to ask whether the results in Chapter 3 can be generalized to
any UPP graph of order n. If 1 ≤ � ≤ n, then the number of simple cycles (either
all the cycles or just the simple ones) of length � in a UPP graph of order n does
not depend on the graph. The analysis of cycles and factors in UPP graphs was
done in Etzion [7]. In Mendelsohn [26] it was proved that the number of simple
cycles of length � ≤ n in a UPP graph of order n is the same for all UPP graphs.
This proof is presented in the following results.

Lemma 11.30. If G = (V ,E) is a σ -UPP graph of order n, A is its adjacency
matrix, and � is an integer, 1 ≤ � ≤ n, then A� is a binary matrix, where in the
main diagonal of A� there are exactly σ� ones.

Proof. Let A be the adjacency matrix of G. Since An = J , it follows that

An+1 = AJ = σJ = σAn.

Hence, A satisfies the polynomial equation xn+1 −σxn = 0 and therefore A has
two characteristic roots, 0 and σ , where the root σ has multiplicity 1 and the
root 0 has multiplicity σn − 1. For � ≤ n we have that the characteristic roots
of A� are σ� and 0. Since A� is a binary matrix, it follows that A� has exactly
σ� ones on the main diagonal.

Corollary 11.10. The number of distinct closed paths of length � ≤ n in a
σ -UPP graph of order n is σ�.

Now, Theorem 3.8 and its proof can be generalized, as was pointed out in
Mendelsohn [26].

Theorem 11.15. The number of simple cycles of length � in a σ -UPP graph
G = (V ,E) of order n, where � ≤ n, is

1

�

∑
d|�

μ

(
�

d

)
· σd.
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Corollary 11.11. The number of cycles in the pure cycling factor of a σ -UPP
graph of order n is

1

n

∑
d|n

φ(d) · σn/d .

For � > n, Theorem 11.15 cannot be extended. It was shown in Etzion [7]
that the number of cycles of length � is not the same for all the UPP graphs.
This claim is already true for � = n + 1. On the other hand, the number of
closed paths of length � > n that starts with a given vertex v of the UPP graph
does not depend on the graph.

Lemma 11.31. If G = (V ,E) be a σ -UPP graph of order n, then the number
of closed paths of length � ≥ n that start with a given vertex v ∈ V is σ�−n.

Proof. By definition, the claim is true for � = n and hence we assume that � > n.
By Lemma 1.14, if A is the adjacency matrix of G, then A�(v,u) = k, v,u ∈ V ,
if there exist exactly k closed paths that start with the vertex v and end with the
vertex u. By definition, An = J and hence

A� = A�−n · An = A�−n−1 · A · J = A�−n−1 · σ · J = σ�−nJ

and the claim of the lemma follows.

It appears that usually the number of cycles of a given length �, where � > n

in a UPP graph of order n, is not the same as in Gn. Another distinction between
UPP graphs and the de Bruijn graph is the factor with the largest number of cy-
cles. Factors with more cycles than in the PCRn of Gn (see Section 3.3) exist in
other UPP graphs of order n. The first result is demonstrated by using the ex-
change operation on G3 and constructing the line graph from the obtained UPP
graph of order 3 (see Fig. 11.4), which can be also obtained by two exchange
operations on G4. By taking the line graph of the obtained UPP graph of order
4 the second result is obtained.
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Chapter 12

Interconnection networks
Shuffle-exchange and permutation networks, layouts

Starting towards the end of the 1970s, parallel computations were becoming
more and more attractive for the computer-science community. To apply par-
allel computations we have to design a model for the implementation of such
computations. Such a model can be only of theoretical value or can be imple-
mented with associated computer architecture. The models that were proposed
are completely different from those that are being implemented in the 21st cen-
tury. Nevertheless, there was an increasing interest in a model that is closely
related to or derived from the de Bruijn graph. An interconnection network is
just a network (graph) for parallel computation in which each vertex is a process-
ing unit. Such a processing unit could be either a processor with some limited
computational power or just a switching element (box). As a switching element,
the vertex receives a few inputs and transfers a few outputs. The inputs come
either from the system or outputs of other switching elements. The outputs are
transferred either to the system or to the inputs of other switching elements. Usu-
ally, each vertex has a small in-degree and a small out-degree. When the vertices
are processors that have limited computational power, they transfer information
(or packets) on their edges to their adjacent vertices according to some specified
rules.

Section 12.1 is devoted to the shuffle-exchange network, which is essen-
tially a de Bruijn network (graph) from a different point of view. The network
will be defined and the operations performed with the network will be discussed.
The main part of this section will be devoted to the realization of permutations
with the shuffle-exchange network. In particular, permutations that are associ-
ated with linear transformations will be implemented on the network.

The implementation of permutations on the shuffle-exchange network is best
understood when the network is presented as a multistage interconnection net-
work. This representation is the topic of Section 12.2, but it is important to make
it clear that the shuffle-exchange network and its multistage version are different
networks. The unit of computation in a multistage interconnection network is a
switching box whose computation power is much weaker than the computation
power of each processor in the shuffle-exchange network. It will be discussed
how switching boxes are used in these networks. A few more interesting multi-
stage interconnection networks will be defined in Section 12.2. Routing of the
information from the inputs of the whole network to the outputs of the whole
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network will be discussed for each of these networks. It will be shown that al-
though the definitions of these networks are different, all these networks are
isomorphic.

In Section 12.3, it will be discussed how to implement permutations on
concatenations of the multistage interconnection networks that were defined.
A formal definition for the concept of a permutation network will be given. We
will consider the minimum number of switching boxes that are required to real-
ize all the permutations on such a network.

Networks are implemented on chips and for this, a layout of the network is
required. Various types of layouts are considered in Section 12.4. The layouts
are demonstrated on the shuffle-exchange network and the de Bruijn graph.

12.1 The shuffle-exchange network

The shuffle-exchange (SE in short) network is a graph that is very similar to the
de Bruijn graph. The SE network G = (V ,E) is a directed graph with 2n vertices
represented by the 2n binary words of length n. There are two types of edges
in E. The first type of edges are the shuffle edges. A shuffle edge is from a ver-
tex (x1, x2, . . . , xn) to the vertex (x2, . . . , xn, x1). These edges are also edges in
de Bruijn graph Gn, where they form the edges in the state diagram of the PCRn,
and the associated factor is the necklaces factor. The second type of edges are
exchange edges. An exchange edge is between any two vertices represented by
the binary n-tuples (x1, . . . , xn−1,0) and (x1, . . . , xn−1,1), where xi ∈ {0,1},
1 ≤ i ≤ n − 1. This edge can be viewed as an undirected edge or as two anti-
parallel edges (an edge in each direction between the associated vertices). This
edge connects between companion vertices and hence for a vertex X for which
X → Y and X → Y ′ in the de Bruijn graph, the SE network contains one of
these edges as a shuffle edge, and the second edge Y ↔ Y ′ as an exchange edge.
The network is designed to implement parallel computations. Each vertex is re-
garded as a processor that can perform some basic operations like comparison,
addition, multiplication, etc. The network operates in passes, where each pass
is composed of two operations associated with the two types of edges, shuffle
and exchange. At each step, each processor holds some information (a packet).
In the shuffle phase of a pass, each processor (x1, x2, . . . , xn) transfers its in-
formation to the vertex represented by (x2, . . . , xn, x1) via the shuffle edge. In
the exchange phase, the processors (x1, . . . , xn−1,0) and (x1, . . . , xn−1,1) may
exchange their information, independent of other pairs of this form. One can use
the de Bruijn graph Gn as a network of processors for the same purpose. In one
pass, each vertex (processor) delivers its information (the packet) via one of its
outgoing edges in a way that each vertex receives one packet. This is equivalent
to one pass in the SE network. It is also easy to verify that each pass can be
associated with a factor of Gn whose edges are those on which the processors
of Gn deliver their packets. Each processor delivers a packet associated with
an out-degree of one and each processor receives a packet associated with an
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in-degree of one. The number of possible distinct passes is 22n−1
since the shuf-

fle operation is deterministic, while on each one of the 2n−1 exchange edges an
exchange can be either performed or not performed resulting in 22n−1

possible
distinct passes that by Corollary 1.14 is the number of distinct factors in Gn.

Between the shuffle phase and the exchange phase of a pass, there is a com-
putational phase during which the active pairs of the upcoming exchange are
determined. Before the first pass, there is a preprocessing stage. The overall
procedure consisting of the preprocessing stage and the passes is often referred
to as the routing algorithm.

An important problem in this context is the design of an efficient routing al-
gorithm that implements permutations in the SE network with a minimal number
of passes. In general, a transformation in the SE network associates with each
processor a destination processor for information transfer. Each destination pro-
cessor will receive information from exactly one source processor and hence
the transformation defines a permutation. We will start first to describe how to
realize nonsingular linear transformation, i.e., permutations for which each bit
of the destination processor is a predetermined linear combination of the bits of
the source processor. This linear combination is the same one for each proces-
sor. Using the ideas of such a routing algorithm for bit permutation, will enable
us to design a simple routing algorithm that realizes any given permutation in
3n − 3 passes.

A routing of information from a source processor (x1, x2, . . . , xn) to a des-
tination processor (y1, y2, . . . , yn) can be done with exactly n passes. We just
have to look at the path x1x2 · · · xny1y2 · · · yn, where each n + 1 consecutive
digits represent a pass. If the n + 1 consecutive bits are z1z2 · · · znzn+1, then
a shuffle operation will transfer the information from vertex (z1, z2, . . . , zn) to
the vertex (z2, . . . , zn, zn+1) if zn+1 = z1. A shuffle operation followed by an
exchange will transfer the information from the vertex (z1, z2, . . . , zn) to the
vertex (z2, . . . , zn, zn+1) if zn+1 �= z1. This routing path is equivalent to a path
of length n in Gn.

Routing information from a source processor to a destination processor is
one possible task. A more complicated task is to route information in parallel,
where each processor has a destination, and every two distinct processors have
two distinct destinations, and during this routing at each step, no two packets
are stored in the same processors. This routing is, in simple words, a realization
of a permutation. The realization of permutations in the SE network will be
described in terms of some matrices as follows.

Definition 12.1. A binary matrix A, of size N × k, N = 2n, k ≥ n, is balanced
if all the rows in any projection of n consecutive columns of A are distinct.

Definition 12.2. The standard matrix is an N × n matrix M whose ith row is
the binary representation of i, 0 ≤ i ≤ N − 1.

The general problem of realizing a permutation in the SE network can be
written as follows. Given a balanced N × n matrix A, find a matrix X (possibly
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empty) such that the matrix

[M X A]
is a balanced matrix. Each n + 1 consecutive columns in such a matrix repre-
sents a pass in the SE network, where in each row of such n + 1 columns, the
first n bits represent the source processor and the last n + 1 bits represent the
destination processor in one pass.

Theorem 12.1. An N × k, k > n, balanced matrix is equivalent to k − n passes
in the SE network.

Lemma 12.1. There are permutations that for their realization with an N × k

matrix X, we must have k ≥ n − 1,

Proof. Consider the matrix MR , in which each row is reversed compared to M .
Since the last column of M is equal to the first column of MR , it follows that if
[M X MR] is balanced, where X is an N × k matrix, then k ≥ n − 1.

Lemma 12.1 implies that even a simple permutation associated with a bit
reversal of the representation of each processor cannot be obtained with less
than 2n − 1 passes.

The n × n identity matrix I will be identified with its column vectors, i.e.,
I = [I (1) I (2) · · · I (n)], where in I (j) the unique one is in the j th row.

Lemma 12.2. If A is an N × n matrix and T is an n × n nonsingular matrix,
then A · T is balanced if an only if A is balanced.

Proof. Assume first that A is balanced and assume, on the contrary, that A · T is
not balanced, i.e., there exist two vector rows u and v, u �= v, in A such that
u ·T = v ·T, i.e., the multiplication of two different rows from A by T yields the
same row. Since T is nonsingular, it follows that there exists an n × n invertible
matrix T−1. Since u ·T = v ·T, it follows that u ·T ·T−1 = v ·T ·T−1. However,
since T ·T−1 = I, it follows that u = v, a contradiction. Hence, A ·T is balanced.

Assume now that A · T is balanced. Since T−1 is also a nonsingular matrix
and A · T is a balanced matrix, it follows by the first part of the proof that
A · T · T−1 = A is a balanced matrix.

Definition 12.3. Let T be an n × n nonsingular binary matrix and let M be the
N × n standard matrix. The permutation defined by the matrix M · T is called a
nonsingular linear transformation

Definition 12.4. An n×m, n ≤ m, matrix R is n-regular if every n consecutive
columns of R are linearly independent.

Our main task in this section is to present an algorithm for the realization of
linear transformations in the SE network and in particular to realize bit permu-
tations.
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Given Lemma 12.2 and Theorem 12.1, our task to find a balanced matrix
[M X A], given the two N ×n balanced matrices M and A such that A = M ·T,
where T is a nonsingular matrix. We will try to solve the following equivalent
problem. Given a nonsingular n × n matrix T, find a matrix Y (possibly empty)
such that [I Y T] is an n-regular matrix.

Theorem 12.2. The N × k matrix [M X A] is a balanced matrix if and only if
the n × k matrix [I Y T] is n-regular, where [M X A] = M · [I Y T].

For the rest of this section, consider an n×n matrix B=[B(1) B(2) · · ·B(n)],
where each column B(i) has either one or two nonzero entries. The matrix B
can be viewed as the incidence matrix of the undirected graph G(B) defined as
follows:

Definition 12.5. The graph G(B) has n + 1 vertices 0,1,2, . . . , n and n edges
e(1), e(2), . . . , e(n), where e(k) joins vertices i > 0 and j > 0 if B(k) has
nonzero entries in rows i and j , and e(k) joins vertices i > 0 and 0 if B(k)

has a nonzero entry only in row i.

Lemma 12.3. The vectors B(1),B(2), . . . ,B(n) are linearly independent if and
only if G(B) is a tree.

Proof. Assume first, on the contrary, that B(1),B(2), . . . ,B(n) are linearly in-
dependent and G(B) is not a tree. Hence, G(B) contains a simple cycle C. Each
vertex v �= 0 on the cycle C is contained in exactly an even number (0 or 2)
of edges on the cycle. Hence, the entry v is one in an even number of column
vectors associated with the edges of C. Therefore the columns associated with
the edges of C are linearly dependent, a contradiction. Thus G(B) is a tree.

Assume now that the graph G(B) is a tree and consider the n column vec-
tors B(1),B(2), . . . ,B(n). Let v be a leaf in G(B), let {u,v} be the only edge
that contains v in G(B), and let B(v) be its associated column vector. Clearly,
B(v) is linearly independent of the other columns since the entry of v is one
only in B(v). Hence, we can remove B(v) and the edge {u,v} from G(B) to ob-
tain a subtree of G(B) and continue with this subtree and a smaller set of column
vectors. Thus by induction, we will obtain that the vectors B(1),B(2), . . . ,B(n)

are linearly independent.

Lemma 12.4. If B(1),B(2), . . . ,B(n) are linearly independent vectors, then
there exist an integer k, 1 ≤ k ≤ n, and binary coefficients bj , 1 ≤ j ≤ n − 1,
such that

I (k) = B(n) +
n−1∑
j=1

bjB(j). (12.1)

Proof. The matrix B = [B(1) B(2) · · ·B(n)] is nonsingular. Hence, there exists
a matrix Q = [Q(1) Q(2) · · ·Q(n)] such that B · Q = I, i.e., Q = B−1. Since
Q is nonsingular, it follows that there exists at least one k such that the last entry
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of Q(k) is 1. Since B · Q = I, it follows that I (k) = B · Q(k). If the kth column
of Q is (q1,k, q2,k, . . . , qn,k = 1)tr, then we have

I (k) = B(n) +
n−1∑
j=1

qj,kB(j)

and hence the claim of the lemma follows.

Lemma 12.5. If B(1),B(2), . . . ,B(n) are linearly independent vectors, and k,
1 ≤ k ≤ n, is an integer satisfying Lemma 12.4, then, B(0),B(1), . . . ,B(n − 1)

are linearly independent, where

B(0) = I (k) +
n−1∑
j=1

cjB(j) (12.2)

and cj ∈ {0,1}, 1 ≤ j ≤ n − 1, are any n − 1 coefficients.

Proof. Assume, on the contrary, that B(0),B(1),B(2), . . . ,B(n − 1) are lin-
early dependent. Then, since the last n − 1 vectors are linearly independent, it
follows that there exist n − 1 coefficients dj , 1 ≤ j ≤ n − 1, dj ∈ {0,1}, such
that

B(0) =
n−1∑
j=1

djB(j). (12.3)

From Eqs. (12.1), (12.2), and (12.3), we obtain that

B(n) =
n−1∑
j=1

(bj + cj + dj )B(j),

which contradicts the linear independence of the B(j)s, 1 ≤ j ≤ n.

Based on Lemmas 12.3, 12.4, and 12.5, we have the following construction
of a matrix Y = [Y(1) Y (2) · · ·Y(n−1)] such that [I Y T] is an n-regular matrix
for a given n × n nonsingular matrix T = [T (1) T (2) · · ·T (n)].
Construction 12.1. Let B0 = T and let

Bm = [Y(n − m) · · · Y(n − 1) T (1) · · · T (n − m)], 1 ≤ m ≤ n − 1.

Given Bm, 0 ≤ m < n − 1, construct Y(n − m − 1) as follows:

1. If k = n−m−1 satisfies Lemma 12.4, then set Y(n−m−1) := I (n−m−1).
2. If k = n − m − 1 does not satisfy Lemma 12.4, then find an integer � that

satisfies Lemma 12.4 and set Y(n − m − 1) := I (n − m − 1) + I (�).
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Lemma 12.6. The matrix

[I (1) · · · I (n) Y (1) · · · Y(n − 1) T (1) · · · T (n)]
obtained via Construction 12.1 is n-regular.

Proof. The n-regularity of [Y(1) · · · Y(n − 1) T (1) · · · T (n)] follows directly
from Lemma 12.5. To complete the proof, it suffices to show that the matrix
[I (1) · · · I (n) Y (1) · · · Y(n − 1)] is n-regular. Let C1 = I and let

Cm = [I (m) · · · I (n) Y (1) · · · Y(m − 1)], 1 ≤ m ≤ n.

We will show that linear independence among the columns of Cm, 1 ≤ m < n

implies the same for Cm+1. Clearly, the columns of C1 = I are linearly indepen-
dent. Suppose Cm, m ≥ 1, is nonsingular and consider

Cm+1 = [I (m + 1) · · · I (n) Y (1) · · · Y(m)].
By Construction 12.1, either Y(m) = I (m) or Y(m) = I (m) + I (�) for some
� �= m. In the first case, it is clear that Cm+1 is nonsingular. In the latter case
note that Cr , 1 ≤ r < n, has at most two nonzero entries in every column, and,
hence, we can view Cr as the incidence matrix of the graph G(Cr ) accord-
ing to Definition 12.5. By Lemma 12.3, since Cm is nonsingular, it follows
that G(Cm) is a tree. G(Cm+1) is obtained from G(Cm) by deleting the edge
{0,m} (associated with the column I (m)) and inserting the edge {m,�} (corre-
sponding to the column I (m) + I (�)). If G(Cm+1) contains a cycle, then, since
Y(1), . . . , Y (n − 1) are linearly independent, it follows that the cycle must in-
clude the vertex 0. Since G(Cm) is a tree, it follows that deleting the edge {0,m}
from G(Cm) leaves a graph with no path between the vertices 0 and m. Hence,
inserting the edge {m,�} cannot generate a cycle that contains the vertex 0. Thus
G(Cm+1) is a tree, and Cm+1 is a nonsingular matrix.

To find an integer k that satisfies Lemma 12.4, we need an efficient algorithm
to invert a matrix. There are such algorithms, but the processors of the SE net-
work are too weak in their computational power to perform such a task. Hence,
it is assumed that a slightly stronger machine is connected to all the processors
of the SE network. This machine is capable of implementing efficiently an algo-
rithm to invert a matrix and send the relevant information to all the processors
of the SE network. Now, we can propose a procedure to realize linear transfor-
mations. In this procedure each processor of the SE network has a packet and
the following information:

1. An (n − 1)-tuple U = (u(1), u(2), . . . , u(n − 1)), where u(j) = 0 if
Y(j) = I (j) and u(j) = k if Y(j) = I (j) + I (k).

2. Two n-tuples S and F = S · T, S = (s(1), . . . , s(n)), F = (f (1), . . . , f (n)),
whose initial values represent, respectively, the ID of the said processor and
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that of the destination processor, as defined by the given linear transforma-
tion. In the shuffle and the exchange operations that follow, each processor
transfers its current S and F and receives new values for S and F . In other
words, the packet of the processor contains also the source of the packet S

and its destination F .

Procedure 1 (linear transformations):

Given the linear transformation that is defined by a nonsingular matrix

T = [T (1) T (2) · · · T (n)],
let B0 = T and let

Bm = [Y(n − m) · · · Y(n − 1) T (1) · · · T (n − m)].
Having computed

Br = [Y(n − r) · · · Y(n − 1) T (1) · · · T (n − r)], r ≥ 0,

apply the algorithm to generate the inverse Q = [Q(1) Q(2) · · · Q(n)] of Br . If
the last entry of Q(n − r − 1) equals 1, then set Y(n − r − 1) := I (n − r − 1)

and u(n − r − 1) := 0; otherwise, find an integer k such that the last entry
of Q(k) equals 1; set Y(n−r −1) := I (n−r −1)+I (k) and u(n − r − 1) := k.
After u(1), u(2), . . . , u(n − 1) are generated, they are transferred to each of the
N processors of the SE network. Regarding the n-tuples S = (s(1), . . . , s(n))

and F = (f (1), . . . , f (n)), stored with each processor, perform the following:
s(0) := 0;
for i := 1 to n − 1 do

{shuffle;
if s(u(i)) �= 0 then exchange}

shuffle;
if s(n) �= f (1) then exchange;
for i := 1 to n − 1 do

{shuffle;
if f (i + 1) �= s(i) + s(u(i)) then exchange} �

We recall again that the shuffle and exchange are executed in parallel by all
the processors.

Theorem 12.3. Procedure 1 realizes a linear transformation in 2n − 1 passes
using a routing algorithm whose number of steps depends on inverting an n × n

matrix. The number of shuffle operations is 2n − 1 and there are 2n − 1 com-
parisons per processor to decide whether to perform an exchange.

Proof. To show that Procedure 1 realizes the linear transformation associated
with the matrix T, it suffices to show that it implements the moves implied by
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the balanced matrix

M · B̂ = M[I Y(1) · · ·Y(n− 1) T] = [M (M ·Y(1)) · · · (M ·Y(n− 1)) (M · T)].
That is, for a given processor S = (s(1), . . . , s(n)) and its destination processor
F = (f (1), . . . , f (n)), the path in the SE network via which the transformation
F = S · T is implemented by Procedure 1 is given by the sequence of processors
corresponding to successive n-tuples from the row

SB̂ = s(1), · · · , s(n), s(1)+s(u(1)), . . . ,s(n−1)+s(u(n−1)), f (1), . . . ,f (n).

To this end, note that for each row S · B̂, Procedure 1 performs an exchange if
and only if the leading bit of the current processor differs from the last bit of the
succeeding processor.

The claimed complexity of Procedure 1 is obtained as follows. The n-regular
matrix B̂ = [I Y(1) · · ·Y(n − 1) T] is generated by n − 1 applications of the
inversion of an n × n matrix. Therefore this algorithm dictates the complexity
of this part. The (n − 1)-tuple U = (u(1), . . . , u(n − 1)) is transferred to each
of the N processors of the SE network on a bus in O(n) steps. The 2n − 1
passes correspond to the last 2n− 1 columns of M · B̂ and each pass is executed
in constant time. Thus the overall complexity of the procedure is n times the
complexity of the inversion algorithm.

The permutations on the N processors defined by a linear transformation
are important, but for some practical reasons, the linear transformations defined
by permutation matrices are the most important ones. In this case, where the
matrix T is a permutation matrix, we can speed the process of realizing the
linear transformation. We will show that we can realize the associated linear
transformation defined as a bit permutation transformation in O(n) steps. The
main reason that the realization will be more efficient is that there will be no
need to invert matrices.

Definition 12.6. The n × n matrix T = [T (1) T (2) · · ·T (n)] is called a permu-
tation matrix if T (j) = I (p(j)), 1 ≤ j ≤ n, where p(1),p(2), . . . , p(n) is an
arbitrary permutation on the integers 1,2, . . . , n. In other words, the matrix T is
obtained from a permutation on the columns of the n × n identity matrix.

Based on Lemma 12.3, we use the following construction of the matrix
Y = [Y(1) Y (2) · · ·Y(n − 1)] such that [I Y T] is an n-regular matrix for a given
permutation matrix T = [I (p(1)) I (p(2)) · · · I (p(n))].
Construction 12.2. Let B0 = T and let

Bm = [Y(n − m) · · · Y(n − 1)I (p(1)) · · · I (p(n − m))], 1 ≤ m ≤ n − 1.

Along with the columns of Y we construct a sequence of graphs Gi , 0 ≤ i≤ n −1.
G0 is the edgeless graph of n isolated vertices 1,2, . . . , n. Given Bm and Gm,
0 ≤ m ≤ n − 1, construct Y(n − m − 1) and Gm+1 as follows.
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If the addition of edge {n − m − 1,p(n − m)} to Gm creates a cycle, then set
Y(n − m − 1) := I (n − m − 1) and Gm+1 := Gm; if it does not create a cycle
in Gm, then set Y(n − m − 1) := I (n − m − 1) + I (p(n − m)) and obtain Gm+1

by adding the edge {n − m − 1,p(n − m)} to Gm.

Lemma 12.7. The matrix

[I (1) · · · I (n) Y (1) · · · Y(n − 1) I (p(1)) · · · I (p(n))]

obtained via Construction 12.2 is an n-regular matrix.

Proof. First, observe that every column of the matrix Br , 0 ≤ r ≤ n − 1, has
at most two nonzero entries, and thus it can be viewed as the incidence ma-
trix of the graph G(Br ) defined in Definition 12.5. Note that Gr , as defined in
Construction 12.2, can be obtained from G(Br ) by deleting from the latter the
vertex 0 and all the edges incident with this vertex. Note further that G(Bm+1)

is obtained from G(Bm) by the following two operations:

(i) Deletion of the edge {0,p(n − m)}.
(ii) Addition of either the edge {0, n−m−1} or the edge {p(n−m),n−m−1}.
Assume that G(Bm), m ≥ 0, is a tree. Then, operation (i) results in two pieces
of G(Bm), with no path between vertices 0 and p(n − m). Hence, if at this
stage connecting vertex p(n − m) to vertex n − m − 1 creates a cycle, it fol-
lows that operation (i) leaves vertex n − m − 1 in the same place with vertex
p(n − m), namely, with no path between vertex 0 and vertex n − m − 1. There-
fore in this case, the graph G(Bm+1) obtained in operation (ii) by adding the
edge {0, n − m − 1} is a tree.

If, on the other hand, connecting the vertex p(n − m) to vertex n − m − 1,
after operation (i), does not create a cycle in the subgraph containing vertex
p(n − m), it certainly does not create a cycle with vertex 0 and the resulting
graph is again a tree.

Since G(B0) is a tree, it follows that G(Bm) is a tree for 0≤m≤n −1, which
implies by Lemma 12.3 that the matrix [Y(1) · · ·Y(n − 1) I (p(1)) · · · I (p(n))]
is an n-regular matrix.

The n-regularity of the matrix [I (1) · · · I (n) Y (1) · · ·Y(n − 1)] follows in
the same manner as in the proof of Lemma 12.6.

Construction 12.2 leads to Procedure 2, given below for realizing bit permu-
tations. In this procedure, which is simpler than Procedure 1, each processor has
at each stage a packet that contains the following information:

1. An (n − 1)-tuple U = (u(1), . . . , u(n − 1)) as in Procedure 1.
2. An n-tuple S (the source of the packet) as in Procedure 1.
3. The permutation P = (p(1), . . . , p(n)).
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Procedure 2 (bit permutations):

Part 1
for i := 1 to n − 1 do

{u(i) := p(i + 1);
check(i) := f alse}

check(n) := f alse;
for i := 1 to n − 1 do

{cycle := f alse;
current := i;
while ((cycle = f alse) ∧ (current < n) ∧ (check(current) = f alse)) do

{check(current) := true;
if u(current) �= i then current := u(current)

else cycle := true}
if cycle = true then u(i) := 0}

Part 2
s(0) := 0;
for i := 1 to n − 1 do

{shuffle;
if s(u(i)) �= 0 then exchange}

shuffle;
if s(n) �= s(p(1)) then exchange;
for i := 1 to n − 1 do

{shuffle;
if s(p(i + 1)) �= s(i) + s(u(i)) then exchange} �

Theorem 12.4. Procedure 2 realizes bit permutations in 2n − 1 passes and
O(n) steps.

Proof. In Part 1 of Procedure 2 each processor computes the (n − 1)-tuple
U = (u(1), . . . , u(n − 1)). Initially, u(n − m − 1) is set to be p(n − m), which
corresponds to the setting of Y(n − m − 1) to I (n − m − 1) + I (p(n − m)).
Then, u(n − m) is set to be 0 if the insertion of the edge {n − m − 1,p(n − m)}
creates a cycle in the corresponding graph Gm. Part 2 of Procedure 2 is identical
to Procedure 1, with s(p(i)) substituting for f (i).

The claimed complexity of Procedure 2 is obtained as follows. Part 1 consists
of O(n) steps since the variables check(i), 1 ≤ i ≤ n, ensure that for each i,
the variable current takes the value i at most once in the while loop. As in
Procedure 1, each of the 2n − 1 passes is executed in constant time. Thus the
overall complexity of the procedure is O(n).

Thus far, we have provided efficient algorithms to realize linear transforma-
tions and bit permutations in the SE network. We return now to the more general
problem. Given a balanced N × n matrix A, find a matrix X (possibly empty)
such that

[M X A]
is a balanced matrix.
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We will provide now a simple solution that can be efficiently implemented,
but it will not produce a matrix X with the smallest possible number of
columns. Given two balanced N × n matrices P and Q we form an undi-
rected graph G(P,Q). The vertices of G(P,Q) are the N distinct integers
0,1, . . . ,2n − 1. The set of edges in G(P,Q) contains 2n edges formed by the
following two rules.

1. If the words in rows i and j of P share their last n − 1 entries, then vertices
i and j of G(P,Q) are connected by an edge.

2. If the words in rows i and j of Q share their first n − 1 entries, then vertices
i and j of G(P,Q) are connected by an edge.

Lemma 12.8. The graph G(P,Q) is a union of vertex disjoint cycles that cover
all the vertices of the graph.

Proof. Each vertex has one incident edge associated with a pair of words in the
matrix P and one incident edge associated with the matrix Q. Therefore each
vertex has degree two and this implies that the graph G(P,Q) is a union of
vertex disjoint cycles that cover all the vertices in the graph.

Lemma 12.9. Each cycle in G(P,Q) has an even length.

Proof. Each vertex in a cycle of G(P,Q) has one edge of the cycle associated
with a row of P and one edge of the same cycle associated with a row of Q.
These two edges are consecutive in the cycle for each vertex of G(P,Q). Hence,
the number of edges in the cycle associated with rows of P equals the number of
edges in the cycle associated with rows of Q. Therefore each cycle of G(P,Q)

has an even length.

Since the cycles in G(P,Q) are vertex disjoint and each cycle of G(P,Q)

has even length, it follows that vertices of G(P,Q) can be colored in two colors,
0 and 1. Consider now the graph G(M,A) and form a vector column B1, of
length 2n, whose ith entry is the color of vertex i in G(M,A).

Lemma 12.10. The matrices [M B1] and [B1 A] are balanced matrices.

Proof. Two vertices connected by an edge in G(M,A) have different colors. If
the edge was obtained from M it implies that the related two rows in [M B1] are
(bx1x2 · · · xn0) and (b̄x1x2 · · · xn1) and, hence, [M B1] is a balanced matrix.
For a similar argument, we have also that [B1 A] is a balanced matrix.

Let M1 be the matrix formed from the last n columns of [M B1] and
A1 be the matrix formed from the first n columns of [B1 A]. Form the graph
G(M1,A1) and color its vertices with two colors 0 and 1. Form a column B2
whose ith entry is the color of vertex i in G(M1,A1). Continue with the same
process to obtain n columns B1,B2, . . . ,Bn−1. As a direct consequence from
the construction and Lemma 12.10 we have:
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Lemma 12.11. The matrices [M B1B2 · · ·Bn−1] and [Bn−1 · · ·B2B1 A] are
balanced matrices.

Remark. To generate the graph G(P,Q) it was sufficient to use N × (n − 1)

matrices and observe the last n − 1 columns of P and the first n − 1 columns
of Q.

We continue with a simple method for the realization of permutations in the
SE network. The method is described in the following theorem.

Theorem 12.5. There exists an N × (n − 1) matrix X such that the matrix

[M B1B2 · · ·Bn−1 X Bn−1 · · ·B2B1A]
is a balanced matrix.

Proof. Let B0 be a column vector for which the matrix [B0B1B2 · · ·Bn−1] is
balanced. This implies that also [Bn−1 · · ·B2B1B0] is a balanced matrix. Now,
the claim of the theorem follows directly from Lemma 12.11, the fact that
B0 has no effect on the correctness of all the associated proofs, and the ma-
trix [Bn−1 · · ·B2B1B0] is obtained from the matrix [B0B1B2 · · ·Bn−1] using a
bit permutation that was solved with 2n − 1 passes (see Theorem 12.4).

Theorem 12.5 can be considerably improved using the same technique and
Lemma 12.2.

Theorem 12.6. Let M = M ′X, where X is the rightmost column of M . Then,
the N × (4n − 3) matrix

[M ′X D1 · · ·Dn−3Dn−2Bn−1Bn−2 · · ·B2B1A],

where Di = Bi , 1 ≤ i ≤
⌊

n−2
2

⌋
, Dn−i = Bn−i + Bi−2, 3 ≤ i ≤

⌊
n+1

2

⌋
, and

Dn−2 = Bn−2 + X, is a balanced matrix.

Proof. We just have to note that every n consecutive columns are either n

consecutive columns from the matrices defined in Lemma 12.11 or linear com-
binations of n consecutive columns of these matrices.

Let � = 
n−2
2 � and distinguish between odd and even n.

Case 1: If n is odd then 2� = n − 3 and consider the N × (4n − 3) matrix

[M ′X B1 B2 · · ·B� B�+1 + B� B�+2 + B�−1 · · ·
Bn−4 + B2 Bn−3 + B1 Bn−2 + X Bn−1 Bn−2 · · ·B2 B1 A].

Case 2: If n is even then 2� = n − 2 and consider the N × (4n − 3) matrix

[M ′X B1 B2 · · ·B� B�+1 + B�−1 B�+2 + B�−2 · · ·
Bn−4 + B2 Bn−3 + B1 Bn−2 + X Bn−1 Bn−2 · · ·B2 B1 A].
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It is easily verified that by the definitions of the Bis, we have that every
n consecutive columns, in the matrices defined in both cases, form a balanced
matrix.

Corollary 12.1. The SE network of order n can realize every permutation using
at most 3n − 3 passes.

12.2 Multistage interconnection networks

Definition 12.7. A t × t switching element (box) is a unit with t inputs and
t outputs. The unit performs a permutation on its t inputs and sends them to
its t outputs. In other words, the unit can perform all the t ! permutations on its
t inputs and sends one of these permutations to its t outputs.

A 3×3 switching box with two of the six permutations that it can perform is
depicted in Fig. 12.1. There is some similarity between a t × t switching box and
a t × t alternating subgraph. In this section, only 2 × 2 switching boxes will be
considered. However, the definitions and the results can be generalized for any
t × t switching box, where t > 2. The 2 × 2 switching box receives two inputs
and delivers them to two outputs either as received or switched, as depicted in
Fig. 12.2. Such a switching element can be implemented by a flip-flop.

FIGURE 12.1 Two possible permutations in a 3 × 3 switching box.

FIGURE 12.2 The two possible permutations in a 2 × 2 switching box.

A multistage interconnection network is a graph with N inputs and N out-
puts that consists of k stages of vertices, where each vertex is a switching box.
Each stage has a certain number of switching boxes. Each switching box re-
ceives two pieces of data information as inputs, each one either from an input
of the whole network or from an output of a switching box from one of the pre-
vious stages. Each switching box delivers two pieces of data information on its
outputs, each one either to an output of the whole network or to an input of a
switching box of one of the next stages. If there are k stages in the network, then
the network will be called a k-stage interconnection network.
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We will continue with two general definitions related to multistage intercon-
nection networks.

Definition 12.8. A banyan network is a network with a unique path from each
input to each output.

Definition 12.9. The process of sending the information of an input of the net-
work to an output of the network along a path (a unique path for a banyan
network) is called routing. The path of the routing can be described either by
the sequence of consecutive edges that it traverses along the path or by the se-
quence of consecutive switching boxes that it passes along the path.

A banyan network by its definition is a network in which there are no re-
dundant switching boxes for routing information from inputs to outputs. The
next property makes the network simple to understand. If in the banyan net-
work, each stage has the same number of switching boxes and all the edges are
between consecutive stages, then the network is called a Minimal Full-Access
network (MFA network in short)

Definition 12.10. A Uniform Minimal Full-Access network (UMFA network
in short) is an MFA network with a uniform structure (the same structure) be-
tween any two consecutive stages.

All the multistage interconnection networks that will be considered in this
chapter have 2N = 2n+1 inputs and the same number of outputs. Each such net-
work will be said to be of order n + 1 (or multistage networks of order n with
N = 2n inputs and 2n outputs). Each network will have k + 1 stages, numbered
from the first stage labeled by 0 up to the last stage labeled by k, and hence
the network is a (k + 1)-stage interconnection network of order n + 1. In this
section, each network will have n+ 1 stages, i.e., k = n. Each stage in these net-
works has N = 2n switching boxes that are represented by the 2n binary n-tuples
from 00 · · ·0 to 11 · · ·1. The links between the switching boxes are always from
stage i to stage i + 1, 0 ≤ i ≤ n − 1. Each switching box at stage 0 receives two
inputs and each switching box in stage n delivers information to two outputs.
Each input at a switching box at stage 0 can be routed to 2n switching boxes at
stage n since the out-degree of each switching box is 2. Hence, when k = n, if
each input can be routed to each output, then the network is an MFA network.

The first network that we define is the omega network of order n + 1. From
switching box x1x2 · · ·xn in stage i, 0 ≤ i ≤ n − 1 there are two links to switch-
ing boxes in stage i + 1, one to switching box x2 · · ·xn0 and one to switching
box x2 · · ·xn1. The link to switching box x2 · · ·xnx1 will be called a shuffle
edge, while the other link to switching box x2 · · ·xnx̄1 will be called an ex-
change edge. Clearly, these two edges are defined exactly as the two out-edges
of a vertex in the de Bruijn graph Gn with the difference that in the omega net-
work, all the vertices of Gn are defined in each stage. The omega network has
the same edges between any two consecutive stages and hence it is a uniform
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FIGURE 12.3 The omega network of order 5.

network. It is also called the (n + 1)-stage SE network since a switching box
x1x2 · · ·xn in stage i can deliver its information to the two vertices from which
vertex x1x2 · · ·xn in the SE network can deliver its packet in one pass. An ex-
ample of the omega network of order 5 is presented in Fig. 12.3.

Now, we will elaborate more on the routing process. In each one of the net-
works that will be defined, there are 2N = 2n+1 inputs before stage 0, where
each one of the N switching boxes in stage 0 receives two distinct inputs. Simi-
larly, there are 2N = 2n+1 outputs, where each one of the N switching boxes of
the last stage delivers two distinct outputs. Therefore the routing of an input to
an output can be described as the sequence of switching boxes along the path in
which the information of the input should be transferred to its associated output.
The input starts at switching box x1x2 · · · xn at stage 0 and travels along the
path to switching box y1y2 · · · yn at the last stage and our target is to describe
this path of switching boxes.
Routing for the omega network:

The input starts from switching box x1x2 · · · xn at stage 0 to switching
box y1y2 · · · yn at stage n. Consider the sequence x1x2 · · ·xny1y2 · · ·yn that de-
scribes the consecutive switching boxes in the path. At stage i, 0 ≤ i ≤ n−1, the
information along this routing path will be at switching box xi+1 · · ·xny1 · · ·yi

and it will continue to switching box xi+2 · · ·xny1 · · ·yi+1 at stage i + 1 (with
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natural adjustment when i = 0 or i = n − 1; this adjustment will be required for
the other networks too).

This path through n + 1 switching boxes is also unique since each input of
switching box x1x2 · · · xn at stage 0 will pass through n stages before it reaches
switching box y1y2 · · · yn at stage n. At each one of the n stages, it has two
choices and hence it can reach at most 2n switching boxes at stage n. Since the
described routing path can reach each one of the 2n switching boxes, it follows
that each such a routing path is unique. This argument will hold for all the six
multistage networks that will be defined in this section. However, the uniqueness
of the path in the omega network is also a direct consequence of Lemma 1.15
on the uniqueness of a path of length n between any two vertices of Gn. The
routing path that was described is the same as the associated path in Gn between
the two vertices labeled by x1x2 · · · xn and y1y2 · · · yn. Therefore the omega
network is an MFA network. Moreover, since the patterns of links between any
two consecutive stages are the same, the omega network is a UMFA network.
We will elaborate more on this in Section 12.3 when the routing will be done
in parallel on all the inputs, i.e., the routing will define a permutation. We will
also explain how the routing of permutations that was done in Section 12.1 is
implemented on its associated multistage network.

The simple analysis of the omega network can lead to a simple construction
of UMFA networks whose structure between consecutive stages is the same as
in a UPP graph. In other words, each UPP graph yields an associated UMFA
network. Moreover, it is easily verified that each UMFA network can be used to
construct a UPP graph. Thus there is a one-to-one correspondence between the
set of UPP graphs of order n and the set of UMFA networks of order n + 1.

The second network we would like to consider is the flip network of or-
der n + 1. In this network, from switching box x1x2 · · ·xn−1xn in stage i,
0 ≤ i ≤ n − 1 there are two links to switching boxes in stage i + 1, one to
switching box 0x1x2 · · ·xn−1 and one to switching box 1x1x2 · · ·xn−1. It is eas-
ily verified that routing on these edges is like performing un-shuffle (traversing
the shuffle edge backward, i.e., an edge from vertex (x1, . . . , xn−1, xn) to vertex
(xn, x1, . . . , xn−1) ) and after that making exchange between vertices that are
conjugates (differ exactly in their first position). It can also be described as per-
forming an un-shuffle to reach one switching box and performing an exchange
followed by an un-shuffle to reach the second switching box. In other words, if
the links in the omega network are obtained from Gn, then the links of the flip
network are obtained from GR

n . The link to switching box xnx1 · · ·xn−1 will be
called an un-shuffle edge, while the other link to switching box x̄nx1 · · ·xn−1

will be called an exchange edge. The flip network is uniform and it is the reverse
of the omega network. It is straightforward now to see that the flip network is
a UMFA network and routing between an input to an output is done by taking
the reverse path of length n in Gn between the associated vertices for the two
switching boxes to which the input and the output are attached. The routing can
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FIGURE 12.4 The flip network of order 4.

be also defined directly from the associated path in GR
n . The flip network of

order 4 is presented in Fig. 12.4.
The next network we would like to consider is the modified data manipula-

tor network of order n + 1. In this network, from switching box x1x2 · · ·xn−1xn

in stage i, 0 ≤ i ≤ n − 1, there are two links to switching boxes in stage i + 1.
One link is to switching box x1x2 · · ·xn−1xn and it will be called a line edge. The
second link is to switching box y1y2 · · ·yn−1yn, where yj = xj for 1 ≤ j ≤ n,
j �= i + 1, and yi+1 = x̄i+1. This link will be called an exchange edge. The
modified data manipulator network of order 4 is presented in Fig. 12.5.
Routing for the modified data manipulator network:

The routing from an input to an output is rather simple. Assume we want
to route an input from switching box x1x2 · · ·xn−1xn at stage 0 to switching
box y1y2 · · ·yn−1yn at stage n. Assume further that during this routing from
switching box x1x2 · · ·xn−1xn we reached switching box y1y2 · · ·yixi+1 · · ·xn

at stage i, 0 ≤ i ≤ n − 1. If yi+1 = xi+1, then we simply rout from switching
box y1y2 · · ·yixi+1 · · ·xn at stage i to switching box y1y2 · · ·yiyi+1xi+2 · · ·xn at
stage i +1 using a line edge. If yi+1 �= xi+1, then similarly we rout from switch-
ing box y1y2 · · ·yixi+1 · · ·xn at stage i to switching box y1y2 · · ·yiyi+1xi+2 · · ·xn

at stage i +1 using an exchange edge. Since both associated edges exist between
the switching boxes of stage i and stage i + 1, it follows that this routing is pos-
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FIGURE 12.5 The modified data manipulator network of order 4.

sible. Now, by using induction, it is clear that at stage n the routing ends at
switching box y1y2 · · ·yn−1yn.

The next network is the indirect binary cube network of order n + 1. This
network is just the reverse of the modified data manipulator network of or-
der n. Hence, the definitions of the links are reversed. From switching box
x1x2 · · ·xn−1xn in stage i, 0 ≤ i ≤ n − 1, there are two links to switching boxes
in stage i + 1. One link is to switching box x1x2 · · ·xn−1xn and it will be called
a line edge. The second link is to switching box y1y2 · · ·yn−1yn, where yj = xj

for 1 ≤ j ≤ n, j �= n − i, and yn−i = x̄n−i . This link will be called an exchange
edge. The indirect binary cube network of order 4 is presented in Fig. 12.6. The
simple routing in the network is carried out in reverse order to that carried out
for the modified data manipulator network and it will be described as follows.
Routing for the indirect binary cube network:

Assume we want to route an input from switching box x1x2 · · ·xn−1xn at
stage 0 to switching box y1y2 · · ·yn−1yn at stage n. Assume further that dur-
ing this routing from switching box x1x2 · · ·xn−1xn we reached switching box
x1x2 · · ·xn−iyn−i+1 · · ·yn at stage i, 0 ≤ i ≤ n− 1. If yn−i = xn−i , then we sim-
ply rout from switching box x1x2 · · ·xn−iyn−i+1 · · ·yn at stage i to switching
box x1x2 · · ·xn−i−1yn−iyn−i+1 · · ·yn at stage i + 1 using a line edge. If yn−i �=
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FIGURE 12.6 The indirect binary cube network.

xn−i , then similarly we rout from switching box x1x2 · · ·xn−iyn−i+1 · · ·yn at
stage i to switching box x1x2 · · ·xn−i−1yn−iyn−i+1 · · ·xn at stage i + 1 using
an exchange edge. Since both associated edges exist between the switching
boxes of stage i and stage i + 1, it follows that this routing is possible. Now,
by using induction, it is clear that at stage n the routing ends at switching box
y1y2 · · ·yn−1yn.

The next network that will be considered is the baseline network of or-
der n + 1. From switching box x1x2 · · ·xn−1xn in stage i, 0 ≤ i ≤ n − 1,
there are two links to switching boxes in stage i + 1, one link to switching
box y1y2 · · ·yn−1yn, where yj = xj for 1 ≤ j ≤ i, yi+1 = 0, and yj = xj−1
for i + 2 ≤ j ≤ n. The second link is to switching box y1y2 · · ·yn−1yn, where
yj = xj for 1 ≤ j ≤ i, yi+1 = 1, and yj = xj−1 for i + 2 ≤ j ≤ n. This is the
same as fixing the first i bits and after that un-shuffle on the other n − i bits to
reach one switching box at stage i + 1 and exchange followed by un-shuffle on
these n − i bits to reach the second switching box on stage i + 1. The baseline
network of order 4 is presented in Fig. 12.7.
Routing for the baseline network:

The routing from an input to an output is rather simple. Assume we want
to route an input from switching box x1x2 · · ·xn−1xn at stage 0 to switching
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FIGURE 12.7 The baseline network of order 4.

box y1y2 · · ·yn−1yn at stage n. Assume that during the routing from switch-
ing box x1x2 · · ·xn−1xn we reached switching box y1y2 · · ·yiz1 · · · zn−i for
some zj ∈ {0,1}, 1 ≤ j ≤ n − i, at stage i, 0 ≤ i ≤ n − 1. We rout from
y1y2 · · ·yiz1 · · · zn−i at stage i to y1y2 · · ·yiyi+1z1 · · · zn−i−1 at stage i + 1. This
routing is possible by the definition of the network since the first i bits are un-
changed and bit i + 1 can be chosen as zero or one by the definition of the
baseline network. Clearly, by induction at stage n the routing ends at switching
box y1y2 · · ·yn−1yn.

The last network to be considered is the reverse baseline network of or-
der n + 1. This network is just the reverse of the baseline network of order n.
Hence, the definitions of the links are reversed and the routing is done in reverse
order to the one done for the baseline network. Instead of the un-shuffle used
for the last part (of length n − i, 0 ≤ i ≤ n − 1) of the binary representation, a
shuffle is used for the first part (of length i + 1). The reverse baseline network
of order 4 is depicted in Fig. 12.8.

The definitions and the analysis that we have done for each one of the six
defined networks imply the following theorem.

Theorem 12.7. The omega network of order n, the flip network of order n, the
modified data manipulator of order n, the indirect binary cube of order n, the
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FIGURE 12.8 The reverse baseline network of order 4.

baseline network of order n, and the reverse baseline network of order n, are all
MFA networks. Moreover, the omega network and the flip network are UMFA
networks.

A natural question is to characterize the differences between the six defined
networks. They all can route each input to each output, and by Theorem 12.7
they are all MFA networks. The omega network and the flip network are uni-
form and the other networks are not uniform. In each network, the routing is
performed in a slightly different way. In the rest of this section, it will be proved
that all six networks are isomorphic as graphs. In other words, by an assignment
of different labels to the switching boxes in the various stages, all the networks
will have the same labeling and links between the same switching boxes.

Theorem 12.8. The six networks, i.e., the omega network, the flip network, the
modified data manipulator network, the indirect binary cube network, the base-
line network, and the reverse baseline network, are all isomorphic.

Proof. We start by considering the omega network of order n + 1 and the flip
network of order n + 1. The links between the switching boxes of stage i and
stage i + 1, 0 ≤ i ≤ n − 1, in the omega network are defined exactly as for
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the edges between the associated vertices in Gn. Similarly, the links between
the switching boxes of stage i and stage i + 1, 0 ≤ i ≤ n − 1, in the flip
network are defined exactly as for the edges between the associated vertices
in GR

n . By Lemma 1.17, Gn and GR
n are isomorphic graphs. Using the mapping

gR : Vn → Vn, defined in Lemma 1.17, to prove the isomorphism between GR
n

and Gn, on the switching boxes of the flip network of order n+1 will achieve its
isomorphism to the omega network of order n + 1. Hence, the omega network
of order n + 1 and the flip network of order n + 1 are isomorphic networks.

We continue and prove that the modified data manipulator network of or-
der n + 1 and the baseline network of order n + 1 are isomorphic. The proof
will be by induction. The basis is n = 1, where the two networks of order 2
with four inputs and three stages, each one with two switching boxes, and be-
tween two stages there is an alternating cycle of length 4. Assume now that the
claim is true for order n, i.e., the modified data manipulator network of order n

and the baseline network of order n are isomorphic. The networks have in each
stage 2n−1 switching boxes. The induction step is for networks of order n + 1.
Note first that the subgraph of the baseline network of order n + 1 induced by
the switching boxes and edges of stages 1 through n consists of two identical
baseline networks of order n, each one is isomorphic to the baseline network of
order n, which by the induction hypothesis is also isomorphic to the modified
data manipulator of order n. Similarly, the subgraph of the modified data ma-
nipulator network of order n + 1 induced by the switching boxes and edges of
stages 1 through n consists of two identical modified data manipulator networks
of order n. The edges between stage 0 to stage 1 in both networks of order n + 1
form 2n−1 alternating cycles of length 4. These edges and their associated ver-
tices in both networks of order n + 1 at stage 0 can be rearranged in a way that
switching boxes i and 2n−1 + i in stage 0 have edges to switching boxes i and
2n−1 + i in stage 1 (switching boxes labeled by i in the four networks of or-
der n, two baseline networks and two modified data manipulators induced from
stage 1 through stage n). This completes the proof of the induction step.

Next, we will show isomorphism between the flip network of order n + 1
and the baseline network of order n + 1. The proof will be again by induction,
where the basis for n = 1 is trivial as in the previous case. Now, note that also
the subgraph, of the flip network, induced from the switching boxes of stages 1
through n with the edges between them is combined of two flip networks of
order n, where one network contains all the switching boxes of stage 1 that start
with a zero in the flip network of order n+1. In stage i, 1 ≤ i ≤ n, it contains all
the switching boxes whose labeling has a zero in the ith digits (this is the same
bit in all stages since an un-shuffle is performed from stage i to stage i + 1).
The second network contains all the other switching boxes, e.g., the switching
boxes of stage 1 that start with a one in the flip network of order n + 1. By the
induction hypothesis, each of these two networks is the flip network of order n

and it is isomorphic to the baseline network of order n. Now, it is easy to verify
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that the induction step is the same as that between the modified data manipulator
networks and the baseline network.

Since the omega network and its reverse, the flip network, are isomorphic
networks, and also the flip network is isomorphic to the baseline network, it
follows that the baseline network is isomorphic to the reverse baseline network.
For similar arguments the modified data manipulator network is isomorphic to
its reverse, the indirect binary cube network. This sequence of isomorphism
between these networks implies that all six networks are isomorphic.

We have proved that the six MFA networks that were defined in this sec-
tion are isomorphic. Are there MFA networks that are not isomorphic to these
six networks? The answer is positive and there are such UMFA networks. For
example, all the UMFA networks of order n + 1 that can be constructed from
non-isomorphic UPP graphs of order n are non-isomorphic UMFA networks.
An example of such a network of order 4 is depicted in Fig. 12.9.

FIGURE 12.9 UMFA network of order 4 based on a UPP graph of order 3.

12.3 Multistage permutation networks

In Section 12.1 it was described how to realize permutations on the SE network
with 2n processors (vertices). For an arbitrary permutation, it was explained
how to realize the permutation in 3n − 3 passes. In this section, the task will
be to realize permutations using a multistage network with switching boxes.
We start by translating the model with the 2n processors into the model of the
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multistage network. First, we will define the k-multistage SE network. Since
we want to simulate a pass in the SE network by the edges of the multistage
network, we consider the de Bruijn graph Gn rather than the SE network with
2n vertices. In general, we can consider any UPP graph for this purpose as de-
picted in Fig. 12.9. The network has k stages, numbered from 0 to k − 1, where
each stage has 2n switching boxes that represent the 2n vertices in the graph.
The switching boxes are labeled (numbered) from 0 to 2n − 1 and in binary
representation, from the all-zeros n-tuple to the all-ones n-tuple. The links be-
tween the switching boxes of two consecutive stages are exactly as the edges
between the vertices of Gn, i.e., if there exists an edge from vertex u to ver-
tex v in the graph, then there exists a link between switching box u in stage i to
switching box v in stage i + 1, 0 ≤ i ≤ k − 2. For the multistage SE network,
assume there exists an edge from switching box (x1, x2, . . . , xn) in one stage
to switching box (x2, . . . , xn, xn+1) in the next stage. This edge will be labeled
by (x1, x2, . . . , xn, xn+1). Now, we will consider realizing permutations in the
multistage network. For this purpose, we will distinguish between two possible
translation models from the SE network to its multistage network.

The first one-to-one translation ignores the inputs to the network. The infor-
mation (packets) will be stored in the switching boxes in the same way that they
were stored in the processors of the network. The routing of a permutation in the
multistage network will be precisely the same as was done in the SE network,
where the two switching boxes (0, x2, . . . , xn) and (1, x2, . . . , xn) in stage i send
their information to switching boxes in stage i + 1. One sends its information to
switching box (x2, . . . , xn,0) and the second to switching box (x2, . . . , xn,1).
Hence, a pass in the multistage network is implemented by sending the informa-
tion from stage i to stage i + 1, 0 ≤ i ≤ k − 2. Therefore 3n − 3 passes can be
implemented by a (3n − 2)-multistage SE network. It should be clear that this
translation uses the switching box as a hardware element to transfer one input
to one output and not to transfer two elements from two inputs to two outputs.

The second one-to-one translation considers 2n+1 inputs to the network
and 2n+1 outputs from the network. The packets considered now are the
inputs to the network. The switching boxes perform the shuffle and the
possible exchange. Consider switching box (x1, x2, . . . , xn−1, xn) on stage i

that receives its information from two edges, (0, x1, x2, . . . , xn−1, xn) and
(1, x1, x2, . . . , xn−1, xn), coming from stage i − 1 or from the inputs if i = 0,
and delivers the two pieces of information on edges, (x1, x2, . . . , xn−1, xn,0)

and (x1, x2, . . . , xn−1, xn,1), going to stage i + 1 or to the outputs if stage i is
the last stage. If the information coming from the edge (0, x1, x2, . . . , xn−1, xn)

is delivered on the edge (x1, x2, . . . , xn−1, xn,0) (which implies that the in-
formation coming from the edge (1, x1, x2, . . . , xn−1, xn) is delivered on the
edge (x1, x2, . . . , xn−1, xn,1)), then only shuffle is performed. If the informa-
tion coming from the edge (0, x1, x2, . . . , xn−1, xn) is delivered on the edge
(x1, x2, . . . , xn−1, xn,1) (which implies that the information coming from the
edge (1, x1, x2, . . . , xn−1, xn) is delivered on the edge (x1, x2, . . . , xn−1, xn,0))
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then shuffle followed by exchange are performed. Therefore this translation
model is for the SE network with 2n+1 packets (associated with 2n+1 proces-
sors). Each stage with 2n switching boxes will be associated with one pass and
therefore to realize a permutation on the 2n+1 inputs, by the simple algorithm,
which by Corollary 12.1 requires 3(n + 1) − 3 = 3n passes, it will be required
to have a (3n)-multistage network. Hence, to realize all the permutations on 2n

inputs with 3n − 3 passes, it will require to have a (3n − 3)-multistage network.
We continue and consider the realization of permutations using the six net-

works that were defined, where the number of inputs is 2n+1. We start with the
following simple lemma regarding an (n+1)-stage MFA network of order n+1.

Lemma 12.12. Each permutation that is realized by an (n + 1)-stage MFA
network can be realized uniquely.

Proof. This follows immediately from the fact that in an (n + 1)-stage MFA
network of order n + 1 there is a unique path from each input of the network
(before stage 0) to each output of the network (after stage n). This unique path is
induced by the unique path from any switching box in stage 0 to any switching
box in stage n.

Lemma 12.13. The number of distinct permutations on the 2n+1 inputs that can
be realized on an (n + 1)-stage MFA network is 22n(n+1).

Proof. In an (n + 1)-stage MFA network each stage has 2n switching boxes.
Each switching box can perform the two possible permutations on its two inputs
to its two outputs independent of the other switching boxes. Hence, in each
stage 22n

permutations can be performed from the inputs to the outputs of the
switching boxes. There are n + 1 stages and hence 22n(n+1) permutations can
be realized with the n + 1 stages. By Lemma 12.12 all these permutations are
distinct.

Theorem 12.9. The number of distinct permutations that can be realized by a
(2n − 1)-stage interconnection network of order n + 1 is smaller than 2n+1!.
Proof. The number of permutations that can be realized in each stage is 22n

and
hence with 2n − 1 stages we can realize at most 22n(2n−1) permutations. Since
log2 22n(2n−1) = 2n(2n − 1) and by the Stirling formula (see Theorem 1.21) we
have that

log2(2n+1)!>2n+1(n + 1) − 2n+1 log2 e = 2n(2n − 1) + 2n(3 − 2 log2 e)>2n(2n − 1)

and it follows that the number of permutations that can be realized by
a (2n − 1)-stage interconnection network of order n + 1 is smaller than
2n+1!.
Corollary 12.2. The minimum number of stages, required for a multistage in-
terconnection network of order n+ 1 to realize all the 2n+1! permutations of the
2n+1 inputs, is 2n.
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Since 22n2n > 2n+1!, it follows that theoretically a (2n)-stage interconnec-
tion network of order n + 1 might be able to realize all the 2n+1! permutations
on its inputs.

Problem 12.1. Does there exist a (2n)-stage interconnection network of or-
der n + 1 that realizes all the 2n+1! possible permutations in 2n+1 inputs?

The concatenation of two (n + 1)-multistage interconnection networks is
done by joining together stage n of the first network with stage 0 of the second
network. Switching box x1x2 · · ·xn in stage n of the first network will coincide
in this concatenation with switching box x1x2 · · ·xn in stage 0 of the second
network. The network that is obtained by this construction has 2n + 1 stages.

Theorem 12.10. By concatenating the baseline of order n + 1 with the reverse
baseline of order n + 1 all the 2n+1! permutations of the inputs can be realized.

Proof. The proof is done by induction on n. The basis for the induction is n = 1,
i.e., a network with 4 inputs, for which the proof is depicted with a picture for
the routing of 6 permutations out of the 4! = 24 permutations. Each permutation
realized by such a network can be used to realize four permutations (each trivial
permutation of the two outputs out of a switching box in the last stage yields 4
permutations for each routing). Hence, it is easily verified from Fig. 12.10 that
the basis of the induction is solved.

Assume now that we can realize the 2n! permutations for the concatenated
network, of the baseline network of order n with the reverse baseline network
of order n. The concatenated network has 2n − 1 stages.

Finally, we will show the step of the induction. In the induction step, we
have to construct the concatenated network of order n + 1 and to prove that
all permutations can be realized on this concatenated network. The concate-
nation of the baseline network of order n + 1 with its reverse, the reverse
baseline network of order n + 1 can be described as follows. Consider two
networks NET0 and NET1, each one is a concatenation of the networks of or-
der n. The inputs and outputs of these two networks are omitted. The whole
network has 2n+1 inputs and 2n+1 outputs, numbered as integers from 0, 1, up
to 2n+1 − 1 and also as binary (n + 1)-tuples, where each binary (n + 1)-tuple
represents its integer value. Each stage in the network has 2n switching boxes
numbered by the integers 0, 1, up to 2n − 1. The 2n − 1 stages of the two net-
works of order n will be numbered from stage 1 to stage 2n − 1. Inputs 2i and
2i + 1 will be the inputs to switching box i of stage 0 and switching box i of
stage 2n will deliver the information to outputs 2i and 2i + 1. From switching
boxes (x1, x2, . . . , xn−1,0) and (x1, x2, . . . , xn−1,1) of stage 0 there is an edge
to switching box (x1, x2, . . . , xn−1) at the first stage of NET0 and an edge to
switching box (x1, x2, . . . , xn−1) at the first stage of NET1 that will be stage 1
of the concatenated network. In any stage, the switching box (x1, x2, . . . , xn−1)

on NET0 will be labeled by (0, x1, x2, . . . , xn−1) and the switching box
(x1, x2, . . . , xn−1) on NET1 will be labeled by (1, x1, x2, . . . , xn−1). Similarly,
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FIGURE 12.10 The realization of the permutations for the basis.

the switching boxes of the last stage of NET0 and NET1 deliver their infor-
mation to the new last stage of the concatenated network of order n + 1. From
switching box (0, x1, x2, . . . , xn−1) of the last stage in NET0 and switching
box (1, x1, x2, . . . , xn−1) of the last stage in NET1, there are edges to switch-
ing boxes (x1, x2, . . . , xn−1,0) and (x1, x2, . . . , xn−1,1) of the last stage in the
concatenated network. The construction of the network in the induction step is
depicted in Fig. 12.11. It is easy to verify that this network is the concatenation
of the baseline network of order n + 1 with the reverse baseline network of
order n + 1.

We continue with the induction to show that all the (2N)! = 2n+1! permuta-
tions of the 2n+1 inputs can be implemented on the concatenated network, we
construct an undirected graph G = (V ,E). The graph G has 2n+1 vertices num-
bered by 0,1, . . . ,2n+1 − 1 associated with the 2n+1 inputs, and each integer
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FIGURE 12.11 A network for realization of all (2N)! permutations.

is also associated with its binary representation as a binary (n + 1)-tuple. The
edges of the graph, are defined as follows. There is an edge between vertex 2i

(represented by (x1x2 · · ·xn0)) and vertex 2i + 1 (represented by (x1x2 · · ·xn1))
for each 0 ≤ i ≤ 2n − 1. There is an edge between vertex α and vertex β if α

and β are inputs that by the permutation are set to two outputs from the same
switching box. The degree of each vertex in the graph is 2. This implies that
the graph consists of vertex-disjoint cycles. Since for any cycle, vertex 2i is in a
cycle if and only if vertex 2i + 1 is in the cycle, it follows that each cycle is of
even length. Therefore the vertices of the graph can be colored with two colors,
“0” and “1”, which indicates to which part of the network the information will
be delivered.

Based on this coloring, the routing is now simple. An input colored by “0”
is routed to a switching box of NET0 whose binary representation starts with a
zero, while an input that is colored by “1” is routed to a switching box of NET1
whose binary representation starts with a one. By the induction hypothesis, the
two parts of the networks can realize N ! = 2n! permutations (associated with
the inputs of stage 1 and the outputs of stage 2n−1 is our concatenated network
with 2n + 1 stages numbered from stage 0 to stage 2n). The first part of the
network contains all those switching boxes whose binary representation starts
with a zero. The second part of the network contains all those switching boxes
whose binary representation starts with a one. Two inputs whose destination is
to the same switching box of stage 2n, where they will be delivered as outputs,
are colored with different colors. Hence, NET0 has 2n inputs that should be
delivered to distinct switching boxes of stage 2n and the same is true for NET1.
Therefore in each network, we should order its inputs in a permutation by the
order in which they should be delivered from the last stage of NET0 and the
last stage of NET1 to stage 2n of the concatenated network. This order defines
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a permutation for NET0 and a permutation for NET1, which by the induction
hypothesis can be realized by these networks of order n.

Remark. The routing in the proof of Theorem 12.10 is essentially the same as
that based on the graph G(P,Q) in Section 12.1.

A k-stage interconnection network that can realize all the N ! permutations
of its N inputs is called a permutation network. It is also called a rearrangeable
network.

The proof of the following theorem is the same as in the proof of Theo-
rem 12.10.

Theorem 12.11.

1. The network obtained by concatenating the modified data manipulator net-
work of order n + 1 with the indirect binary cube network of order n + 1 is
a permutation network.

2. The network obtained by concatenating the modified data manipulator net-
work of order n + 1 with the reverse baseline network of order n + 1 is a
permutation network.

3. The network obtained by concatenating the baseline network of order n + 1
with the indirect binary cube network of order n + 1 is a permutation net-
work.

We have concatenated 4 pairs of the possible 36 pairs and proved in Theo-
rems 12.10 and 12.11 that the concatenation of the networks in each pair, where
stage n of one network coincides with stage 0 of the second network, yields
a network that realizes all 2n+1! permutations. The number of stages in each
such concatenated network is 2n+ 1. What about the concatenation of the other
32 pairs? It is not difficult to prove that we can concatenate these 32 pairs to
form (2n + 1)-stage interconnection networks that can realize all the 2n+1! per-
mutations. However, for this task sometimes it will be required to permute the
switching boxes in stage 0 of the second network (or the nth one of the first
network) to achieve this goal. By Theorem 12.8 the six networks (omega, flip,
modified data manipulator, indirect binary cube, baseline, and reverse baseline)
are isomorphic and hence we can rearrange the switching boxes in the last stage
of the first network (or in the first stage of the second network) to concatenate
them and obtain a permutation network. However, such a permutation of the
switching boxes in the last stage is not required for all 36 pairs, as proved in
Theorems 12.10 and 12.11. For example, we have the following results.

Theorem 12.12. The network obtained by a trivial concatenation of each of
the six networks (omega, flip, modified data manipulator, indirect binary cube,
baseline, and reverse baseline) with its reverse is a permutation network.
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Corollary 12.3.

1. The network obtained by concatenating the omega network of order n + 1
with the flip network of order n + 1 is a permutation network.

2. The network obtained by concatenating the flip network of order n + 1 with
the omega network of order n + 1 is a permutation network.

The networks in Corollary 12.3 were highlighted from the other pairs since
the structure between consecutive stages in these networks is that of the de
Bruijn graph (for the omega network) or its reverse (for the flip network). Other
concatenations can be also analyzed in the same way, but this is left as an exer-
cise. One of the most celebrated open problems is the next question.

Problem 12.2. Is the concatenation of the omega network of order n with the
omega network of order n a rearrangeable network?

Problem 12.2 is equivalent to the following problem.

Problem 12.3. Can a SE network with 2n processor realize any given permuta-
tion in 2n − 1 passes?

A more general question than the one in Problem 12.2 is the following.

Problem 12.4. Which concatenation from the possible 36 of the defined six
network is a rearrangeable network and which one is not, where switching box i

of the last stage in the first network coincides with switching box i of the first
stage in the second network, for each i, 0 ≤ i ≤ 2n−1 − 1?

Note that by Corollary 12.1 concatenation of three omega networks yields a
rearrangeable network.

We have seen that there are many (2n + 1)-stage interconnection networks
of order n + 1 that form permutation networks. By Corollary 12.2 we have that
theoretically at least 2n stages are required in a multistage permutation network
of order n + 1. It is believed that such a network with 2n stages does not ex-
ist (see Problem 12.1). The number of switching boxes in such networks that
were constructed in this section is (2n + 1)2n. Can we construct a permutation
network for 2n+1 inputs, with a smaller number of switching boxes?

A permutation network that realizes N ! permutations must make at least
log2 N ! binary decisions to realize the N ! permutation and hence at least log2 N !
switching boxes are required to realize N ! permutations. Hence, we have the
following theorem.

Theorem 12.13. A permutation network with N inputs must have at least
N · log2 N − N + �(log2 N) switching boxes. If N = 2n, then a permutation
network with N inputs must have at least 2nn − 2n + �(n) switching boxes.

Proof. At least log2 N ! switching boxes are required. The proof follows now
from Stirling’s approximation (see Theorem 1.21).



436 Sequences and the de Bruijn Graph

FIGURE 12.12 A network for realization of all (2N)! permutations omitting switching boxes.

We will discuss now the general problem of realization of N ! permutations of
N inputs into N outputs where the information is routed through a network that
consists of 2 × 2 switching elements (boxes). If we want to keep the structure of
Fig. 12.11 to realize (2N)! permutations, then the routing will be done as was
explained in the proof of Theorem 12.10. The routing was done by assigning
two colors “0” and “1” to a graph G = (V ,E). There are at least two possible
colorings as we can switch between the two colors. This implies that we can
either choose one pair of inputs 2i and 2i + 1 and decide which one will be
routed to NET0 and which one to NET1. By doing so, we omit switching box i

in stage 0 of the network and save one switching box. Similarly, we can consider
the outputs instead of the inputs. If inputs α and β are the output of a chosen
switching box i in stage 2n, then we can decide which one will be delivered
from NET0 and which one will be delivered from NET1, omitting switching
box i in stage 2n. We can omit one switching box either from the first stage or
from the last stage. We will choose to omit the first switching box (number 0) in
stage 2n, as depicted in Fig. 12.12.

The network with 2n + 1 stages that have 2n+1 inputs is constructed recur-
sively as follows. For the basis of the recursion, n + 1 = 2, we have 2n+1 = 4
inputs, a 3-stage network, and 5 switching boxes. The required network is de-
picted in Fig. 12.13 where the realization of 4 permutations is illustrated. For
larger n, the recursion illustrated in Fig. 12.12 is applied. Let �n+1 denote the
network constructed in this way.

Theorem 12.14. The network �n+1 is a permutation network that has 2n+1

inputs, 2n + 1 stages, and 2n+1 · n + 1 switching boxes.

Proof. Clearly, by the recursive construction, the network �n+1 has 2n+1 inputs
and 2n + 1 stages. The number of switching boxes is proved by induction.

The basis is n = 1, where the number of switching boxes is 22 + 1 = 5 (see
Fig. 12.13).
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FIGURE 12.13 A network with 5 switching boxes realizing all permutations with 4 inputs (4 per-
mutations are demonstrated).

For the induction hypothesis, assume that for n−1, the number of switching
boxes is 2n · (n − 1) + 1.

For the induction step n we have the networks NET0 and NET1 on which
we can apply the induction hypothesis. To these two networks we can add
2n switching boxes in stage 0 and 2n − 1 switching boxes in stage 2n. The
total number of switching boxes in �n+1 is

2(2n(n − 1) + 1) + 2n + 2n − 1 = 2n+1 · (n − 1) + 2n+1 + 1 = 2n+1 · n + 1.

Now, to complete the proof we have to show that each permutation of its
2n+1 inputs can be realized by the network. For this, the same recursive tech-
nique as in the proof of Theorem 12.10 is used. The colors “0” and “1” are
decided to ensure that the first output, which was supposed to be delivered from
the omitted switching box, will be delivered from NET0, i.e., its color is “0”. As
a consequence, the second output, which was supposed to be delivered from the
omitted switching box, will be delivered from NET1, i.e., its color is “1”.

By Theorem 12.13 we have that a permutation network with 2n+1 inputs
must have at least 2n+1 · n + �(n) switching boxes. This implies the following
observation.

Corollary 12.4. Asymptotically, the network �n is an optimal permutation net-
work.

Corollary 12.5. If the network �n has the smallest number of switching boxes
for 2n inputs, then a multistage network of order n must have at least 2n − 1
stages to be rearrangeable.
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Problem 12.5. Does there exist a permutation network with 2n+1 inputs and
less than 2n+1 · n + 1 switching boxes?

12.4 Layouts

In this section, we design embedding for the SE network and the de Bruijn
graph. To implement the networks for parallel computation, the network has to
be embedded on a chip that can have different shapes, but usually, the chip is
a rectangular grid. In this section, we examine two different methods to embed
the SE network and/or the de Bruijn graph. We start with a layout for the SE
network on a rectangular grid. In each such layout, the vertices will be located
on the grid points, and each two vertices that are connected by an edge are
connected by wires that go along the grid lines. Two wires can intersect, but
cannot go in parallel along the same line. The efficiency of the layout can be
measured by a few parameters, such as the total length of the wires, the width
of the grid or its height, etc. Of course, also the tradeoff between the various
parameters can be taken into account. The parameter that will be considered
to be essential in this section is the area of the grid that is just the number of
vertical lines multiplied by the number of horizontal lines that are used by the
wires in the grid.

It is quite natural to distinguish between the shuffle edges and the exchange
edges when a layout for the SE network is designed. Furthermore, it is also
quite natural to have the shuffle edges based on the necklaces placed on a cycle
for each necklace, where a cycle will occupy either two vertical lines or two
horizontal lines. We will distinguish now between two methods of designing
such a layout. The two methods differ in the way in which the necklaces are
placed in the layout.

Layout with all vertices on the same line:

All the vertices will be located on the first horizontal track of the rectangular
grid. They are ordered from left to right by ascending weights in a way that the
vertices of each necklace are consecutive in this order. Each set of n vertices (or
less) in a necklace is connected by a line (a wire) on the first track. Given an
exchange edge, the associated vertices will be connected by taking two vertical
lines on the track, one from each vertex, and connecting these two lines with the
first empty horizontal track between these two vertical tracks. An example of
this layout for the SE network with 8 vertices is depicted in Fig. 12.14(a). The
area of this layout is 48. Note that the layout can be improved to a layout with
area 24 if horizontal lines are used for exchange edges in adjacent necklaces, as
depicted in Fig. 12.14(b).

Theorem 12.15. When N is large enough, the area required for a layout with

all the vertices on the first track is at most N2√
logN

.

Proof. The vertices in the first track occupy N = 2n vertical tracks. Since the
exchange edges are between vertices whose weight differs by one, it follows
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FIGURE 12.14 Layouts for the SE network with 8 vertices placed on the same horizontal line.

that an upper bound on the number of horizontal tracks that are occupied by
exchange edges is the number of vertices in the weight with the most ver-
tices. This weight is clearly

⌊
n
2

⌋
(or

⌈
n
2

⌉
) and by Theorem 1.21 we have that

n! ∼ √
2πn
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)n and hence the number of horizontal tracks that are occupied
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the claim of the theorem follows.

Layout based on the complex plane:

A much more efficient layout for the SE network will be obtained if we
consider the mappings of the necklaces to the complex plane. A necklace will be
represented as 〈α〉, where α is the integer value of one of its vertices. A necklace
that will be represented by 〈α〉 contains the vertices α, 2α, 4α, and so on, where
all these integers are taken modulo 2n − 1 and α is the smallest integer that
represents one of these vertices.

Let δn = e2πi/n be the nth primitive root of unity and denote a vertex by
x = (x1, x2, . . . xn−1xn). Define the mapping

ξ(x) = δn−1
n x1 + δn−2

n x2 + · · · + δnxn−1 + xn.

This mapping maps each n-tuple x = (x1, x2, . . . xn−1xn) to the complex plane.
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FIGURE 12.15 The level-necklace grid of the SE network with 32 vertices.

Consider now the following equalities.

δn · ξ(x) = δn · ξ(x1x2 · · ·xn−1xn)

= δn
nx1 + δn−1

n x2 + · · · + δ2
nxn−1 + δnxn

= x1 + δn−1
n x2 + · · · + δ2

nxn−1 + δnxn

= δn−1
n x2 + · · · + δ2

nxn−1 + δnxn + x1

= ξ(x2 · · ·xn−1xnx1).

These equalities imply that the traversal of the shuffle edge corresponds to a
2π
n

rotation in the complex plane. Hence, the vertices and the edges associated
with the same necklace are symmetrically placed about the origin of the complex
plane.

Since the edges associated with the same necklace have symmetry about the
origin, it follows that degenerated necklaces are mapped to the origin of the
complex plane. As for the exchange edge, we consider the following equation

ξ(x1x2 · · ·xn−10) + 1 = δn−1
n x1 + · · · + δnxn−1 + 0 + 1 = ξ(x1x2 · · ·xn−11).

Therefore exchange edges are contained in the same horizontal line in the
complex plane. Such a line is called a level.

The level-necklace grid is a grid whose rows are associated with the levels
of the exchange edges in the complex plane. The order of the exchange edges on
this grid is the same as their order in the complex plane. Each full-order necklace
is represented by a pair of consecutive columns, the left column for the vertices
that are in the left half of the complex plane, and the right column for vertices in
the right half of the complex plane. In Fig. 12.15 the level-necklace grid of the
SE network with 32 vertices is depicted.

Theorem 12.16. The area required for a layout with the level-necklace grid
based on the complex plane is smaller than N2/ logN + N

√
N .
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Proof. By Lemma 3.20 we have that there are at most
√

N degenerated neck-

laces and N
logN

−O
( √

N
logN

)
full-order necklaces of order n. Hence, in total there

are less than N
logN

+ √
N necklaces that require fewer than 2N

logN
+ 2

√
N verti-

cal columns in the rectangular grid. There are N
2 exchange edges and hence they

require fewer than N
2 horizontal lines. Thus the theorem is proved.

FIGURE 12.16 A layout based on the complex plane of the SE network with 32 vertices.

The layout of the SE network with 32 vertices based on the complex plane
is presented in Fig. 12.16. The area of this layout is 140 with 14 vertical lines
and 10 horizontal lines. However, this layout can be improved, e.g., there exists
a layout of the SE network with 32 vertices, whose area is 84.

Another type of layout for graphs is called embedding in books. For this
last topic covered in the book, we leave some of the proofs as exercises for the
reader. A book has a spine on which we order all the vertices of the graph.
The book also has some pages that share the spine as a common boundary. On
the pages, the edges of the graph are drawn in a way that there is no crossing
of edges on a page. The first target is to embed the graph in a book with the
smallest number of pages.

A book embedding of a graph G consists of a linear ordering of the vertices
of G on the spine and an assignment for the edges of G to pages such that there
is no crossing of edges on each page. The pagenumber of G is the minimum
number of pages of books in which G can be embedded. The pagenumber of a
set S of graphs is the minimum number of pages of books in which each graph
in S can be embedded.

The width of a page is the maximum number of edges that cross any line
perpendicular to the spine of the book. The cumulative pagewidth is the sum of
the widths of all the pages of the book.

Now, we will describe a book embedding for de Bruijn graph Gn using only
three pages. Let Tα(n) be the subgraph (spanning tree) induced by all the edges
of Gn that start with the symbol α, α ∈ {0,1}, except for the self-loops edges.
These trees are exactly the BFS trees from the self-loops. For G4 these trees are
depicted in Fig. 11.1.
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Lemma 12.14. Tα(n) is a directed tree.

Proof. We prove that claim for T0(n) and the exact arguments will hold
for T1(n). T0(n) contains all the vertices of Gn and only nonzero edges that start
with a zero. Hence, the number of vertices in T0(n) is 2n and the number of edges
is 2n − 1. Each vertex (x1, x2, . . . , xn−1, xn) has a unique in-going edge from
a vertex whose representation starts with a zero, namely (0, x1, x2, . . . , xn−1).
Hence, if we remove the all-zeros self-loop edge, then the in-degree of each
vertex in T0(n), except the all-zeros vertex, is one. To complete the proof we
have to show that in T0(n) there is a path from the all-zeros vertex to each other
vertex in T0(n).

Given a vertex (x1, x2, . . . , xn−1, xn) �= (0n), for which i is the first index for
which xi �= 0, there exists a unique directed path in T0(n) from (0,0, . . . ,0) to
(x1, x2, . . . , xn−1, xn),

(0,0, . . . ,0) −→ (0, . . . ,0, xi) −→ (0, . . . ,0, xi, xi+1) −→ · · ·
· · · −→ (0, . . . ,0, xi, xi+1, . . . , xn−1, xn) = (x1, x2, . . . , xn−1, xn).

Therefore T0(n) is a directed tree. Similarly T1(n) is a directed tree, where the
vertices and the edges are exactly the complements of the vertices and edges
of T0(n).

The edges of T0(n) start with a zero, while the edges of T1(n) start with a
one and each edge of Gn starts either with a zero or a one. Hence, the following
lemma is implied.

Lemma 12.15. For any given n ≥ 2, we have that for Gn = (Vn,En)

E(T0(n)) ∩ E(T1(n)) = ∅

and

E(T0(n)) ∪ E(T1(n)) = En \ {(0n+1), (1n+1)},
where E(G) is the set of edges of the graph G.

The layers of the edges in Tα(n) will be numbered from layer 1 (the bottom
layer of the tree that contains all the edges to its leaves, which are the vertices
whose binary representation starts with ᾱ) to layer n (contains the edge from
(α,α, . . . , α,α) to (α,α, . . . , α, ᾱ). The levels of the vertices (levels are used for
vertices to distinguish from the layers of edges) will be numbered from 0 to n,
where layer i, 1 ≤ i ≤ n, of edges, contains edges from vertices of level i to
vertices of level i − 1. In level i, 0 ≤ i ≤ n, we have all the vertices that start
with exactly i zeros followed by a one.

Before the description of the embedding of the edges of Gn in the pages of
the book, an ordering of the vertices of Gn for the spine of the book should be
given. Let S = s0, s1, . . . , s2n−1 be the sequence that forms the order of these



Interconnection networks Chapter | 12 443

vertices on the spine. The order of the vertices is based on their order in the BFS
tree T0(n) (from the root to the leaves, a level by level of vertices, from level n

to level 0). The order should satisfy a few properties as follows:

(P1) The sequence of vertices is a complement reverse sequence of integers,
i.e., it is a CR sequence. In other words,

S = s0, s1, . . . , s2n−1 = s̄2n−1, . . . , s̄1, s̄0 = S̄R.

(P2) Each vertex of level i, 0 ≤ i ≤ n − 1, is some sj , 2n−i−1 ≤ j ≤ 2n−i − 1.
The vertex 0n of level n is s0.

(P3) If s2i = 2j for some 0 ≤ i, j ≤ 2n−1 − 1, then s2i+1 = 2j + 1.
(P4) If s2i = 2j + 1 for some 0 ≤ i, j ≤ 2n−1 − 1, then s2i+1 = 2j .
(P5) If si1 = j for 2� ≤ i1, j ≤ 2�+1 − 1, where 2 ≤ � ≤ n − 1 and sr1 = 2j ,

sr1+1 = 2j +1, then for i1 < i2 ≤ 2�+1 −1 we have that si2 = t for some t ,
and sr2 = 2t , sr2+1 = 2t + 1, where r2 < r1.
If si1 = j for 2� ≤ i1, j ≤ 2�+1 − 1, where 2 ≤ � ≤ n− 1 and sr1 = 2j + 1,
sr1+1 = 2j , then for i1 < i2 ≤ 2�+1 − 1 we have that si2 = t for some t ,
and sr2 = 2t + 1, sr2+1 = 2t , where r2 < r1.

The properties (P1) through (P5) that the sequence S must satisfy will guar-
antee the following associated properties that enable embedding Gn in three
pages. Property (P1) enables us to apply the same embedding for the edges of
T0(n) and also for the edges of T1(n) in reverse order. By property (P2) we have
that on the spine the vertices are ordered by their levels. In other words, we have
the following lemma.

Lemma 12.16.

• For each i, 0 ≤ i ≤ n, the vertices of level i in Tα(n) are in consecutive entries
of S.

• For each i, 1 ≤ i ≤ n, the vertices of level i in T0(n) are in entries after the
vertices of level i − 1.

• For each i, 0 ≤ i ≤ n − 1, the vertices of level i in T1(n) are in entries before
the vertices of level i + 1.

By properties (P3) and (P4) we have that the two edges j → 2j and
j → 2j + 1 will be consecutive edges in the embedding (for the page in which
they will be contained). Property (P5) guarantees that the edges of any given
layer in Tα(n) will not intersect any other edges, of the same layer, in the page
to which they will be contained. The full arguments for this assertion are left as
an exercise to the reader.

The next step is to define a sequence S for each Gn, where n ≥ 4, which
satisfies properties (P1) through (P5). The sequence will be defined recursively
as follows. The initial conditions for the recursion are the sequences for n = 4
and n = 5 presented in Example 12.1.

Assume now that the sequence S′ of length 2n, n ≥ 4, is given by

S′ = s′
0, s

′
1, . . . , s

′
2n−1.
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For length 2n+2, the sequence

S = s0, s1, . . . , s2n+2−1

is constructed as follows.

(S1) For each 0 ≤ i ≤ 2n − 1, assign si := s′
i .

(S2) For each 0 ≤ i ≤ 2n − 1, assign s2n+2−1−i := s̄i .
(S3) Given the assignment of s2i and s2i+1, where {s2i , s2i+1} = {2r,2r + 1}

and 2n ≤ i ≤ 2n+1 − 1, let j = 2n+1 − 1 − i and assign s2n+j := r .
(S4) Given an assignment s2i = 2r , assign s2i+1 := 2r +1; given an assignment

s2i = 2r + 1, assign s2i+1 := 2r .
(S5) Given an assignment of some si , where 0 ≤ i ≤ 2n+1 − 1, assign

s2n+2−1−i := s̄i .
(S6) Continue to apply steps (S3), (S4), and (S5), in arbitrary order, as long as

new entries are assigned by one of these steps.

The following theorem makes the necessary relations between the se-
quence S and properties (P1) through (P5) and it is also left as an exercise.

Theorem 12.17. The sequences S obtained from steps (S1) through (S6) satis-
fies properties (P1) through (P5).

Example 12.1. For each n = 4, 5, and 6, a sequence S = s0, s1, s2, . . . that
satisfies properties (P1) through (P5) is given as follows:
For n = 4, the sequence S is

0,1,2,3,7,6,4,5,10,11,9,8,12,13,14,15.

For n = 5, the sequence S is

0,1,2,3,5,4,6,7,15,14,13,12,8,9,11,10,

21,20,22,23,19,18,17,16,24,25,27,26,28,29,30,31.

For n = 6, the sequence S will be constructed according to steps (S1) through
(S6). Step (S1) yields the first 16 elements of S according to the sequence for
n = 4 and step (S2) continues to generate the last 16 elements induced by the
first 16 elements as follows:

0,1,2,3,7,6,4,5,10,11,9,8,12,13,14,15,

s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31,

s32, s33, s34, s35, s36, s37, s38, s39, s40, s41, s42, s43, s44, s45, s46, s47,

48,49,50,51,55,54,52,53,58,59,57,56,60,61,62,63.

Now, we apply step (S3) and step (S4) 8 times each as follows. s48 = 48 and
s49 = 49 yield s23 = 24 and s22 = 25. s52 = 55 and s53 = 54 yield s21 = 27
and s20 = 26. s56 = 58 and s57 = 59 yield s19 = 29 and s18 = 28. s60 = 60 and
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s61 = 61 yield s17 = 30 and s16 = 31. On these 8 new values we apply step (S5)
to obtain more 8 values and the sequence is now

0,1,2,3,7,6,4,5,10,11,9,8,12,13,14,15,

31,30,28,29,26,27,25,24, s24, s25, s26, s27, s28, s29, s30, s31,

s32, s33, s34, s35, s36, s37, s38, s39,39,38,36,37,34,35,33,32,

48,49,50,51,55,54,52,53,58,59,57,56,60,61,62,63.

We continue with this sequence of steps and the new values that were obtained.
s40 = 39 and s41 = 38 yield s27 = 19, s26 = 18, s36 = 44, and s37 = 45. s44 = 34
and s45 = 35 yield s25 = 17, s24 = 16, s38 = 46, and s39 = 47. On the new 8
values, we can continue with the same steps as follows. s36 = 44 and s37 = 45
yield s29 = 22, s28 = 23, s34 = 41, and s35 = 40. Finally, we have one more se-
quence of these steps. s34 = 41 and s35 = 40 yield s30 = 20, s31 = 21, s33 = 43,
and s32 = 42. The final sequence for n = 6 is

0,1,2,3,7,6,4,5,10,11,9,8,12,13,14,15,

31,30,28,29,26,27,25,24,16,17,18,19,23,22,20,21,

42,43,41,40,44,45,46,47,39,38,36,37,34,35,33,32,

48,49,50,51,55,54,52,53,58,59,57,56,60,61,62,63.

�

Lemma 12.17. When the recursion step from a sequence of length 2n to a se-
quence of length 2n+2 is finished all the 2n+2 entries of S are assigned with
some values.

Proof. After steps (S1) and (S2) of the recursion all the entries si , where
0 ≤ i ≤ 2n − 1 or 2n+1 + 2n ≤ i ≤ 2n+2 − 1 are assigned (the first 2n entries
and the last 2n entries). We refer to the first 2n+1 entries of S as the first half and
to the last 2n+1 entries of S as the second half.

In either step (S2) or step (S5), 2� new assignments are carried out for the
second half of S for some �, where 1 ≤ � ≤ n. These 2� new assignments im-
mediately implies 2�−1 new assignments to the first half of S in step (S3) that
follows by 2�−1 new assignments to the second half of S in step (S5). This pro-
cess continues and there is no need to apply step (S4) until 2i = 2n+1 −2. When
step (S4) is applied it follows by new assignment to s2n+1 and s2n+1+1. When
these assignments are carried out the number of new assignments for the first
half in steps (S3) and (S4) is

2n−1 + 2n−2 + · · · + 2 + 1 + 1 = 2n

and to the second half in steps (S2) and (S5)

2n + 2n−1 + 2n−2 + · · · + 4 + 2 + 2 = 2n+1.
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Combining these numbers with the 2n assignments in step (S1) we have that all
the 2n+2 entries of S are assigned.

Lemma 12.18. For each �, 2 ≤ � ≤ n+1, the entries of S, si , 2� ≤ i ≤ 2�+1 −1
are assigned with distinct values in the range between 2� and 2�+1 − 1.

Proof. The proof is again by induction, where the basis is again the sequence S

of length n for n = 4 and n = 5, as presented in Example 12.1.
Assume now that the claim is true for a sequence S′ of length 2n, n ≥ 4

and we will provide a proof for a sequence S of length 2n+2. By the induction
hypothesis, the claim is true for the first 2n elements of S as they are the same as
the elements of S′ in the same order. It remains to prove the claim for the next
2n elements of S and the last 2n elements of S. By steps (S2) and (S5), as long
as the first 2n+1 elements of S are distinct and smaller than 2n+1, it follows that
the last 2n+1 elements are distinct and in the range between 2n+1 and 2n+2 − 1.

Step (S3) will obtain distinct elements in the required range as long as the
elements obtained in step (S5) are distinct and in the required range. Therefore
the induction step follows immediately.

Corollary 12.6. The edges between two levels of the same parity (their number
modulo 2) in T0(n) cannot intersect in a page whose spine is the sequence S of
length 2n.

To complete the proof for the embedding of Gn with only three pages, it
is required to show that the edges of Gn can be partitioned into three subsets
and each one can use the order of the vertices on the spine, defined by the se-
quence S, to embed the edges with no intersection.

Lemma 12.19. The tree Tα(n) is a subtree of Tα(n + 2) induced by the vertices
of levels 2 through n + 2.

Proof. By the definition of Tα(n), we have that the edges in T0(n) are i → 2i

and i → 2i + 1 for each 0 ≤ i ≤ 2n−1 − 1. The edges in T0(n + 2) are i → 2i

and i → 2i + 1 for each 0 ≤ i ≤ 2n+1 − 1. This immediately implies the claim
of the lemma for α = 0.

The tree T1(n) is the complement of the tree T0(n). Similarly, the tree
T1(n + 2) is the complement of the tree T0(n + 2) and hence the correctness
of the claim for α = 0 implies its correctness for α = 1.

Corollary 12.7. The parity of the layers of edges in Tα(n) is the same as the
parity of the layers of edges, from layer 3 through layer n + 2 in Tα(n + 2).

Theorem 12.17 implies the following lemma.

Lemma 12.20. The sequence S satisfies property (P5).
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FIGURE 12.17 Book embedding for G4 with three pages, the embedding of A0(4) on the top, the
embedding of A1(4) on the middle, and the embedding of B0(4) ∪ B1(4) on the middle.

Corollary 12.8. For any given layer i, 1 ≤ i ≤ n, of edges of T0(n), there is
no intersection between the different edges of layer i of T0(n), in a page of the
book, where the order of the vertices on the spine is given by the sequence S of
length 2n.

Now, we partition the edges of Tα(n) into two subsets Aα(n) and Bα(n).
The subset Aα(n) will contain all the edges in the odd layers of Tα(n) and the
subset Bα(n) will contain all the edges in the even layers of Tα(n). The follow-
ing lemmas will form the proof that Gn can be embedded in a book with three
pages, which is demonstrated in Fig. 12.17 on G4.

Lemma 12.21. The edges of A0(n) can be embedded in one page if the spine is
ordered by the sequence S.

Proof. By Corollary 12.6, there is no intersection between the edges of two
different layers and the same parity. By Corollary 12.8 there is no intersection
between the edges of the same layer. Since all the edges of A0(n) are from layers
of the same parity the claim of the lemma follows.

Lemma 12.22. The edges of A1(n) can be embedded in one page.

Proof. Recall that if there is an edge x → y in Gn, then there is also the edge
x̄ → ȳ in Gn. Moreover, the edge x → y is in layer i of Tα(n) if and only if
the edge x̄ → ȳ is in layer i of Tᾱ(n). By Lemma 12.21, this implies that the
same embedding for the edges of A0(n) will work the same for the complement
vertices and the edges in A1(n).

To complete the book embedding of Gn we have the following lemma.
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Lemma 12.23. The edges of B0(n) and B1(n) can be embedded together in one
page.

Proof. First, note that the edges of B0(n) are between vertices of the first half
of S and the edges of B1(n) are between vertices of the second half of S.

Now, the same claims that worked on A0(n) in Lemma 12.21 and on A1(n)

in Lemma 12.22 will work on B0(n) and B1(n), and the lemma follows.

Lemmas 12.21, 12.22, and 12.23, imply the following concluding result.

Theorem 12.18. The de Bruijn graph Gn can be embedded in three pages.

12.5 Notes

Interconnection networks were considered from the 1970s and the interest in
them did not stop. Definitions of networks for parallel processing, their use for
routing, and realizing permutations are only a few of the problems that were
considered in the literature. For example, another important problem that was
extensively studied is the fault tolerance of the defined network as it is quite nat-
ural that a few vertices (processors) or edges (communication links between the
processors) will not work either for technical reasons or by an attack from a third
party. Hence, it was asked whether when a processor or a link is not functioning,
there exists an alternative communication path between processors that does not
use this processor or link in their communication. Such consideration of the fault
tolerance in de Bruijn networks and related networks was discussed, for exam-
ple, in Bermond, Homobono, and Peyrat [10], Bruck, Cypher, and Ho [14], Du,
Lyuu, and Hsu [24], Homobono and Peyrat [33], Mao and Yang [57], Rowley
and Bose [68,69], and Sridhar and Raghavendra [73]. From the de Bruijn graph,
many related networks were defined, e.g., the UPP graphs discussed in Chap-
ter 11, the SE network discussed in this chapter, and other networks. One such
example is the Kautz network defined as follows. The vertices of the network
are n-tuples over an alphabet 
 with σ letters, where there are no identical
two consecutive symbols in an n-tuple. There is an edge from the vertex la-
beled by (x1, x2, . . . , xn) to each vertex labeled by (x2, . . . , xn, xn+1), where
xn+1 ∈ 
 \ {xn}. Therefore the Kautz graph has σ · (σ − 1)n−1 vertices and
σ · (σ − 1)n edges. Each vertex has in-degree σ − 1 and out-degree σ − 1.
The Kautz network is a subgraph of the de Bruijn graph and it was also exten-
sively considered by, e.g., Bermond, Homobono, and Peyrat [11], Du, Lyuu, and
Hsu [24], Hasunuma and Shibata [30], Heydemann, Opatrny, and Sotteau [31],
Homobono and Peyrat [33].

Section 12.1. The SE network was defined by Stone [76] and later discussed
in many papers, e.g., see Abedini and Ravanmehr [1], Ansari, Sharma, and
Mishra [2], Awerbuch and Shiloach [3], Chen, Lawrie, Yew, and Podera [16],
Chen, Liu, and Qiu [17], Khosravi, Khosravi, and Khosravi [37], Kumar, Dias,
and Jump [42], Lang [43], Lang and Stone [44], Liew [53], Liew and Lee [54],
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Linial and Tarsi [55], Parker [63], Raghavendra and Varma [66], Schwartz [72],
Steinberg [74], and Wu and Feng [80]. The name shuffle came from the con-
cept of shuffling a deck of cards. Assume we are given a deck of 2n cards
labeled (0,1, . . . , n − 1, n,n + 1, . . . ,2n − 1). There are two ways to have a
perfect shuffle of the cards. First, the deck is cut into two halves, one with the
cards labeled by (0,1, . . . , n − 1) and a second one with the cards labeled by
(n,n+ 1, . . . ,2n− 1). There are two types of shuffle; in-shuffle and out-shuffle.
For the in-shuffle of the two halves, the new order of the cards is

(n,0, n + 1,1, n + 2,2, . . . ,2n − 1, n − 1)

and the order after the out-shuffle of the two halves is

(0, n,1, n + 1,2, n + 2, . . . , n − 1,2n − 1).

The out-shuffle is associated with the permutation implied by shuffle only, while
the in-shuffle is associated with the permutation implied by first applying a
shuffle that is followed by an exchange performed by all pairs of companion
processors. The in-shuffle and the out-shuffle have interesting mathematical and
group structures that were studied in Diaconis, Graham, and Kantor [22]. How-
ever, the interest was high before as these two permutations are associated with
distributing cards in many card games. A comprehensive description of the his-
tory, mostly connected with cards, is also described by Diaconis, Graham, and
Kantor [22]. The literature is very rich and interesting, e.g., permutations ob-
tained by shuffles and cuts were extensively studied by Golomb [29].

The first study that offered these permutations as a tool for parallel pro-
cessing, i.e., the design of the SE network was presented by Stone [76]. The
algorithms to generate linear transformations and bit permutations in the SE net-
work were taken from Etzion and Lempel [25]. It was shown by Stone [76] that
n2 passes are enough to generate any permutation on the SE network of order n.
Parker [63] improved the bound to 3n passes, Wu and Feng [80] improved it
to 3n − 1 passes, and Huang and Tripathi [34] improved the bound to 3n − 3.
The representation with balanced matrices is due to Linial and Tarsi [55] and
using these matrices they proved that 3n − 4 passes are enough to obtain any
permutation in the SE network. Realizing linear transformation in a network
with pt × pt switching boxes was carried out in Huang, Tripathi, Chen, and
Tseng [35].

Section 12.2. Switching networks were defined first by Clos [19] and compre-
hensive work for their application in telephone networks was carried out in
Beneš [7]. The omega network was defined by Lawrie [45], the flip network
by Batcher [5], the modified data manipulator network by Feng [26], the indi-
rect binary cube network by Pease [64], the baseline network and the reverse
baseline network by Wu and Feng [79].

The equivalence between the omega network, the flip network, the mod-
ified data manipulator network, the indirect binary cube network, the base-



450 Sequences and the de Bruijn Graph

line network, and the reverse baseline network was first proved by Wu and
Feng [79] and later considered by other methods in Bermond, Fourneau, and
Jean-Marie [8] and Kruskal and Snir [41]. The equivalence can be proved in
various ways different from the one presented in this section. For example,
Bermond, Fourneau, and Jean-Marie [8,9] proved this equivalence as follows.

Definition 12.11. A multistage interconnection network of order n+1 has prop-
erty P(i, j) for 0 ≤ i ≤ j ≤ n if the subgraph induced from the switching boxes
from i to j has exactly 2n−(j−i) connected components.

Property P(i, i) implies that stage i has 2n vertices. Property P(i, i + 1)

implies that the subgraph induced by stages i and i +1 has exactly 2n connected
components that are alternating cycles of length 4.

Definition 12.12. A multistage interconnection network of order n + 1 has
property P(∗,∗) if and only if it satisfies Property P(i, j) for every ordered
pair (i, j), such that 0 ≤ i ≤ j ≤ n.

Theorem 12.19. All the MFA networks of order n, which satisfy the banyan
property and property P(∗,∗), are isomorphic.

It can be verified that the six networks (the omega network, the flip network,
the modified data manipulator network, the indirect binary cube network, the
baseline network, and the reverse baseline network) are all banyan networks
(see Theorem 12.7) and also satisfy property P(∗,∗) and hence the conditions
of Theorem 12.19 are satisfied. Therefore these six networks are isomorphic.

Section 12.3. Permutation networks were considered throughout the years. The
type of permutation networks defined in this section was suggested by Beneš [6]
and these types of networks are contained in the family of networks defined by
Clos [19]. Based on the work of Beneš [6], the idea of the permutation network
of order n with n · 2n − 2n + 1 switching boxes was presented first by Waks-
man [78]. Other algorithms to realize all permutations in the Beneš network are
presented in Kannan [36], Lee [46], Lenfant [50], Nassimi and Sahni [58,59],
Nikolaidis, Groumas, Kouloumentas, and Avramopoulos [61], and Raghaven-
dra and Boppana [65]. The hierarchy between different types of permutations
that are important to realize in multistage interconnection networks was given
in Das, Bhattacharya, and Dattagupta [21]. Other interesting algorithms to real-
ize permutations in related networks can be found, for example, in Freund Lev,
Pippenger, and Valiant [51] and Li and Tan [52].

Waksman [78] claimed that it can be argued that 2nn−2n+1 = 2n(n−1)+1
switching boxes are required for a network to realize all the 2n! permutation on
2n inputs. This can be observed by noting that binary decision trees in the net-
work can resolve individual terminal assignments only and not the partitioning
of the permutation set itself that requires only log 2n! = ∑2n

k=1 log2 k binary de-
cisions. This implies that the network �n is optimal. Moreover, it implies that
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the minimum number of stages, required for a multistage interconnection net-
work of order n + 1 to realize all the 2n+1! permutations of the 2n+1 inputs,
is 2n + 1. This result was used in the literature, but unfortunately, it seems that
the arguments of Waksman [78] are not solid and many attempts to reproduce
his proof were unsuccessful and the proof is considered to be incorrect. There-
fore the open problems we raised ignore this result and seek a proof of this result
and/or its consequences. Li and Tan [52] characterized such networks that can
realize the 2n+1! permutations on 2n+1 inputs with 2n + 1 stages.

There were many attempts to solve Problem 12.2 (which is equivalent to
Problem 12.3). A proof for the rearrangeability of such a network was given
in Çam [15], but the analysis of the proof that was carried out in Bao, Hwang,
and Li [4] showed that the proof is incomplete. Bao, Hwang, and Li [4] also gave
some ideas on how to solve the problem as well as to rearrange other networks.
The work has extended the ideas of balanced matrices. Other contributions that
thought to solve the problem unsuccessfully are given, for example, in Feng and
Seo [27], and in Kim, Yoon, and Maeng [38].

The basic questions that we asked can be asked for any UPP graph as fol-
lows.

Problem 12.6. Is there some a UPP graph of order n that cannot realize 2n!
permutations? There should be a distinction between graphs with the buddy
property and those without the buddy property since a graph without the buddy
property can implement fewer permutations in one pass.

Problem 12.7. Is there some (2n − 1)-stage UPP network of order n that is
not rearrangeable? There should be a distinction between networks with the
buddy property and those without the buddy property since a network without
the buddy property can implement fewer permutations in one stage.

Problem 12.8. Is there some (2n − 1)-stage UPP network of order n that is
rearrangeable?

There is an important difference between realizing permutations in a UPP
graph G of order n and realizing permutations on its multistage version of or-
der n + 1. Realizing permutations on the multistage network is equivalent to
realizing permutations on the line graph L(G). Hence, it is very important to
distinguish between the two networks.

Realizing permutations in a UPP network (graph) N with 2n vertices can
be described in terms of a graph G(N ) = (V ,E) whose set of vertices V

has size 2n! vertices. Each vertex represents a different permutation on the set
{0,1, . . . ,2n − 1}. There is a directed edge (u, v) ∈ E, if u and v represent two
permutations for which v can be obtained from u with the network N using
one pass. Let G(N ) be called the permutation graph of the network N . The
first obvious question for a network N is whether the graph G(N ) is strongly
connected.
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Problem 12.9. Characterize which permutation graph G(N ) is strongly con-
nected and which permutation graph G(N ) is not strongly connected, where
N is a UPP network?

If G(N ) is a strongly connected graph, then each permutation can be realized
by N and the next question for such a network is related to the minimum number
of passes required to realize any given permutation. In other words, we ask the
following question.

Problem 12.10. Given a UPP network N , what is the diameter of a strongly
connected graph G(N ), i.e., what is maximum{d(u, v) : u,v ∈ V }?

If the graph G(N ) is strongly connected, then there is another interesting
property that is derived from the graph G(N ). There exists a factor F of G(N )

in which each cycle has n vertices. This factor is obtained by using the permuta-
tions obtained where each vertex of N is performing only “shuffle”, i.e., taking
the route on the cycle in N associated with the unique path of length n from the
vertex to itself. The factor obtained can be called a necklaces factor of the per-
mutations. For simplicity, we assume now that the UPP graph N has the buddy
property. In this case, the in-degree of a vertex in G(N ) is 22n−1

and this is also
the out-degree of a vertex in the graph. Therefore there exists an Eulerian cycle
in the graph. However, if the permutation graph has enough alternating cycles
of length 4, then it can be easily proved that there is also a Hamiltonian cycle in
the graph.

In a very similar way to merging cycles in factors of Gn as was done in
Section 4.3 using the merge-or split method, we can join all the cycles in the
necklaces factor of G(N ) to form a Hamiltonian cycle. This Hamiltonian cy-
cle can be realized by the network N to form all the N ! permutations using
N ! passes. This process can be applied, for example, on the SE network with
N vertices.

Theorem 12.20. All the 2n! permutations of {0,1, · · · ,2n − 1} can be realized
in 2n! passes using the SE network of order n.

Problem 12.11. Consider UPP networks for realizing all the 2n! permutations
using 2n! passes. Distinguish between networks with the buddy property and
those without the buddy property.

Section 12.4. Various computational problems regarding interconnection net-
works in VLSI implementation, including bounds on the layout area, sorting
with the SE network, etc. were discussed in Thompson [77] as well as others,
e.g., Brent and Kung [13]. The work of Thompson [77] also contains a layout
whose area is O

(
N2/

√
logN

)
, as proved in Theorem 12.15. Some considera-

tions should be taken into account when designing a layout, as well as a layout
for the SE network, were given in Hoey and Leiserson [32]. Layouts for the
SE networks were extensively discussed by Leighton [47,48]. Layouts of the
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SE network based on the complex plane were discussed in Leighton, Lepley,
and Miller [49]. The idea of the level-necklace grid presented in Fig. 12.15
and its associated layout presented in Fig. 12.16 are taken from Leighton, Lep-
ley, and Miller [49]. The layout based on the complex plane that requires area
O

(
N2/logN

)
and was given in Theorem 12.16 is also from their paper. They

also described in their paper layouts based on the complex plane whose area is
O

(
N2/ log3/2 N

)
. Another layout with the same area was presented by Stein-

berg and Rodeh [75]. A different approach was taken by Kleitman, Leighton,
Lepley, and Miller [39] to obtain a layout that asymptotically requires area
O

(
N2/ log2 N

)
. This area meets the asymptotic lower bound for the area of

the SE network obtained by Thompson [77].
Book embedding was mentioned only briefly in graph theory, e.g., Bern-

hart and Kainen [12], Malitz [56], Muder, Weaver, and West [60], and Yan-
nakakis [81]. The motivation to apply book embedding on interconnection
networks was from an approach for fault-tolerant processor arrays. The moti-
vation was presented by Rosenberg [67], where the processing units are laid
out in a logical line, and some number of bundles of wires run in parallel with
this logical line. The faulty units are bypassed, and those that are functioning
well are interconnected through the bundles. If the bundles work as stacks,
then the realization of an interconnection network requires book embedding.
A comprehensive work on book embedding for interconnection networks was
carried out by Chung, Leighton, and Rosenberg [18]. Optimal book embed-
ding for the Beneš network as well as other networks was presented before
by Games [28]. A book embedding of Gn and the SE network in five pages
was generated in Obrenić [62]. The idea of the book embedding for the de
Bruijn graph Gσ,n was discussed in Hasunuma and Shibata [30] who showed
that Gσ,n can be embedded in σ + 1 pages, where the cumulative pagewidth is
1
4σn−2(3σ 3 − 2σ 2 + 4σ − σ(σ (mod 2)− 4). Associated book embedding with
σ + 1 pages, for the Kautz network over an alphabet with σ symbols, was also
presented as well as a book embedding with three pages for the SE network.

In another type of important layout, called VLSI decomposition, the graph is
decomposed into isomorphic subgraphs that are connected with other edges of
the graph. The motivation for the VLSI decomposition of the de Bruijn graph is
a consequence of the interest in building a large Viterbi decoder for use in deep-
space communication. The decoder that was used in NASA’s Galileo mission
was based on VLSI decomposition of G13. Fig. 12.18 illustrates how two copies
of a subgraph H of G3 are wired together to form G4.

The ideas of the VLSI decomposition for the de Bruijn graph were pre-
sented first by Collins, Dolinar, McEliece, and Pollara [20] and Dolinar, Ko,
and McEliece [23]. A comprehensive work on VLSI decompositions for vari-
ous graphs was presented in the Ph.D. work of Ko [40]. The optimality of the
VLSI decomposition for the de Bruijn graph was discussed by Schwabe [70,71].
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FIGURE 12.18 Two copies of a subgraph of G3 relabeled and wired together to form G4.
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Commutative group, 2
Commutative ring, 4
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set, 289

Complement, 382
factor, 98, 396
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Complement-reverse sequence, 30
Complementary set, 77
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Complemented summing register, 95
Complexity, 154
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Constant-weight de Bruijn sequences,
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Construction
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long cycle, 392
merge NF, 291
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Costas array, 301

doubly periodic, 305
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CR sequence, 30
Cross-join method, 148
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Cumulative pagewidth, 441
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alternating, 374

de Bruijn, 34, 119
directed, 24
Eulerian, 27, 120
full, 34, 119
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Cyclic coordinate sequence, 226
Cyclic Gray code, 226
Cyclic group, 3
Cyclic sequence, 28
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Damerau errors, 273
DDC DD(m), 308
DDC DD(m, r), 307
de Bruijn array, 44, 280
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de Bruijn graph, 31, 249, 256

generalized, 199
of order n, 31

de Bruijn sequence, 192
binary, 159
constant-weight, 247, 258
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non-binary, 175
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de Bruijn–Good graph, 1
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Degenerated sequence, 29
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Dependency graph, 385
Dependent pair, 379
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algorithm, 208
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of a sequence, 185
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operator, 30
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Directed graph, 24
Directed path, 24
Directed tree, 25
Direction, 343
Dirichlet’s theorem, 46
Distance, 24
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DNA sequencing, 247
DNA storage codes, 254
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S-DDC, 308
Costas array, 305
DDCs, 309

Dual code, 21
Dual subspace, 21

E
Edge, 23

anti-parallel, 25
directed, 24
exchange, 406, 419, 421–423
incoming, 24
layers, 442
line, 422, 423
outgoing, 24
parallel, 23, 25
self-loop, 25
shuffle, 406, 419
un-shuffle, 421

Edit error, 273
Embedding in books, 441
End-point, 24
Enumeration methods, 100
Enumerative coding, 196
Equivalent, 28, 303, 344
Error linear complexity spectrum, 182
Euclid’s algorithm, 7
Eulerian cycles, 27, 120
Eulerian path, 27
Euler’s criterion, 17

Euler’s function, 13
Euler’s generalization for Fermat’s

theorem, 17
Euler’s totient function, 13
Exchange edges, 406, 419, 421–423
Exchange operation, 380
Exponent, 56, 285
Extended representation, 90, 92, 94, 95
Extended weight, 90

F
Factor, 6, 24, 26, 394
Feedback shift register, 31, 36, 89

linear, 36
nonsingular, 37

Fermat’s theorem, 17
Field, 4

finite, 2, 5
Galois, 5

Finite fields, 2, 5
Flip network, 421
Florentine square, 315
Folded-row starting, 343
Folding, 344
Ford sequence, 146
Full cycle, 34, 119
Full-order sequence, 29
Function

Euler’s, 13
totient, 13

generating, 54
Möbius, 14
reversed, 64, 195

Fundamental parallelogram, 343

G
Galois fields, 5
Games–Chan algorithm, 157
Generalized de Bruijn graph, 199
Generating function, 54
Generator, 3
Generator matrix, 21, 343
Genome assembly, 248, 249
Golomb

construction, 302
periodic array, 304, 305, 308, 309
rectangles, 314
ruler, 84
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Golomb’s randomness postulates, 65
Graph

σ -UPP, 371
adjacency, 148
connected, 24
de Bruijn, 31, 249, 256

generalized, 199
de Bruijn–Good, 1
dependency, 385
derivative, 376
directed, 24

bipartite, 25
complete, 26

integral, 376
line, 26, 44, 376
overlap, 250
permutation, 451
reverse, 33
simple, 24
strongly connected, 25
underline, 25
undirected, 23

bipartite, 25
complete, 26

UPP, 367, 376, 394
Gray code, 225

acyclic, 226
cyclic, 226
reflected, 225
single-track, 225, 227

Greatest common divisor, 7
Grid based WSN, 331
Group, 2

Abelian, 2
additive, 5
commutative, 2
cyclic, 3
generator, 3
multiplicative, 5
quotient, 3
stabilizer, 3

H
Hadamard difference set, 53, 79
Hadamard matrix, 81

normalized, 82
Half de Bruijn sequence, 135
Hall sextic residue difference sets, 81

Hamiltonian cycle, 27
Hamiltonian path, 27
Hamming distance, 22
Head locator polynomial, 229
Head positions, 227
Height, 374
Heuchenne condition, 375, 398
Hexagonal DDC DD∗(m, r), 314
Hops, 330
Human Genome Project (HGP), 248

I
Identity element, 2
In-degree, 24
In-edge, 24
Incidence matrix, 26
Incident, 23
Incoming edge, 24
Independent pair, 379
Independent set, 25
Index, 3, 255
Indirect binary cube network, 423
Induction hypothesis, 282
Induction step, 283
Initial state, 36
Input-compatible, 379
Integral graph, 376
Interconnection network, 405
Inverse, 2
Irreducible polynomials, 73
Isomorphic, 26
Italian square, 315

J
Jacobi sequences, 81

K
(k + 1)-stage interconnection network,

419
k-cycle, 24
k-deck, 261
k-error linear complexity, 182

profile, 182
k-grams, 256
k-mark Golomb ruler, 84
k-mers, 251, 255
k-order balanced sequence, 203
k-stage interconnection network, 418
k-deck problem, 261
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Key predistribution, 330
Key-predistribution scheme (KPS), 331
Knuth’s algorithm, 196, 197

L
Lagrange’s theorem, 3
Latin square, 315
Lattice, 342

coloring, 352
tiling, 343

Layers of the edges, 442
Layout based on the complex plane, 439
Layout with all vertices on the same line,

438
Leaf, 25
Least common multiple, 7
Least period, 28
Legendre sequence, 79
Legendre symbol, 18
Length, 20, 23, 24, 28

sequence, 53
Level, 440

of the vertices, 442
Level-necklace grid, 440
Line edge, 422, 423
Line graph, 26, 44, 376
Linear code, 20
Linear complexity, 154, 155
Linear feedback shift register, 36
Linear recursion, 154
Linear transformations, 412
Location, 281
Long Cycle Construction, 392
Lyndon words, 114, 146

M
M-sequence, 41, 53, 57, 64, 65
m-state, 282
Main cycle, 136
Matching, 25

perfect, 25
Matrix

adjacency, 26
balanced, 407
companion, 66
generator, 21, 343
Hadamard, 81

normalized, 82
incidence, 26
n-regular, 408
parity-check, 21
permutation, 413
standard, 407
weighing, 83

Maximum accumulated charge, 214
Maximum length linear shift-register

sequences, 64
Merge-or-split method, 39
Merging cycles, 289

from the CCRn, 142
from the CSRn, 139
from the PCRn, 136

Mersenne prime, 48
Method

cross-join, 148
enumeration, 100
merge-or-split, 39

Middle-levels problem, 241
Milestones, 360
Minimal Full-Access network, 419
Minimal polynomial, 59
Minimum distance, 22
Möbius function, 14
Möbius inversion formula, 15
Möbius inversion theorem, 15
Modified data manipulator network, 422
Moment, 111
Monic polynomial, 9
Multi-periodic, 350
Multiplicative group, 5
Multiplier, 72, 78
Multistage interconnection network, 418
Multistage permutation network, 428

N
(n + 1)-stage SE network, 420
n-regular matrix, 408
Necklace, 91
Necklaces factor, 91, 290, 292, 406, 452
Network

banyan, 419
baseline, 424
flip, 421
indirect binary cube, 423
interconnection, 405



464 Index

(k + 1)-stage, 419
k-stage, 418
multistage, 418

MFA, 419
modified data manipulator, 422
omega, 419, 420
permutation, 434

multistage, 428
rearrangeable, 434
reverse baseline, 425
SE, 406

(n + 1)-stage, 420
uniform, 420
Uniform Minimal Full-Access, 419
wireless sensor, 330

Non-binary de Bruijn sequences, 175
Non-binary linear complexity algorithm,

173
Non-overlapping code, 266, 267
Nonsingular feedback shift register, 37
Nonsingular linear transformation, 408
Normalized Hadamard matrix, 82
NP-complete, 49
Nucleotide, 248
Number theory, 2

O
Oligonucleotide, 254
Omega network, 419, 420
One-dimensional sequences, 340
Optical orthogonal codes, 85
Order, 3, 34
Original play, 239
Orthogonal words, 210
Out-degree, 24
Out-edge, 24
Outgoing edge, 24
Overlap graph, 250
Overlap layout consensus (OLC), 249

P
Packing ratio, 356
Pagenumber, 441
Parallel edges, 23, 25
Parity-check matrix, 21
Path, 23

closed, 24

directed, 24
Eulerian, 27
Hamiltonian, 27
polygonal, 315
repeated, 378
simple, 23
two-hop, 332

Perfect factor, 279, 281
Perfect map, 44, 280, 297

shortened, 44, 280
Perfect matching, 25
Perfect number, 48
Period, 28, 226
Permutation graph, 451
Permutation matrix, 413
Permutation network, 434
PN sequences, 53, 64
Polygonal path, 315
Polymerase chain reaction (PCR), 256
Polynomial, 53

characteristic, 54
companion, 66
head locator, 229
irreducible, 73
minimal, 59
monic, 9
primitive, 5, 57
set, 222

Position of the ith head, 227
Prefer one algorithm, 128
Preferred state, 139
Prefix, 31
Prime, 6

Mersenne, 48
relatively, 7
twin, 80

Primitive cycle, 131
Primitive element, 5
Primitive polynomial, 5, 57
Problem

k-deck, 261
middle-levels, 241

Product, 62
Profile vector, 256
Pseudo-random array, 44, 293
Pure cycling factor, 394
Pure cycling register, 90
Pure summing register, 94
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Q
Quadratic non-residue, 18
Quadratic residue, 18

sequence, 79
Quasi-regular hexagon, 356
Quotient group, 3

R
r-decimation, 70
r-neighbors, 332
Radar arrays, 314
Radius, 356
Reach property, 380
Reachable tree, 374
Realization of a permutation, 407
Rearrangeable network, 434
Reconstruction of codewords, 273
Recursive constructions, 129, 297
Redundancy, 21
Reflected Gray code, 225
Relatively primes, 7
Repeated path, 378
Reverse baseline network, 425
Reverse graph, 33
Reverse sequence, 30
Reverse spanning tree, 120

algorithm, 122, 199
Reversed function, 64, 195
Ring, 4
RLL codes, 274
Robust self-location algorithm, 328
Robust self-location two-dimensional

patterns, 325
Root, 25
Rotating-table games, 236
Routing, 419

algorithm, 407
Run-cycle, 139
Run-length, 214

limited codes, 274

S
(s, t)-universal sequence, 222
Self-complement, 396
Self-dual, 21
Self-dual sequence, 30
Self-location, 326
Self-loop, 23

edge, 25
Sequence, 27, 59

acyclic, 29
aperiodic, 28
balanced, 189, 196

k-order, 203
binary, 154
complement, 30
complement-reverse, 30
coordinate, 226
CR, 30
cyclic, 28

coordinate, 226
de Bruijn, 192

binary, 159
constant-weight, 247, 258
half, 135
non-binary, 175
shortened, 34

degenerated, 29
depth, 185
Ford, 146
full-order, 29
Jacobi, 81
Legendre, 79
length, 53
maximum length linear shift-register,

64
one-dimensional, 340
PN, 53, 64
quadratic residues, 79
reverse, 30
(s, t)-universal, 222
self-dual, 30
sonar, 313
twin primes, 80
universal, 237, 243
with length 2n − 1, 190

Set of companions, 289
Set polynomial, 222
Shift, 77

operator, 30
weight, 291

Shift-and-add, 65
Shortened de Bruijn array, 44, 280
Shortened de Bruijn sequence, 34
Shortened perfect map, 44, 280
Shuffle, 449
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edge, 406, 419
Shuffle-exchange (SE), 406

network, 406
Simple, 24

graph, 24
path, 23

Simplex code, 82
Single-track Gray code, 225, 227
Singly periodic Costas array, 304
Sonar sequence, 313
Span, 34
Spanning tree, 25
Sphere complexity, 182
Square

Florentine, 315
Italian, 315
Latin, 315
Tuscan-k, 315
Vatican, 315

Stabilizer group, 3
Standard form, 21
Standard matrix, 407
Start-point, 24
State, 36

diagram, 37, 110
Strands, 249
Stream ciphers, 220
Strongly connected graph, 25
Subgraph, 25
Subgroup, 3
Sufficient condition, 162
Suffix, 31
Switching element, 418
Synchronization codes, 265
Syndrome, 22
Systematic, 21

T
t-interleaved, 74
t-interleaving, 74
t-shift, 70
Tandem-duplication, 273
Tiling, 342
Tour, 24
Track, 226
Transpose, 21, 335
Tree

binary directed, 25

balanced, 25
directed, 25
reachable, 374
spanning, 25

reverse, 120
undirected, 25

Trinomial, 191
Truth table, 37
Tuscan-k square, 315
Twin primes, 80

sequences, 80
Two-dimensional arrays with distinct

differences, 300
Two-hop path, 332
Two-hop r-coverage, 337

U
Un-shuffle edge, 421
Underline graph, 25
Undirected bipartite graph, 25
Undirected complete graph, 26
Undirected graph, 23
Undirected tree, 25
Uniform Minimal Full-Access network,

419
Uniform network, 420
Unique path property (UPP), 367
Universal sequence, 237, 243
UPP graph, 367, 376, 394

V
(v, k, λ)-difference set, 76
V-set, 112
Vatican square, 315
Vertices, 23
Very large-scale integration (VLSI), 221
VLSI decomposition, 453
VLSI testing, 221
Volume, 343

W
Weakly doubly periodic Costas array, 303
Weighing matrices, 83
Weight, 22, 28

of the feedback function, 37
of the truth table, 37

Welch construction, 301
Welch periodic array, 303
Window, 34
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Wireless sensor network (WSN), 330
Word

depth, 204
Lyndon, 114, 146
orthogonal, 210

Z
Zero factor, 285
Zero state, 281
Zero vector, 265
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