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Efficient Reconstruction of Sequences
Vladimir I. Levenshtein, Associate Member, IEEE

Abstract—In this paper, we introduce and solve some new prob-
lems of efficient reconstruction of an unknown sequence from its
versions distorted by errors of a certain type. These erroneous ver-
sions are considered as outputs of repeated transmissions over a
channel, either combinatorial channel defined by the maximum
number of permissible errors of a given type, or a discrete mem-
oryless channel. We are interested in the smallest such that

erroneous versions always suffice to reconstruct a sequence of
length , either exactly or with a preset accuracy and/or with a
given probability. We are also interested in simple reconstruction
algorithms. Complete solutions for combinatorial channels with
some types of errors of interest in coding theory, namely, substitu-
tions, transpositions, deletions, and insertions of symbols are given.
For these cases, simple reconstruction algorithms based on ma-
jority and threshold principles and their nontrivial combination
are found. In general, for combinatorial channels the considered
problem is reduced to a new problem of reconstructing a vertex
of an arbitrary graph with the help of the minimum number of
vertices in its metrical ball of a given radius. A certain sufficient
condition for solution of this problem is presented. For a discrete
memoryless channel, asymptotic behavior of the minimum number
of repeated transmissions which are sufficient to reconstruct any
sequence of length within Hamming distance with error prob-
ability is found when and tend to 0 as . A similar
result for the continuous channel with discrete time and additive
Gaussian noise is also obtained.

Index Terms—Algorithms, combinatorial and probabilistic
channels, error metric, graphs, reconstruction, repeated trans-
mission, sequences.

I. INTRODUCTION

T RADITIONAL problems of the theory of information
transmission consist in efficient transmission of mes-

sages of a set over noisy channels which are described
by combinatorial or probabilistic conditions. In the solution
of these problems, acoding of the elements of is used to
introduce a redundancy to the messages so that the distance
(in a certain metric) between the encoded messages would be
sufficiently large and allow one to correct errors at the output
of the channels. The efficiency of transmission is characterized
by the amount of redundancy and by the complexity of the
decoding algorithm. One method to combat errors is repeated
transmission of a message, without coding. This is not efficient
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Fig. 1. Schematic diagram of reconstructing a sequencex.

from the point of view of redundancy, but in various fields of
science, such as informatics, molecular biology, and chemistry,
there are situations when no other method is feasible. With that
motivation we study in this paper the problem of recovering an
unknown sequence (or message) when
a sufficiently large number of patterns (sequences) are known
which are distorted versions of. We can assume that the com-
ponents of belong to the alphabet ,

, and hence .
For the precise formulation of the problem we can define a

combinatorial or probabilistic channel and assume that
patterns are obtained by multiple transmission of

over the same channel (see Fig. 1). For a chosen type of
single errors (for instance, substitutions, transpositions, or dele-
tions of symbols), a combinatorial channelis defined by the
maximum number of single errors which can occur during
transmission of any input sequence of lengthover the channel.
As a probabilistic channel we consider an ordinary discrete
noisy channel without memory [20], [7]. For restoring a se-
quence in both cases we use an-reconstructor which
maps the matrix formed by the columns to . We
call anexact reconstructionof if , and are-
construction of within distance if where

is the Hamming distance. (The case corresponds
to exact reconstruction.) In the case of a probabilistic channel

, we call the probability of the event the
error probability of reconstructing within distance . In the
case of a combinatorial channel, we should certainly assume
that all patterns aredifferent,since otherwise exact
reconstruction of is not possible, for instance, when they co-
incide and differ from . No such assumption is needed in the
probabilistic case. Moreover, we shall see that even if the proba-
bility of errorless transmission ofover equals zero, the error
probability of exact reconstruction ofcan be made as small as
one wishes with the help of an-reconstructor for sufficiently
large .

0018–9448/01$10.00 © 2001 IEEE
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A natural measure of efficiency of a solution of the combina-
torial problem under consideration is the minimum number
such that there exists an-reconstructor which exactly recon-
structs any from any of its different erroneous pat-
terns (if they exist). It is also significant to find a simple realiza-
tion of this mapping (reconstruction algorithm). Analogously,
for a probabilistic channel it is important to find the minimum
number such that there exists an-recon-
structor whose error probability of reconstructing any
within distance does not exceed a given .

Now we briefly describe the main results of the paper. In Sec-
tion II, we define combinatorial channels which are useful to
describe combinatorial problems of efficient reconstruction of
sequences and give solutions of these problems in the case of
single errors of interest in coding theory. First we consider the
combinatorial problem of reconstructing an unknown sequence

when knowing different sequences
each of which differs from in at most

components (i.e., obtained by at mostsubstitutions). What
is the minimum number which is sufficient to exactly recon-
struct any ? Does there exist a simple procedure for such
a reconstruction? For example, is the following matrix:

from eleven different sequences (written as columns) sufficient
to reconstruct when ? For any , , and we show
that this minimum number equals where

and prove that in each row of the matrix formed by the
columns one letter of occurs more often
than others and it equals the componentof the unknown

. Thus, in this case, the majority algorithm
can be applied to all rows of in order to reconstruct . In
particular, for eleven sequences above are sufficient to
reconstruct , and . Note that if we re-
move the last column of , another solution
would also be suitable.

The next combinatorial problem is to reconstruct an unknown
sequence when knowing different
sequences obtained from with the help
of at most transpositions of two components. Since these trans-
positions do not change the weight of the binary vector, we
can assume that where and is a subset
of consisting of all vectors of weight. As an example, can
we uniquely restore from the matrix

of six different columns obtained fromwith the help at most
one transposition of two symbols? We show that this minimum
number equals where

We also prove that for the reconstruction of

from the matrix , whose columns are formed by its
erroneous patterns, the following threshold al-

gorithm can be applied: if the number of ones in the
th row of is greater than and other-

wise . In particular, when
and the six sequences are sufficient to uniquely restore ,
and we have . If we remove the last column,
another solution would be suitable as well.
We verify that different patterns are also sufficient
for the reconstruction of any when and .
However, this needs a generalized version of the threshold al-
gorithm which will be described in Section II. We also give so-
lutions to similar problems that allow asymmetric substitutions

or . In these cases, can be efficiently
reconstructed by applying Boolean functions, respectively, dis-
junction and conjunction in variables, to rows of .

A more complex combinatorial problem is connected with
the reconstruction of an arbitrary when
knowing different sequences , each ob-
tained from by deletions of exactly symbols and hence is a
subsequence of , .
If denotes the maximum size of the set of common
subsequences of length of two different sequences

, then is the minimum number such
that any can be exactly reconstructed usingof its
different subsequences of length (if they exist). We find

and prove that

(1)

with equality for . In particular, and
hence we can find a unique such that the eleven columns
of the following matrix:

are subsequences of lengthof . An algorithm for reconstruc-
tion of with the help of of its
different subsequences of length is based on an interesting
combination of majority and threshold principles. This algo-
rithm is described and illustrated by an example in Section II.
We also find the maximum number of common su-
persequences of length of two different sequences from

and present an algorithm for reconstruction of an arbitrary
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when knowing different super-
sequences of length (obtained from by insertions of
symbols of ).

The considered combinatorial problems show that in fact we
deal with the same problem for different metrics on. In this
connection, we advance in Section III a graph-theoretical ap-
proach to the problem of reconstructing an unknown sequence
using the minimum number of its patterns distorted by errors
of a given type and restricted multiplicity. This problem is re-
duced to a new problem of reconstructing a vertex of an arbitrary
graph when knowing a sufficient number of vertices in its met-
rical ball of a given radius. We consider a finite setof mes-
sagesand a set of one-to-one, in general, partial mappings

(calledsingle errors) which have the following prop-
erty: if , and , then there exists
such that . We define a graph with the
set of vertices and the set of edges where if and
only if and there exists such that . Then
the path distance between vertices and of the graph

is equal to the minimum number of single errors translating
to . This construction is applicable to many sorts of single

errors of interest in coding theory such as substitutions, trans-
positions, bursts, deletions and insertions of symbols, and arith-
metic errors. Moreover, we shall see that an arbitrary graphof
maximal degree can be treated as a graph whose path distance
is defined by a set of single errors. For an arbitrary graph

of diameter and any integers denote
by the maximum number of vertices in the intersection
of the metric balls of radiusaround vertices and such that

. The number equals the minimum
number such that any vertices in the metric ball of radius

around any vertex suffice for exact reconstruction of. The
property ofmonotonicity on intersectionsis introduced and a
sufficient condition so that a graph has this property is found.
This property allows us to easily calculate the values
for some graphs.

It is significant to note that can be treated as the
minimum number of vertices in the metric ball of radiussuf-
ficient for exactreconstruction of a vertex in a code of
minimum distance . This allows us to consider and solve some
new problems of coding theory when the minimum distance of a
code does not allow one to correct errors of a given multiplicity.
In particular, for the binary Hamming graph .
This means that the minimum number of erroneous patterns suf-
ficient for reconstruction of any word of a -error-cor-
recting code of length , for the combinatorial channel with at
most substitutions of symbols, is equal to indepen-
dently of the length of the code.

The problem of efficient reconstruction of an unknown
sequence at the output of a discrete probabilistic channel
without memory is considered in Section IV. This consists
of finding the minimum number of repeated
transmissions which are sufficient for reconstruction of any
sequence of length within Hamming distance with error
probability . (The case corresponds to exact recon-
struction.) To estimate we introduce and study
reducible -reconstructors which have a remarkable property:

-tuple transmission of a message over a discrete memoryless

channel using a reducible -reconstructor (see Fig. 1) is
equivalent tosingletransmission of this message over a certain
discrete memoryless channel which has an “improved”
transition matrix.

A channel is referred to asnondegenerateif its transition
matrix does not have two identical rows (otherwise, there exists
a sequence which cannot be reconstructed with error probability

) and contains a column with at least two nonzero proba-
bilities (otherwise, any output sequence allows us to reconstruct
exactly the input sequence). For a channelwe consider a con-
stant which was introduced in [22] for finding the zero
rate exponent and note that if and only if is
nondegenerate. The main result can be formulated as follows.
Let and be functions such that
and as . Then for any nondegenerate discrete
memoryless channel

In the case whengrows linearly and decreases not faster than
an exponent in , a bounded (i.e., independent of) number of
repetitions is sufficient.

We also consider the optimization problems of repeated trans-
mission over continuous channels with discrete time and addi-
tive noise [7]. The problem of finding the minimum number

of repeated transmissions, which are sufficient for
reconstruction of any real vector within Eu-
clidean distance with error probability , is reduced to a clas-
sical statistical problem for the minimax estimate. In the case of
a Gaussian channel, the optimal-reconstructor is defined by

, and, using this -reconstructor, -tuple
transmission of any is equivalent to single transmission of
over the same channel with variance divided by. We find the
asymptotic behavior of for this channel.

Section V contains concluding remarks and open problems.
Some results of the paper without proofs were announced in
[15].

II. COMBINATORIAL CHANNELS

We denote by the set of sequences
over the alphabet , . We shall
also use the notation considering as aword of
length over the alphabet . Let be the set
of all words over . Every combinatorial channel will be char-
acterized by a set of one-to-one partial mappings .
This means that if is defined on and ,
then . Elements of are referred to assingle er-
rors. For any and denote by
the set of all words which can be obtained from by
at most of single errors from . (This means that there ex-
ists an integer , words where

, and single errors such that
is defined at and for any .)

Given a set of single errors, acombinatorial -channel
is defined as a multiple-valued function which can map an ar-
bitrary (input) word to any (output) word from the set

. If and for
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any different , then is anerror-correcting codefor
the combinatorial -channel and to find its maximum size
is one of the main problems in coding theory. However, in this
paper we consider another problem. Let

(2)

It is clear that for each , any different
elements of the set allow one to uniquely recover.
On the other hand, (2) shows that is the
minimum number having this property. It is worth pointing out
that it is in general possible that for
some . Thus, can be reconstructed with the help of
any differentelements of if they exist. In this paper,
we shall determine for different , , , and .

Now we give examples of sets of single errors and hence
the corresponding combinatorial -channels. We shall use
a common name (for instance, substitutions or transpositions)
for all elements of each such which is usually referred to as
the typeof errors. The sets are in general countable, and we
denote by the subset of all single errors of which are
defined on at least one element of .

Example 2.1 (Substitutions):

where the single error is defined on all
such that and replaces the letter in by the letter

. In this case, .

Example 2.2 (Asymmetric Errors):

and

where the single error is defined on all
such that and and

replaces the letter in by the letter ( , respectively).
In both cases, .

Example 2.3 (Cyclic Errors):

where the single error is defined on all
such that and replace the letter in by the

letter . In this case .

Example 2.4 (Transpositions):

where the single error is defined on all
such that and transposes the lettersand in . In this
case, .

Example 2.5 (Deletions):

where the single error is defined on all
such that , , and maps to the word

of length . In this case .

Example 2.6 (Insertions):

where the single error is defined on all
such that and maps to the word of
length . In this case .

Other types of single errors such as bursts and arithmetic er-
rors (see, for example, [18]) also admit a similar description.

In addition to determining , it is also important to
find a simple algorithm for reconstructing from dif-
ferent words in where
The following definitions will be needed for that purpose. The
compositionof a word is

(3)

where is the number of occurrences of the letter
in . Theordered compositionof is

(4)

where

(5)

is a permutation of such that

The last conditions need not uniquely determine the permutation
of , but it will be uniquely defined if we additionally

require that whenever . With
as defined above, we define themajority function

by

(6)

If a letter occurs in more often than any other letter
then . We will also need thethreshold function

(typically, will be or ). Given a vector
of thresholds , we define

(7)

The threshold function is well defined for all
such that

(8)

Note that if holds for only one then
Note also that the majority function (6) can be expressed as

(with zero thresholds). As an example, for
and we have , ,

, , , and
.

In the sequel, given a set of single errors we shall omit
in the notation . We assume that are integers

, , and put

if
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and

if or (9)

A. Substitutions

In the case when and consists of single sub-
stitutions, the set is the metric ball of radiuscentered at
point of the Hamming space (see Example 2.1). Set

in this case. The problem is to find and a simple al-
gorithm for the reconstruction of with the help of any
different where .

Theorem 1: For any and

(10)

If , , are
different words in for some , then

(11)

Proof: Let all letters of the words coincide
except the first one. Then all words which have an arbitrary first
letter and differ from (and ) in at most remaining places
belong to the set . This proves that is not
smaller than the right-hand side of (10). The opposite inequality
will follow from the proof of the second part of the theorem. To
this end, we note that for any and , ,
the number of such that equals

. Therefore, the letter occurs more often
than others among and we can apply the majority
function to find .

Thus, Theorem 1 determines the minimum number
such that different words obtained from a word

by at most substitutions are always sufficient for its re-
construction. Moreover, such a reconstruction can be performed
by applying the majority function to each row of the matrix

. Note that and
for and , respectively. A numerical example has been
given in Section I.

B. Transpositions and Asymmetric Errors

In the case when and consists of single
transpositions, we put and note that any

has the same composition as , i.e., ,
see Example 2.4 and (3). In particular, for each word
in has the same Hamming weight. Therefore, it is natural
to consider the problem to find where consists
of all words with ones and zeros. If we define
the distance between elements ofto be half of the Hamming
distance (the Hamming distance is even in this case), then
is the metric ball of radiuscentered at point . This metric
space is called the Johnson space.

Theorem 2: For any and

(12)

If , are
different words in for some , and

, , then

(13)

where

and

Proof: Denote the right-hand side of (12) by . Let
, , be obtained from by a single transposition

. Considering four possible cases for these two positions
and it is easy to see that

This proves that . The opposite inequality will
follow from the proof of the second part of the theorem. To
prove this part, we note that for any and ,

, the number of such that
equals

if , and equals

if . This implies that for the threshold
function (13) allows us to find and completes the proof of the
fact that .

Thus, Theorem 2 determines the minimum number
such that different words obtained from a

word by at most transpositions are always sufficient
for its reconstruction. Moreover, such a reconstruction can be
performed by applying a threshold function to the composition
of each row of the matrix . Note that
and for and ,
respectively. A numerical example has been given in Section I .

It is worth pointing out that any words
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obtained from an arbitrary by at most
one transposition are sufficient to reconstruct this, and hence

for any . In this case, we know the com-
position of (it coincides with that of all ) and can reconstruct

as follows:

(14)

where and

It follows from the fact that the number of
such that and equals . Note

that, in general, application of the majority function to all rows
is not suitable in this case.

Example 2.7:Let the columns of the matrix

be obtained from an unknown by at most one transpo-
sition of two symbols. Any column allows us to determine the
composition of . Using (14) we find that

.

Consider asymmetric errors

and

(see Example 2.2) for the set and denote
for these types of errors by and , respec-
tively.

Theorem 3: For any and

If different belong to for some

or

and

then

or, respectively,

The proof of Theorem 3 is a simple modification of that of
Theorems 1 and 2. In these cases, to reconstruct one
can apply conjunction or disjunction to each row of the matrix

.

C. Deletions and Insertions

In the case when and consists of single dele-
tions and single insertions (see Examples 2.5 and 2.6),
the set is the metric ball of radiuscentered at in
the deletion/insertion metric introduced in [12] (see also [14]).
Since the length of words of varies from to ,
we consider separately the case of exactlydeletions and the
case of exactly insertions. Let

(15)

It is obvious that is the set of all words obtained from
by deletion of letters (subsequences of length )

and is the set of all words obtained from by
insertion of letters (supersequences of length ). We shall
show how to find

(16)

and

(17)

Moreover, we shall describe simple algorithms that recover
with the help of any different elements of

(if they exist) and with the help of any
different elements of (we verify that such a number of el-
ements always exist in ). The detailed proof of these results
is omitted here, it will be published in theJournal of Combina-
torial Theory.

For any nonnegative integersand define

It is useful to assume that for any integers and
such that or and to extend the definition of
to the case when . In this case, if

. As was mentioned in [4] (with the reference to the
report [3]) Calabi proved that

when

(18)

Recently, Hirschberg [10] found a recurrence on , for
computing , namely

(19)
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In particular

(20)

The formula for is due to Calabi [3].
One can show that for any and

(21)

Using (18) we have that for

(22)

and for

(23)

From (19) and (22) it follows that

(24)

and one can use (19) and (20) to calculate . In partic-
ular

(25)

(26)

where is the Kronecker symbol. Since

(24) also implies (1).
Now we describe analgorithm for reconstructionof an un-

known when we know a set

(i. e., of its different subsequences of length ) where
and . Note that in this case in fact

, since

for

and for any . The algorithm
consists in successive application of threshold functions to the
ordered composition of the first rows of the matrices formed by
erroneous patterns. At any step, the first letter and also,

, deleted letters of the unknown wordare determined,
and the problem is reduced to a similar analysis of a submatrix
with a smaller number of rows.

We shall consider the words

as columns of a matrix of size . For any ,
denote by the submatrix of formed by all of its columns
whose first letter is and by the submatrix of which
is obtained by removing the first row of . For the first row

of find the permutation

and the ordered composition

of (see (5) and (4)). Consider the thresholds

(27)

and note that due to (23) the threshold function is
defined on . If , then and

for (28)

In the case the submatrix consists of the unique column
, and the reconstruction of is completed. In the

case all columns of belong to
and their number exceeds , and hence the
problem is reduced to that of reconstructing the word

of the smaller length from
of its different subsequences of length (obtained

from by deletions).
Thus, the first letter of is recovered with the help of appli-

cation of the majority function to the first rowof the matrix ,
since . We then go to analysis of the largest
submatrix only if is too large or precisely if the number
of its columns exceeds the threshold . Otherwise,
we need to investigate the smaller submatrix where is de-
fined as above so as not to lose the required information on.

Example 2.8:Let , , , , by
(26), and 25 columns of the matrix at the bottom of this page be
subsequences of a certain . For the first row

of the matrix we have , ,
, and hence and . Since

, , ,
we have . Hence , ,
and the problem is reduced to reconstruction
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from of its subsequences of lengthwhich
are columns of the following matrix :

Now for the first row of this matrix we have ,
, , and hence and

. Since , ,
, we have . Hence

, , . In this case,
and the last column determines the remaining letters

, . Thus, we finally have .

Considering insertions we first should mention the surprising
fact that does not depend on and

for any (29)

where

(30)

This result was published in [13] for ; the extension to the
general case is immediate. We shall also assume that

for and , and that agrees with (30) (see (9)). Since
for any

(31)

(here for any and any
), this fact can be proved by induction on
, and (30) can be easily found by calculation of

. Note that from (31) it also follows that for

(32)

and hence

(33)

because for any .
One can show that for any and

(34)

Using

we see that for

(35)

and hence

(36)

since . Note that for ,

which can be proved by induction on with the help of (32)
and (35). It follows that

for any (37)

Now we describe analgorithm for reconstructionof an
unknown with the help of any set

from different elements of
(i. e., its supersequences of length ), , .

We consider the words

as columns of a matrix of size . For any
and denote by the submatrix of
consisting of all columns such that

is the first occurrence of the letterin the word , and
denote by a submatrix of which consists of all different
columns obtained from by removing the first rows. Note
that if denotes the number of columns of a matrix, then

For any consider the vector defined as

where

It is clear that

(38)

for . In the case when there exists , ,
for which (38) also holds (and hence thisoccurs among the
first positions of any column of ), one can show that the
number of columns in which the first occurrence ofprecedes
that of is larger than . This allows us to find with
the help of the first rows of the matrix . Consider the
thresholds

(39)

and note that due to (36) and (38) with the threshold
function is defined on . If

then and the set contains at least
different columns and hence con-

tains at least

different columns each of which belongs to . In
the case , consists of the only column
and this completes the reconstruction of. In the case
, we determine and reduce the problem considered to the

reconstruction of from any
different words of the set .
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Thus, the first letter of is recovered with the help of the
first rows of the matrix . In general, this letter differs
from the letter obtained by applying the majority function to the
first row of . The number , ,
is equal to the number of inserted letters. In order to findwe
need to investigate , and so on. Note that (34) implies
that , ,

Example 2.9:Let , , , and hence
. Consider the following matrix (see the

bottom of this page) derived from 21 supersequences of an
unknown . We have ,

, , and see that (38) holds
only for , and hence . Since , ,

, we get . The matrix has 14
columns and has seven different columns each of which is
obtained from by a single insertion. However, for further
reconstruction, it is sufficient to use any of
them, for instance

Now we have , , ,
and there exist two lettersand for which (38) hold. However,
the first occurrence of precedes that of in a larger number
of columns and hence . Then we conclude that ,

, , and consists of one letter .
Thus, .

III. GRAPH-THEORETICAL APPROACH TORECONSTRUCTION

OF SEQUENCES

The considered combinatorial problems of efficient recon-
struction of sequences can be reduced to some extremum prob-
lems of reconstruction of vertices of graphs using the minimum
number of different vertices in their metrical balls of a restricted
radius. The problems of exact reconstruction of a vertex and its
reconstruction with a preset accuracy expressed in terms of the
path distance of a graph are given. We introduce the property
of a graph to be monotone on intersections. This property of a
graph allows us to find solutions of the problems in terms of
parameters of the graph. Given numberof possible errors, the
problem of reconstruction of arbitrary vertices within distance

is close to an exact reconstruction of vertices belonging to a
subset of vertices (code) with the minimum distance be-
tween its different elements. This gives rise to new problems for
-error-correcting codes when the numberof possible errors

exceeds . Although these problems make sense for an arbitrary

graph, we consider a special representation of a graph based on
the description of its path metric with the help of a setof
single errors which are partial one-to-one mappings on the set
of vertices. We show that this approach does not lose generality.
On the other hand, many types of errors of essential interest in
coding theory imply the natural description of the corresponding
graphs. Moreover, this approach allows us to formulate a suffi-
cient condition for a graph to be monotone on intersections. We
use this condition in order to find solutions of the extremum
problems for some types of single errors.

A. Reconstructing Vertices of a Graph

Let be a graph with a finite set of vertices and
a set of edges which are unordered pairs of distinct elements
of . We denote by thepath metricof , equal to the
minimum number of edges in a path joiningand . We do not,
in general, assume thatis a connected graph and put

if and belong to different components. We denote by
the maximum of over all such that

there exists a path joiningand . This is calleddiameterof in
the case of connected. For any and
we consider themetrical spheres of radius

(40)

(centered at ) and themetrical balls of radius

Thedegree of a graph is the maximum of
over all . A graph is called regular of degree if

for all . For any and
, let

(41)

Connected graphs for which values (41) depend only on, ,
and are calleddistance-regular.For such graphs, we de-
note by if . There exists a one-to-one
correspondence between distance-regular graphs of diameter
and symmetric association schemes withclasses [5]. Anau-
tomorphismof a graph is a permutation of the vertex set
such that if and only if . For any

and an automorphism, . A
graph is calleddistance-transitiveif for any
such that there exists an automorphismof

for which , . Distance-transitive graphs
are distance-regular.
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For a graph , we define some functions of interest for prob-
lems of reconstructing vertices. For any
put

(42)

and

(43)

The last value is equal to the maximum number of vertices
in the intersection of two metric balls of radiuswith cen-
ters at distance or more one from the other. In particular,

for .
The number will be significant for the following

problem: Given a code (any subset of ), and
, what is the minimum integer such

that for each , any vertices in (“erroneous pat-
terns of ”) suffice to recover within distance (or exactly
if )? Formally, we define as the minimum
integer such that for any set of size there ex-
ists satisfying for every with

(if such exists). Such a number always ex-
ists under the assumption that and are different
for different . We also assume that is not con-
tained in for any . Under these assumptions,

. Note that for
any , since in the case any element of
can be chosen as permissible approximation.

First we consider the main case .

Lemma 1: For any integers and , ,

(44)

with equality when or .
Proof: The case has been considered. By the def-

inition of there exist such that
and .

For this contradicts the existence of ,
for which and , and gives (44). On the
other hand, if for some , then
the distances between different with (if they
exist) are not greater than . Therefore, for there exists
at most one such, and we have equality in (44).

Thus

(45)

is equal to the minimum number of vertices in the metric ball of
radius with the center at an arbitrary that are sufficient
to exactly reconstruct this vertex. Note that, in general, for a
set with pairwise distances one cannot guarantee
the existence of a vertex such that for all

. Nevertheless, one may expect that for some graphs,
in particular, for the Hamming and Johnson graphs, equality in
(44) takes place for all.

The value is also relevant for exact recon-
struction of vertices in a code of minimum distance

(46)

Lemma 2: For any , and any code
such that

(47)

with equality for some codes (for a sufficient condition of
equality see Lemma 3).

Proof: In the trivial case we have
and any vertex of allows one to exactly

reconstruct . By the definitions of and ,
for any such that there exists at
most one vertex with . This implies (47). On
the other hand, there exist such that

and . Therefore, if these and belong
to a code , then one cannot exactly reconstruct a vertex of
when knowing , and hence

.

For calculation of we use a property of graphs
which reflects our intuitive expectation that must de-
crease with increasing. A graph is calledmonotone on in-
tersectionsif for any the value does
not increase with . If has this property, then

However, we shall see that there exist “very symmetric” (in par-
ticular, distance-transitive) graphs which do not have this prop-
erty.

Using the arguments of the proof of Lemma 2 we get the
following statement.

Lemma 3: If a distance-regular graph is mono-
tone on intersections then

(48)

and for any code such that

B. Graphs with Error Metric

The metric approach to the problem of efficient reconstruc-
tion of sequences for different types of errors gives rise to
the natural definition of a class of graphs including Cayley
graphs. Let be a finite (or countable) set. Consider a set
of one-to-one, in general, partial mappings which are
referred to assingle errors.This means that for any single error

and , , we have if is
defined on and . We assume that and have the following
property: if is defined on and ,
then there exists which is defined on and .
We will write this property as . Note that

holds if , i.e., if and only
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if . However, we will verify that this is not a necessary
condition for to hold. A single error
is called aninvolution if . In particular,
takes place if consists of involutions. If a single error
is defined on all , then is simply apermutationof

. Let us construct a graph with the set of
vertices and the set of edges, where if and only if

and there exists such that . Here and in what
follows, stands for . The property
implies the crucial fact that the path metric on is
equal to the minimum number of single errors transforming
to if there exists a chain of such mappings, orotherwise.
We call a graph with error metric(of type ).

Note that the definition of does not depend on whether
or is not defined on . Therefore, one can assume

without loss of generality that for any there exists
such that . It is in general not true that if we put

for each which is not defined on, we
obtain a permutation of . On the other hand, any single error

, which is a permutation of , can be given by a product
of cycles of length or more (with omitted cycles of length one).
In particular, the Petersen graph in Fig. 2 is a graphwith the
set of four single errors (involutions):

or with the set of three single errors:

In both cases we have .
The construction of the graphs with

can be used for many types of single errors consid-
ered in coding theory (see also [12], [13], [18]). In the case

, the set defined in Section II co-
incides with the metric ball in . In particular, for the
set of substitutions (Example 2.1) and cyclic errors
(Example 2.3) we have and obtain graphs with
the Hamming and Lee metric, respectively; for and
the set of transpositions (Example 2.4) being invo-
lutions we also have and get the graph with the
Johnson metric. In Sections II-A and II-B we, in fact, calcu-
lated for these cases. For the union

(countable set) of deletions and insertions on(Examples
2.5 and 2.6) the property is also satisfied, and the
graph generates the deletion/insertion metric on [12].
Any belongs to the range of definition of a finite number
of single errors and hence all metric spheres (40) are fi-
nite for this countable graph. In this case, we have found

The restriction in the definition of
can be weakened. Let the followingparal-

lelogram propertyhold: for any and
such that , there exist and
for which , . If for any we put

Fig. 2. The Petersen graph.

if and only if or , then
we can show that the path metric of the graph
equals where the minimum is taken over alland

such that there exists for which and
. In particular, for the sets of asymmetric

errors on (Example 2.2) it is not true that .
However, in both cases the parallelogram property holds, and
we get the same graph on the set . In Section II-B for
this graph we have, in fact, found

where and , respectively.
An important class of graphs with error

metric is obtained when is a finite group, a subset
contains if , and consists of all left (for def-
initeness) multiplications of elements by elements of .
We shall not distinguish elements of and and shall write

. In this case, and all single errors of are
permutations of . They all are automorphisms of if is
an Abelian group. A graph with Abelian group

and is referred to as anAbelian graph.Many types
of errors, such as substitutions, bursts, cyclic, and arithmetic er-
rors, give rise to Abelian graphs .

It is worth pointing out that any graph is a graph with
error metric. For instance, we can consider each edge ofas an
involution which is defined only on two vertices and permutes
them. It is, therefore, of interest to minimize the size of a set

of single errors for which a graphcoincides with . It is
clear that for any graph of degree . In the sequel,
we consider finite graphs.

Lemma 4: Any graph of degree is a graph for a set
consisting of involutions. There exist graphsof degree
which cannot be represented as graphsfor a set consisting
of involutions.

Proof: A graph coincides with a graph
where consists of involutions if and only if there exists
a partition of into subgraphs , of
degree one. This reduces the problem under consideration to the
known problem of coloring edges of a graph using the minimum
number of colors letting the colors of any adjacent edges be
different. This problem for a graph of degreewith parallel
edges was solved by Shannon in [21]. He proved that

and showed that this bound is tight for any . For
the class of graphs without parallel edges that we are interested
in, the problem was solved by Vizing in [23]. He proved that
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Fig. 3. A regular graph of degree3 without1-factors

and, for any , constructed graphs of degree
for which this bound is attained.

The graphs in Figs. 2 and 3 are examples of regular graphs
of degree which cannot be represented as graphs with
three involutions. However, we have verified that the Peterson
graph is a graph with a set of three single errors such
that . Is it true that any graph of degree is a
graph for a set of permutations such that ?
To obtain an answer to this question, we present some facts.
Let a regular graph of degree be a graph
with the set of single errors such that . For any

consider the set and note
that . In the case , is a regular
subgraph of of degree two (or -factor) if and only if is a
permutation of without unit cycles and cycles of length two.
In the case , is a regular subgraph of of
degree one (or-factor) if and only if is a permutation of
without unit cycles. On the other hand, by the Petersen theorem
(see, for instance, [9]), any regular graph of even degreeis
partitioned into -factors. Since any graph can be converted
to a regular graph of the same degree by adding vertices and
edges, these arguments show thatany graph of
degree can be represented as a graph where and

if and only if is even or is odd and has a
subgraph of degree one such that has
degree . In particular, the regular graph of degreein
Fig. 3 cannot be represented as a graph where
and since it does not have-factors. However, the
following statement implies that it is still a graph with three
single errors (for which ).

Lemma 5: Any graph of degree is a graph for a set
consisting of single errors and, in particular, ofpermutations
(without unit cycles) of vertices in the case of regular.

Proof: By the above-mentioned facts, it is sufficient to
prove this statement for a regular graph of odd
degree only. Denote by the directed graph for
which if and only if . A directed graph

is called adirected -factor (on ) if for any
there exists a unique such that
and a unique such that . (Any di-
rected -factor consists of disjoint directed cycles of length two
or more which cover .) For any permutation of , consider
the directed graph where if and only if

and note that is a directed -factor if and only

if is a permutation of without unit cycles. From the defini-
tion of single errors and the property it fol-
lows that to prove the lemma it suffices to show that, for any reg-
ular graph of degree , the directed graph is
partitioned into directed -factors. The following elegant proof
of this fact, which is valid both for even and odd, was proposed
by A. Brouwer in a discussion of the problem. Thebipartite
doubleof (see [2]) is the graph
where

and if and only if and . If
is a regular graph of degree, then is a bipartite regular graph
of degree and, hence, there exists a partition ofinto reg-
ular subgraphs of degree one (-factors) ,

(see, for instance, [9], [16]). Define directed graphs
, as follows: if and only if

. The construction used implies that
form a partition of and each is

a directed -factor on .

Thus, any graph can be considered as a graph with the
minimum number of single errors, which is equal to the degree
of .

C. Monotonicity on Intersections of Graphs with Error Metric

Now we prove a sufficient condition for a graph with error
metric to be monotone on intersections. This allows one to find
the value for some types of single errors.

Lemma 6: Given a set of permutations of a finite set
such that , the graph with
error metric is monotone on intersections if, for any

and , the equalities
and imply

i) ;

ii) ;

iii) if .

Proof: Let for given and the max-
imum (see (42)) be attained at .
It is clear that there exists such that .
To prove the lemma, it is sufficient to check that

Let there exist such that

but

It is possible only if , , and
. Then, consider and note that by prop-

erty i), by property ii), and
by property iii). This means that but

and completes the proof.
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Corollary 1: The Hamming graph where
consists of all substitutions is monotone on inter-

sections and for any and

In particular

and

(49)

Proof: Use Lemma 6 to prove that the Hamming graph is
monotone on intersections. Let for a substitution (see
Example 2.1) and .
Then and , and the properties i)–iii)
hold. Since the Hamming graph is distance-regular, we can use
Lemma 3 to find by calculating for
any points such that . Given in

, denote by the number of positions whereand coincide
but differ from , denote by the number of positions where
and coincide but differ from , and denote by the number
of positions where and coincide but differ from . If

, then , , ,
, and hence , .

This implies Corollary 1 taking account of if or
.

As an example, note that if is a code of minimum
distance , then the minimum number

of erroneous patterns over the combinatorial
channel admitting substitution errors that always suffice to re-
construct an arbitrary point , for , , and ,
is equal to , , and , respec-
tively. Note also that, for a code of minimum distance

, the equality (49) means that the minimum number
of sequences that are suf-
ficient to reconstruct an arbitrary for the combinatorial
channel with at mostsubstitutions equals independent
of length .

Corollary 2: The Johnson graph where
consists of all transpositions of two symbols is monotone
on intersections and for any and

Proof: We use Lemma 6 to prove the monotonicity on
intersections of . Since every transposition is an automor-
phism of and an involution, the properties i) and ii) are

satisfied. Assuming , , and
, we shall show that .

Then we shall apply Lemma 3 to calculate , since
the Johnson graph is distance-regular. Let and

for any . Then

and

and hence transposes one element of with an
element of . Since this transposition applied to

increases its distance from, it must transpose one element
of with an element of .
However, in this case the action ofon decreases its distance
from . In order to calculate put

and note that , ,
and . This implies the formula above.

Note that (10) and (12) are special cases of Corollaries 1 and
2 for .

It is worth pointing out that there exist distance-transitive
graphs that are not monotone on intersections. In particular, the
following example of such graph ([2, p. 363]) was communi-
cated to the author by A. Brouwer. Consider a graphwhose
set of vertices is formed by cosets of the punctured perfect
Golay -code (see [17]). Two vertices are adjacent if
and only if the Hamming distance between the corresponding
sets is one. The sought graph is the bipartite double of .
The graph is distance-transitive and has diameter. How-
ever, for its vertex set .

IV. PROBABILISTIC CHANNELS

The problem of efficient reconstruction of an unknown se-
quence distorted by errors which occur with certain probabilities
is reduced to an optimization problem of multiple transmission
of an arbitrary sequence over a probabilistic channel (see Fig.
1). It should be taken into account that for discrete channels,
in general, the exact reconstruction of a sequence is possible
only within a certain probability. For channels with continuous
input and output, in general, the probability of the exact recon-
struction of a multiply transmitted sequence equals zero and we
can only attempt to reconstruct this sequence with a certain ac-
curacy. In this section, we consider the problem of finding the
minimum number of transmissions of a sequence over a dis-
crete memoryless channel sufficient to reconstruct the sequence
exactly (or within a given Hamming distance) with a permis-
sible error probability. We shall also consider a similar problem
for continuous channels with discrete time and additive noise:
the efficient reconstruction of an arbitrary real sequence within
a given Euclidean distance. It should be noted that these prob-
lems can be treated as those of mathematical statistics with a
known probability distribution. However, we shall see that some
methods and results of the theory of information transmission
can be successfully applied to solve these problems.
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A. Optimal -Recontructors for Discrete Channels

Consider the problem of reconstruction of an unknown se-
quence provided that the permissible
errors transform to vectors of (of the same length) with
some probabilities. The problem is to find the minimum number

such that an arbitrary can be reconstructed with a
preset accuracy and error probability fromdistorted versions
of .

In order to give to this problem a precise formulation, we use
the Shannon notion of a discrete memoryless channel with input
and output alphabets and , respectively. Such a channel
is characterized by the property that each letter of the output
sequence is statistically dependent only on the corresponding
letter of the input sequence. The channel is specified by atran-
sition matrix of the size , where
is the probability of receiving the letter when the letter

is transmitted; for any . We
shall denote this channel (as its transition matrix) by. Thus,
the probability of receiving
when is transmitted over a discrete
memoryless channel can be expressed as

For any we can consider the sequence
of elements of as a sequence of patterns of

distorted by errors in the channel. Contrary to the case of
combinatorial channels, some elements of this sequence might
be identical. We again consider

as columns of a matrix over of the size .
All elements of each row of are images of the same letter.
Denote by the set of all matrices over of the size

. Let be the set of all mappings ,
which are referred to as -reconstructors.For fixed

we can consider as an
-valued random variable with the probability assignment

(50)

For any , and any one can calculate the
error probability

(51)

of reconstructing within Hamming distance. Note that
the case corresponds to the exact reconstruction. We set

(52)

and call an -reconstructor optimalif it gives the minimum in
(52). The function is a nonincreasing function in

because . For any discrete memoryless channel
, , and integers and , denote by

the minimum integer such that
(we shall see that such integer exists except in some de-

generate cases). Thus, is the minimum number of
repeated transmissions which allow one to reconstruct any se-
quence of length with accuracy up to letters with error prob-
ability at most . Our aim is to obtain bounds on

which determine its asymptotic behavior when under
some restrictions on the dependence ofand on .

B. Reducible -Recontructors for Discrete Channels

For a discrete memoryless channelit is natural to consider
a class of -reconstructors whose action re-
duces -tuple transmission of a message overto its single
transmission over another “improved” memoryless channel.
An -reconstructor for a memoryless channel(of size )
is calledreducible, if there exists a memoryless channel (of
size ) such that for any and

We shall use reducible reconstructors to estimate (52).
It is worth pointing out that any partition of into

subsets (decoding regions of ) uniquely defines an
-reconstructor as follows: if , ,

and ,
then

Since

(53)

is a reducible -reconstructor for any channel and the
corresponding transition matrix has entries

On the other hand, any reducible-reconstructor for a
channel generates a partition of
(or of some subset thereof) where

In general, differs from for this partition. However, the
corresponding channels and [and hence the error
probabilities (51)] must coincide for these-reconstructors, be-
cause

This allows us by bounding (52) to restrict our consideration of
reducible -reconstructors to -reconstructors where is
a partition into subsets.

Denote by the set of all reducible -reconstructors. By
analogy with (52) we set

(54)

and call a reducible -reconstructor (in particular, )
optimal if it gives the minimum in (54) (we shall see that there
exists a reducible -reconstructor which is optimal for alland
, , whose definition does not depend on).
For a reducible -reconstructor , the value

characterizes the error probability of transmitting a letter
over this channel or of its recovery at the output of the

-reconstructor . Let

(55)
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where the minimum is taken over all partitionsof into
decoding regions.

Example 4.1:For the channel

(56)

, and a partition of such that ,
we have

(For the channel is a symmetric one!)
Let and . Then, in the case

, this partition and provide the extrema in
(55) and imply that . In the case ,
we have and this is attained on the partition

, for .

Now we express (54) as a function in . For any inte-
gers and , , and any real vector
where , consider the function

defined by

where . One can check that for

Therefore,

(57)

where

We shall also use the fact that grows in .

Lemma 7: For any integers and

(58)

Proof: For any (reducible) -reconstructor we have

where , . According to (55)
and (57) this implies that

(59)

If one considers the partition of and the letter
for which the extrema in (55) are attained, then for the
equality in (59) holds. Using the fact that the minimum in (54)
is attained at an -reconstructor , we get (58).

At the first sight it might seem that an optimal reducible-re-
constructor must be optimal in the class of all-reconstructors
since we consider memoryless channels. However, this is not

the case. The matter is that for a fixedany (in particular, op-
timal) -reconstructor is uniquely defined by the following
partition of the set of all matrices over of
the size into decoding regions , :

if and only if (60)

Since [see (51)] for depends only
on the partition , one can find an optimal -reconstructor

choosing for any and a par-
tition which minimizes . Note
that for a reducible -reconstructor , the corresponding par-
tition of (which we shall denote by ) is obtained
from the partition of as follows: where

if and only if for
every .

Example 4.1 (Continued):The reducible -reconstructor
considered in Example 4.1 for implies the following

partition :

For and , is an optimal
reducible -reconstructor and, in particular

Since

we have

On the other hand, carrying the last matrix from to we
get another partition for which

if, in addition,

All required inequalities hold, for example, when , and
hence in this case.

Thus, is, in general, smaller than .
Still, we shall obtain asymptotically tight bounds to

using reducible reconstructors with partitions
of into subsets (decoding regions of ) satisfying

themaximum-likelihood(ML) property

for any if (61)
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Note that such a partition is in general not uniquely defined,
however, the value

(62)

does not depend on and minimizes

in the class of all partitions of into subsets . There-
fore (see (55))

(63)

where

(64)

and the minimum is taken over all partitionsof into de-
coding regions of, , satisfying the ML property.

Example 4.1 (Continued):For the channel (56) with
the partition of above is the unique one satisfying

this property. Therefore, using the calculations above we get

if .

The following lemma establishes our basic bounds to
. The key to its proof is to show that the average

over of the probability of error of reconstructing
within distance is minimized by the reducible -recon-
structor with satisfying the ML property (for , the
latter holds by the standard optimality of ML decoders).

Lemma 8: For any integers and

Proof: The upper bound follows from (58) and (63). To
obtain the lower bound we consider for an-reconstructor
the partition defined by (60) and note that

(65)

With the notation , we can
rewrite (65) as

(66)

We shall prove that (66) attains a minimum value whenis the
reducible -reconstructor (or, equivalently, when

), where is a partition of into regions satisfying the
ML property. Then we shall find this minimum value. To this
end, for each fixed matrix , with rows
say, we shall show that the minimum of

is attained for . It suffices to check that if
, i.e., for some then,

replacing with determined by the condition ,
will be changed to with . To simplify this no-

tation we assume that . For , , where
, we have if and only if

for some such that ,
and if and only if for some as
above. By (50), it follows that

Since the condition implies
by the ML property, this completes the proof of the fact that (66)
is minimized by . By (53), can be regarded as
the output of a discrete channel, hence repre-
sents the probability that, transmitting over this
channel, the output differs from in more than components.
It follows that (65) for represents the probability that
the input and output differ in more thancomponents when a
random input, uniformly distributed on , is transmitted over
this channel. In this case, the input and output differ in theth
component with probability (62), and these events are indepen-
dent for . This proves that, for , (65)
equals .

C. Bounds on the Minimum Number of Repeated Transmissions

Now we are ready to obtain an asymptotically tight bound
on the minimum number of repeated transmissions
that allow one to reconstruct any sequence of lengthwith ac-
curacy up to letters with error probability of at most for a
discrete memoryless channel.

For any distinct , consider the set

(67)

which may be empty. For any, , let

(68)

and

(69)

It is clear that . Note that if and only
if is empty for all distinct . This means that any
column of transition matrix contains at most one nonzero
probability and, hence, each letter of any input sequence is
uniquely defined by the corresponding letter of the output
sequence. Note also that if contains two identical
rows. The converse statement is true as well. Indeed, if for
some distinct
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then

and, hence, for each . From the
necessary condition of equality in the Holder inequality it fol-
lows that for all and, hence, con-
tains two identical rows. The existence of these identical rows in

implies that, for any , where
. This means that at least one

of the sequences and cannot be reconstructed with error
probability . In order to exclude these trivial cases we shall
considernondegeneratechannels whose transition matrix
does not have two identical rows and contains a column with at
least two nonzero probabilities. The arguments above show that

if (and only if) the channel is nondegenerate.
The following statement is derived from the celebrated result

on the probability of error for a code with two codewords due
to Shannon, Gallager, and Berlekamp [22, Theorem 5]. In fact,
we apply their arguments to calculate the corresponding bounds
for the “repetition” code . This explains rather a
simple formulation of the statement.

Lemma 9: For any nondegenerate discrete memoryless chan-
nel

where

and the minimum is taken over all , such that
.

Proof: Consider a partition of into subsets ,
, satisfying the ML property (61). It follows from (67),

(68), and (50) that for each ,

and

Using that

for

by the ML property (61), we have for each

for any numbers . Choosing so
as to minimize , and using the definitions (64) and (69),
we obtain the desirable upper bound.

Now fix such that

and

Let the minimum of for be attained at
and hence

(70)

Since and are disjoint, (62) yields

(71)

Taking into account that and
hence for , set

(72)

and note that is differentiable any number of times and

(73)

The following remarkable fact was established in [22]. If, for
any , , one considers the log-likelihood ratio

(74)

to be a random variable with probability assignment

(75)

then the derivatives and are the mean and variance
of , respectively! In particular, this implies that for the set

we have

(76)

by the Chebyshev inequality. Note also that

(77)
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From (73)–(75) it follows that

and hence for any

According to (71) and (76), to complete the proof it is sufficient
to verify that this implies that for any

(78)

If changes sign for , then and (78)
holds due to (70), (72), and (77). If or for

, then or , respectively, and (78) also
holds in both cases.

Example 4.1 (Continued):For the channel (56) with

where

and . In particular,
when .

Example 4.2:For the channel

and

Note that in this case for any since
However, one can recover any sequence, including, with ar-
bitrary prescribed error probability, using a sufficient number
of its transmissions over the channel.

Theorem 4: Let and be
functions such that and as . Then
for any nondegenerate discrete memoryless channel

(79)

Proof: From the definition of the number
and Lemma 8 it follows that

(80)

Denote by the unique solution of the equa-
tion when . Since we have

and hence as . By the monotonicity of
on

Therefore, Lemma 9 implies that and

(81)

By Bonferroni’s inequality

The use of Stirling’s inequalities shows that

if and as . On account of (81), this
completes the proof.

By Theorem 4, grows linearly with the length
when the permissible error probabilityof reconstruction of a
sequence with at mostwrong letters decreases exponentially
with . It is interesting to compare this with the following result
which shows that is bounded when reconstruction
of a sequence is permissible with afixed fraction of wrong
letters and is not smaller than an exponent in. We
use the Chernoff bound

if (82)

where

For a fixed , , decreases from to when
traverses the interval . For any , denote by

the unique (in ) root of the equation .

Theorem 5: If , , and ,
then for any nondegenerate discrete memoryless channeland
any ,

(83)

Proof: Denote by the right-hand side of (83). Using
Lemma 9, we get

and hence, by Lemma 8, for , any and

Note that the Chernoff bound (82) shows that the probability
of the event that at least wrong letters will result when a
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sequence of length is transmitted over a symmetric binary
channel with parameterdecreases exponentially withwhen

. If it is desirable to have a better constant in the expo-
nent or an exponent in the case , one can use repeated
transmissions and estimate the minimum number of necessary
transmissions with the help of Theorem 5. In particular, in the
case , , and we get that five repeti-
tions are sufficient independently of the length.

D. Reconstruction for Continuous Channels with Additive
Noise

In this subsection we consider channelswith discrete time
and an additive noise for which the input and output alphabet
is the set of all reals. We again assume that each letter of
the output sequence is statistically dependent only on the corre-
sponding letter of the input sequence and is the sum of that letter
and a noise which is a continuous random variablewith mean
. For simplicity, we assume that the distribution function of

has a symmetric density . For any input sequence
, we can consider sequences

in as patterns of distorted by errors in the channeland
represent them as columns of a matrix over of the
size . Now we denote by the set of all real matrices

of the size and by the set of all -reconstructors
which give a continuous function for any

. For a fixed we can con-
sider as an -dimensional random variable
with density . For any and
we can calculate the probability of the event
that is not reconstructed within Euclidean distance. (In the
sequel, stands for the Euclidean norm of .) The value

(84)

characterizes the maximum error probability of reconstructing
within Euclidean distance for the best (optimal) -recon-

structor. For any and
denote by the minimum integer such that

.
The problem of finding an optimal -reconstructor coincides

with the classical statistical problem to find the minimax esti-
mator of an unknown vector based on indepen-
dent observations of a random value with
density , provided that the loss function

with

if

if
(85)

is used. The minimax estimator is defined as the minimizer of

where is the symbol of mathematical expectation for a fixed
. We mention known results in a general outline (see, for in-

stance, [11], [24]). Under some restrictions on the functions

and , there exists a unique vector which
minimizes the integral

This is called the Pitman estimator and it is minimax in the
class of estimators invariant with respect to shifts, i.e., such that

for all .
Under some additional restrictions, the Pitman estimator is min-
imax in the class of all estimators, by the Hunt–Stein theorem.
If is a normal density and is defined by (85) (or

), then all required conditions hold and

(86)

Thus, in this case the estimator (86) is minimax for all
and , although its definition does not depend on. (The
author has a simple combinatorial proof of the fact.)

From now on we consider the Gaussian channel with
variance when has the density

(87)

In this case, for any and the -reconstructor (86) is optimal
for all and

where

and

Each component , of the vector is
the arithmetical average of independent and identically
distributed (i.i.d.) Gaussian random variables with mean
and variance and, hence, is Gaussian with meanand
variance . Thus, similar to reducible -reconstructors
for a discrete memoryless channel, the action of the optimal

-reconstructor (86) is equivalent to a single transmission of a
message over the Gaussian channel
with the decreased variance . Moreover, since ,

are independent random variables,
has the probability distribution

and hence

(88)

Lemma 10: For any even , the number
is uniquely defined from the inequalities

where and
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Proof: For any nonnegative integer

and, hence, (88) implies that for even

Since , we get the statement of the
lemma.

As a numerical example note that for , any
and , by Lemma 10.

Theorem 6: If and are fixed, and as
, then

if

if

where is the unique nonnegative solution of the equation
.

Proof: Because

and hence

it suffices to consider only even. Since is a de-
creasing function of , by Lemma 10, the asymptotic behavior
of coincides with that of where is the
unique solution of the equation . Using
standard arguments we get for each

and

These inequalities and Stirling’s formula show that if and
with , then is greater than a

positive constant if is a constant, and

if . It follows that if . Moreover

if and (89)

if (90)

if (91)

Let be defined by where .
Then since . Equations
(89)–(91) allow us to find the asymptotic behavior of and

depending on that of

In particular, grows linearly with the sequence
length when the permissible error probabilityof reconstruc-
tion within a given Euclidean distancedecreases not faster
than exponentially in .

V. CONCLUDING REMARKS AND OPEN PROBLEMS

The aim of this paper has been to develop the theory of
efficient reconstruction of sequences which deals with opti-
mization problems for repeated transmission of information
through combinatorial and probabilistic channels. There is
a significant difference between these problems and the tra-
ditional problems of the theory of information transmission.
We consider repeatedly transmitting an arbitrary message in
noncoded form and minimize the number of retransmissions
sufficient for reproducing the message with a preset accuracy
and/or probability. This theory includes combinatorial, infor-
mation-theoretical, and statistical problems.

For combinatorial channels with types of single errors of
considerable interest in coding theory, such as substitutions,
transpositions, asymmetric errors, deletions, and insertions,
these optimization problems were solved. Moreover, simple al-
gorithms for the efficient reconstruction of sequences based on
generalized threshold functions were found. However, there are
numerous open problems connected with other types of single
errors including their combinations, for example, substitutions,
deletions, and insertions. Interesting combinatorial problems
also arise to find for some subsets , for
example, for the set of words with a given composition (in
particular, for all permutations when ) in the case of
transpositions.

The concept of the graph with error metric develops the
general construction of metrics on a finite or countable set
(in particular, ) introduced in [12]. At first sight, it is
surprising that any finite graph of degree can be treated as
a graph with a set of single errors which are permu-
tations of vertices in the case of regular. Coding theory, the
theory of sequences, and computational molecular biology (see
[1], [6], [8], [19]) give numerous examples of types of single er-
rors (one-to-one partial mappings ) for which the prop-
erty or the weaker parallelogram property is
satisfied. An important problem is to describe types of single er-
rors inherent to genes, genomes, and other objects of molecular
biology and determine the minimum number of erroneous pat-
terns sufficient for exact reconstruction. It is worth mentioning
a natural generalization of graphs when each single error

has a positive weight and is considered as a di-
rected graph with weighted edges. In this case, each ordered
pair of vertices of is characterized by the “weighted
distance” which equals the minimum sum of edge weights in a
directed path joining with . To advance the graph-theoret-
ical approach it is significant to calculate for some
other graphs and, in particular, to strengthen Lemma 6 for
Abelian graphs. An interesting problem is to find the minimum
size of a set in the Hamming metric ball
centered at an arbitrary which allows one to approx-
imate this within distance and find the corresponding al-
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gorithm. In general, the majority algorithm is not suitable for
.

Combinatorial channels essentially differ from probabilistic
ones in that they admit exact reproduction of messages,
whereas for probabilistic channels messages are reproduced
with a certain probability. However, one should pay a large
price for this possibility. A simple calculation for the combi-
natorial -channel of Theorem 1 shows that if the number

of errors increases linearly with the lengthof messages,
then exact reproduction requires an exponentially increasing
number of different erroneous patterns. On the other hand, by
Theorem 4, for reconstructing any message of lengthwith a
fixed probability (for instance, ) at the output
of a discrete probabilistic channel, a number of repetitions
increasing logarithmically with is sufficient. (The difference
is two orders of magnitude!)

The notion of a reducible -reconstructor for a discrete
memoryless channel seems natural and fruitful. Although an
optimal -reconstructor is not in general reducible, bounds for
reducible -reconstructors were used for a proof of the main
Theorem 4, and the asymptotic expression (79) is also valid for
the class of reducible -reconstructors. Moreover, this notion
gives rise to the new problem of interest to find (see
(55)) for a channel and the corresponding partition of
into regions.

The results on the reproduction of a sequence with the help
of its repeated transmissions over Gaussian channel lie in the
course of traditional problems of mathematical statistics. How-
ever, the question of interest is the existence and construction of
optimal -reconstructors whose definition does not depend on

for the cases when the distribution function of the noise has
another symmetric density. Note that Theorems 4–6 allow one
to compare asymptotic behavior of the minimum number of re-
peated transmissions of a message over discrete and continuous
memoryless channels that are sufficient to recover this message
with a preset accuracy and given error probability.

For probabilistic channels, the problem of reconstructing a
sequence when knowing that this sequence belongs to a code

is also of interest, but it is not considered in this paper.
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