
Designs, Codes and Cryptography
https://doi.org/10.1007/s10623-024-01509-4

The sequence reconstruction of permutations with Hamming
metric

Xiang Wang1 · Fang-Wei Fu2 · Elena V. Konstantinova3,4,5

Received: 28 September 2023 / Revised: 11 July 2024 / Accepted: 28 September 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In the combinatorial context, one of the key problems in sequence reconstruction is to find
the largest intersection of two metric balls of radius r . In this paper we study this problem for
permutations of length n distorted by Hamming errors and determine the size of the largest
intersection of two metric balls with radius r whose centers are at distance d = 2, 3, 4.
Moreover, it is shown that for any n � 3 an arbitrary permutation is uniquely reconstructible
from four distinct permutations at Hamming distance at most two from the given one, and
it is proved that for any n � 4 an arbitrary permutation is uniquely reconstructible from
4n − 5 distinct permutations at Hamming distance at most three from the permutation. It
is also proved that for any n � 5 an arbitrary permutation is uniquely reconstructible from
7n2−31n+37 distinct permutations at Hamming distance at most four from the permutation.
Finally, in the case of at most r Hamming errors and sufficiently large n, it is shown that
at least Θ(nr−2) distinct erroneous patterns are required in order to reconstruct an arbitrary
permutation.
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1 Introduction

In 2001, Levenshtein [14] first proposed the sequence reconstruction problem. In this model,
a sequence is transmitted throughmultiple channels such that all channel outputs are different
and a decoder receives all the distinct outputs. Levenshtein [14, 15] studied the minimum
number of transmission channels needed to exactly reconstruct the transmitted sequence.
While the sequence reconstruction problem was first motivated by applications in biology
and chemistry [14], this problem has received much attention because of some emerging
data storage media. These storage media provide users with multiple cheap and noisy reads
including DNA-based data storage [3, 13] and racetrack memories [2].

Mathematically speaking, denote by S and ρ : S × S → N a set of all sequences and a
metric over the sequences in S, respectively. Assume the transmitted sequence is an arbitrary
sequence in S and on every channel there are at most r errors. In this model, Levenshtein [14]
proved that the minimum number of transmission channels must be greater than the largest
intersection of two balls:

N (n, r) = max
x1,x2∈S,x1 �=x2

{|Br (x1) ∩ Br (x2)|}, (1)

where Br (x) = {y ∈ S|ρ(x, y) � r} is the metric ball of radius r centered at x and
the length of any sequence in S is n. This means that an unknown sequence in S can be
reconstructed uniquely by any set of N (n, r) + 1 or more distinct sequences at distance at
most r from the sequence provided that such a set does exist. We call the problem of finding
N (n, r) as the reconstruction problem. In this problem, besides solving the problem stated
in (1), Levenshtein [14] used the majority algorithm on each bit to successfully decode the
transmitted sequence in the Hamming graph. Themajority algorithm receives the estimations
on each bit from every channel and simply decodes the bit according to amajority vote among
all the channel estimations.

Determining the value in (1) was discussed in [14] with respect to several channels with
several distances such as Hamming distance, Johnson distance, and some other distances.
Later the problem was discussed in the context of permutations in [9–12, 23, 24, 26] and
some other general error graphs in [16, 17]. This problem was also studied in [26] for the
Grassmann graph, in [20] for insertions, and in [6, 7, 25] for deletions.

Permutation codes has received some attention in the literature due to their applications in
flash memories [8], DNA storage [1, 19], and data transmission over power lines [18, 22]. In
the reconstruction model, this reconstruction problem is equivalent to the required number
of sequences in order to output of some sequences. In flash memories, permutation codes
with the Kendall’s τ -distance has been proposed in [8], and the reconstruction problem over
permutations with the Kendall’s τ -distance was studied in [23, 26]. In the power line appli-
cation, permutation codes under Hamming distance are used to correct some transmission
errors [18, 22]. In DNA storage, the rank modulation scheme (i.e., permutations) without
considering distance was proposed with shotgun sequencing [1, 19]. Then, in the power line
application and DNA storage, we study the reconstruction problem over permutations under
Hamming distance when the transmitted sequence is not recovered. From a graph-theoretical
point of view, this is the problem of reconstructing a vertex by its neighbours being at a
given distance from the vertex [12]. The reconstruction problem for Cayley graphs over the
permutation was studied in [9, 10] for reversal errors, in [11, 12, 17] for transposition errors,
in [24] for Hamming errors.

In this paper we consider the sequence reconstruction problem of permutations distorted
by Hamming errors. This paper is organised as follows. In Sect. 2, we give main definitions
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and notations for the sequence reconstruction problem and permutations with Hamming
metric. In Sect. 3, we find the size of the maximum intersection of two metric balls with
radius r whose centers are at distance d = 2, 3, 4. In Sect. 4, we get the exact values of
N (n, r) for r = 2, 3, 4. In particular, it is proved that that N (n, 2) = 3 for any n � 3,
N (n, 3) = 4n − 6 for any n � 3, and N (n, 4) = 7n2 − 31n + 36 for any n � 4. In Sect. 5,
the lower bound on N (n, r) for any r � 5 and n � r is given and an asymptotic behaviour
of N (n, r) is presented. More precisely, it is shown that at least Θ(nr−2) distinct erroneous
patterns are required in order to reconstruct an arbitrary permutation in the case of at most r
Hamming errors and sufficiently large n.

2 Main definitions and notation

In this paper we follow the same notation as stated in [21, 24].
Let Symn, n � 2, be the symmetric group of permutations π = [π1π2 . . . πn] written as

strings in one-line notation, where πi = π(i) for any 1 � i � n, with the identity element
In = [1 2 . . . n]. It is well-known that any permutation can be expressed as a product of
disjoint cycles. For two permutations σ, π ∈ Symn , their product π ◦ σ is defined as the
composition of σ on π , that is, π ◦ σ(i) = σ(π(i)) for any i ∈ [n]. For any π ∈ Symn ,
let disc(π) = [1h12h2 . . . nhn ] be the cycle type of π , where hi is the number of cycles
of length i . We omit components with hi = 0 in disc(π). For example, the cycle type of
π = (1 2 3)(4 5 6)(7 8 9) is written as disc(π) = [33].

For any two permutations π and τ , Hamming distance between them is the number of
positions in which these permutations differ:

d(π, τ ) = |{i ∈ [n]|πi �= τi }|, (2)

where [n] = {1, 2, ..., n − 1, n}.
Let Br (π) = {τ ∈ Symn |d(π, τ ) � r} and Sr (π) = {τ ∈ Symn |d(π, τ ) = r} be a metric

ball and a metric sphere of radius r centered at a permutation π . The sizes of Br (π) and
Sr (π) do not depend on a permutation π under Hamming distance [4]. For convenience, we
put Br (n) = |Br (π)| and Sr (n) = |Sr (π)| for any π ∈ Symn .

A derangement of order r is a permutation π with no fixed points, i.e., πi �= i for any
i ∈ [r ]. The number Dr of distinct derangements on r elements is given by the following
formula [5]:

Dr = r !
r∑

i=0

(−1)i

i ! , (3)

where D0 = 1, D1 = 0, D2 = 1, D3 = 2, D4 = 9, and D5 = 44.
Then the size of Sr (n) is given as follows:

Sr (n) =
(
n

r

)
Dr ,

and the size of Br (n) is presented as follows:

Br (n) =
r∑

i=0

Si (n) =
r∑

i=0

(
n

i

)
Di , (4)

where S0(n) = D0 = 1.
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For given integers d and r , let I (n, d, r) be the size of the maximum intersection of two
metric balls of radius r and at distance d between their centers π, τ ∈ Symn such that:

I (n, d, r) = max
π,τ∈Symn ,d(π,τ )=d

|Br (π) ∩ Br (τ )|. (5)

The formula (1) can be rewritten in terms of permutations as follows:

N (n, r) = max
π,τ∈Symn ,d(π,τ )�1

|Br (π) ∩ Br (τ )| = max
d�1

I (n, d, r). (6)

Assume any permutation in Symn is transmitted over N channels such that there are atmost
r errors on each channel and all channel outputs differ from each other. Then Levenshtein
[14] proved that the minimum number of channels that guarantees the existence of a decoder
that successfully decode any transmitted sequence is given by N (n, r) + 1. Based on the
above definitions, we find the exact values I (n, d, r) for d = 2, 3, 4 and for any r � 2.
Further, we can obtain the exact values N (n, r) for r = 2, 3, 4. Finally, we present the lower
bound on N (n, r) for any r � 5, and get N (n, r) for any r � 5 and sufficiently large n.

3 Exact values I(n,d, r) for d = 2, 3, 4

To get main results of this section let us prove a few useful lemmas.

Lemma 1 For any three permutations π, τ, σ ∈ Symn, we have:

d(π ◦ σ, τ ◦ σ) = d(σ ◦ π, σ ◦ τ) = d(π, τ ) . (7)

Proof Let π = [π1π2 . . . πn] and τ = [τ1τ2 . . . τn]. Any permutation σ ∈ Symn can be
expressed as a product of transpositions. In the simplest case σ = (i j) and we have
(i j) ◦ π = [π1π2 . . . πi−1π jπi+1 . . . π j−1πiπ j+1 . . . πn]. Similarly, we have (i j) ◦ τ =
[τ1τ2 . . . τi−1τ jτi+1 . . . τ j−1τiτ j+1 . . . τn]. Clearly, it follows that d((i j) ◦ π, (i j) ◦ τ) =
d(π, τ ). Hence, we obtain d(σ ◦π, σ ◦τ) = d(π, τ ). Moreover, we have π ◦σ(i) = σ(π(i))
and τ ◦ σ(i) = σ(τ(i)) for any i ∈ [n]. Since σ is a permutation this means that
π ◦ σ(i) and τ ◦ σ(i) are distinct if and only if πi and τi are distinct. Thus, we have that
d(π ◦σ, τ ◦σ) = d(π, τ ). The case when σ is presented by a product of a few transpositions
is proved in a similar way. ��

Below we use the result obtained in [24].

Lemma 2 [24, Lemma 7] For any two permutations π, τ ∈ Symn, if disc(π) = disc(τ )

then we have:

d(In, π) = d(In, τ ) and |Br (π) ∩ Br (In)| = |Br (τ ) ∩ Br (In)|
for any n � r .

Let π ◦ B = {π ◦ β|β ∈ B} and B ◦ π = {β ◦ π |β ∈ B} for any permutation π ∈ Symn
and for any subset B ⊂ Symn .

Lemma 3 For any two permutations π, τ ∈ Symn with d(π, τ ) = d there exists a permuta-
tion σ such that |Br (π) ∩ Br (τ )| = |Br (σ ) ∩ Br (In)|, where d(σ, In) = d and σi = i for
any r � 2 and any i � d + 1. If 
 d−1

2 � + 1 � r � n then there exists a permutation σ such
that I (n, d, r) = |Br (σ ) ∩ Br (In)|, where d(σ, In) = d and σi = i with d + 1 � i � n.
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Proof By the definition, left multiplication by a transposition (i j) exchanges the elements of
a permutation π in positions i and j , and right multiplication by (i j) exchanges the elements
i, j of π . Hence, using the property of left multiplication, there exists a permutation α such
that α ◦ π(i) �= α ◦ τ(i) for any i ∈ [d], and α ◦ π(i) = α ◦ τ(i) with d + 1 � i � n.
Using the property of right multiplication, we have In(i) �= α ◦ τ ◦ (α ◦ π)−1(i) for any
i ∈ [d], and In(i) = α ◦ τ ◦ (α ◦ π)−1(i) with d + 1 � i � n. Let σ = α ◦ τ ◦ (α ◦ π)−1

then by Lemma 1 we have α ◦ (
Br (π) ∩ Br (τ )

) ◦ (α ◦ π)−1 = Br (σ ) ∩ Br (In). Thus,
|Br (π) ∩ Br (τ )| = |Br (σ ) ∩ Br (In)|, where d(σ, In) = d and σi = i for any i � d + 1.

Moreover, under assumption that I (n, d, r) = |Br (π) ∩ Br (τ )| and 
 d−1
2 � + 1 � r � n,

there exists a permutation σ such that I (n, d, r) = |Br (σ ) ∩ Br (In)| where d(σ, In) = d
and σi = i for d + 1 � i � n. ��

Now we are ready to get the exact value I (n, 2, r) for any r � 2.

Theorem 1 For any integer r , 2 � r � n, the following holds:

I (n, 2, r) =
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
. (8)

Proof Let σ ∈ Symn and d(σ, In) = 2. Since d = 2 then disc(σ ) = [21]. For σ = (1 2) =
[2 1 3 . . . n] by Lemmas 2 and 3 we have:

I (n, 2, r) = |Br (In) ∩ Br (σ )|.
Let α ∈ Br (In) and d(α, In) = t , where 0 � t � r , and let us check whether α ∈

Br (σ ). For convenience, we put α = [α1 α2 α3 . . . αn] = [a1 a2], where a1 = [α1 α2] and
a2 = [α3 . . . αn]. In a similar way, we put In = [e1 e2] and σ = [σ1 σ2], where e1 = [1 2],
σ1 = [2 1] and e2 = [3 . . . n] = σ2. Thus, 0 � d(a1, e1) � 2. For t = 0, 1, 2, let us find the
size of the set:

{α ∈ Symn |α ∈ Br (In) ∩ Br (σ ), d(a1, e1) = t}.
If d(a1, e1) = 0 then α1 = 1, α2 = 2 which gives d(a1, σ1) = 2. Since d(α, In) = t this

means that d(a2, e2) = d(a2, σ2) = t . Thus, d(α, σ ) = t + 2, and α ∈ Br (σ ) for any t ,
where 0 � t � r − 2. Hence, by (4), the number of such permutations is

∑r−2
t=0

(n−2
t

)
Dt .

If d(a1, e1) = 1 then either α1 = 1, α2 �= 2, or α1 �= 1, α2 = 2. If α1 = 1 and α2 �= 2 then
d(a1, σ1) = 2. Since d(α, In) = t this means that d(a2, e2) = d(a2, σ2) = t − 1. Hence,
d(α, σ ) = t + 1. Similarly, if α1 �= 1 and α2 = 2 we also have d(α, σ ) = t + 1. Thus,
α ∈ Br (σ ) for any t such that 1 � t � r − 1, and by (4), the number of such permutations
is 2

∑r−1
t=1

(n−2
t−1

)
Dt .

If d(a1, e1) = 2 then d(a1, σ1) � 2. Since d(α, In) = t then d(α, σ ) � t . Hence,
α ∈ Br (σ ) for any t , where 2 � t � r , and by (4), the number of these permutations is∑r

t=2

(n−2
t−2

)
Dt .

Thus, taking into account the cases above we get the sought result:

I (n, 2, r) =|Br (σ ) ∩ Br (In)|

=
r−2∑

t=0

(
n − 2

t

)
Dt + 2

r−1∑

t=1

(
n − 2

t − 1

)
Dt +

r∑

t=2

(
n − 2

t − 2

)
Dt

=
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
.
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��
In particular, by Theorem 1 and (3), the following equations hold:

I (n, 2, 2) =2 for any n � 2, (9)

I (n, 2, 3) =4n − 6 for any n � 3, (10)

I (n, 2, 4) =7n2 − 31n + 36 for any n � 4. (11)

Now let us obtain the exact value I (n, 3, r) for any r � 2. In what follows below, we
define the following set:

S j
r (Ir ) = {α ∈ Symr |α( j) = 2, α(i) �= i for any i ∈ [r ]}, (12)

where j ∈ [r ]\{2}.
Lemma 4 For any r � 2 and any j ∈ [r ]\{2}, we have:

|S j
r (Ir )| = 1

r − 1
Dr . (13)

Proof By (12), it follows that Sr (Ir ) = ∪ j∈[r ]\{2}S j
r (Ir ). When r = 2 then |S1r (Ir )| = Dr .

When r � 3 we prove that |S1r (Ir )| = |S j
r (Ir )| for any 3 � j � r . For convenience, let

A1 = {α ∈ S1r (Ir )|α( j) �= 1}, A2 = {α ∈ S1r (Ir )|α( j) = 1}, B1 = {α ∈ S j
r (Ir )|α(1) �=

j}, B2 = {α ∈ S j
r (Ir )|α(1) = j} for some 3 � j � r . By the definition of S1r (Ir ) and S

j
r (Ir ),

it is easily verified that S1r (Ir ) = A1 ∪ A2 and S j
r (Ir ) = B1 ∪ B2. Then (1 j) ◦ A1 = B1 and

A2◦( j 2)◦(2 1) = B2. Thus, |A1| = |B1| and |A2| = |B2|. Then,we have |S1r (Ir )| = |S j
r (Ir )|

for any 3 � j � r . Since Sir (Ir ) ∩ S j
r (Ir ) = ∅ for any two distinct i, j ∈ [r ]\{2}, this means

that |Sr (Ir )| = ∑
j∈[r ]\{2} |S j

r (Ir )| = (r − 1)|S j
r (Ir )| = Dr for any j ∈ [r ]\{2} which

immediately gives us (13). ��
Theorem 2 For any integer r , 3 � r � n, the following holds:

I (n, 3, r) =
r−3∑

t=0

((
n − 3

t

)(
Dt + 3(Dt+1 + Dt+2) + Dt+3

)) + 3

r − 1

(
n − 3

r − 2

)
Dr . (14)

Moreover, for any n � 3, we have I (n, 3, 2) = 3.

Proof Let σ ∈ Symn and d(σ, In) = 3. Since d = 3 then disc(σ ) = [31]. For σ = (1 2 3) =
[2 3 1 4 . . . n] by Lemmas 2 and 3, we have:

I (n, 3, r) = |Br (σ ) ∩ Br (In)|.
What it follows below, we use the same technique as it was used to prove Theorem 1. We

consider α ∈ Br (In) with d(α, In) = t , where 0 � t � r , and check whether α ∈ Br (σ ).
We put α = [α1 α2 α3 α4 . . . αn] = [a1 a2] with a1 = [α1 α2 α3] and a2 = [α4 . . . αn]. In a
similar way, we consider In = [e1 e2] and σ = [σ1 σ2], where e1 = [1 2 3], σ1 = [2 3 1] and
e2 = [4 . . . n] = σ2.

To find I (n, 3, r), the following cases are considered.
Case 1 (r = 2): If d(a1, e1) = 0 then d(α, σ ) � d(a1, σ1) = 3 which means α /∈ B2(σ ).

If d(a1, e1) = 1 then d(a2, σ2) = d(a2, e2) � 1 and d(a1, σ1) � 2. Thus, d(α, σ ) =
d(a1, σ1) + d(a2, σ2) � 3, and α /∈ B2(σ ). If d(a1, e1) = 2 and d(a2, e2) = 0 then α ∈
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{[1 3 2 e2], [3 2 1 e2], [2 1 3 e2]}, and for any such α we have d(α, σ ) = 2, hence I (n, 3, 2) =
|B2(σ ) ∩ B2(In)| = 3 in this case.

Case 2 (r � 3): If d(a1, e1) = 0 then d(a1, σ1) = 3, and since d(α, In) = t it follows that
d(a2, e2) = d(a2, σ2) = t . Thus, d(α, σ ) = t + 3 which means α ∈ Br (σ ) for any t , where
0 � t � r − 3. By (4), the number of these permutations is

∑r−3
t=0

(n−3
t

)
Dt . Similarly, if

d(a1, e1) = 1 and d(a1, e1) = 3 then the corresponding numbers of permutations α ∈ Br (σ )

are given by 3
∑r−2

t=1

(n−3
t−1

)
Dt and

∑r
t=3

(n−3
t−3

)
Dt , respectively.

If d(a1, e1) = 2 then either d(a1, σ1) = 3 or d(a1, σ1) = 2, and since d(α, In) = t then
d(a2, e2) = d(a2, σ2) = t − 2. If 2 � t � r − 1 then we have d(α, σ ) � r , and the number
of these permutations is 3

∑r−1
t=2

(n−3
t−2

)
Dt . If t = r and d(a1, σ1) = 2 then d(α, σ ) = r .

Hence, α ∈ Br (σ ). Choosing two elements of {1, 2, 3} and r − 2 elements of {4, . . . , n} we
get the number of sought permutations as 3

(n−3
r−2

)
. Without loss of generality, let a1 = [1 3 s],

where s ∈ {2, 4, 5, . . . , r +1}, with αi �= i , 2 � i � r +1, and αi = i for r +2 � i � n. By
Lemma 4, the number of permutations α satisfying the conditions above is 1

r−1Dr . If t = r

and d(a1, σ1) = 2 the number of permutations α is 3
r−1

(n−3
r−2

)
Dr . If t = r and d(a1, σ1) = 3

then d(α, σ ) = r + 1 and α /∈ Br (σ ). Thus, totally in this case the number of sought
permutations is 3

∑r−1
t=2

(n−3
t−2

)
Dt + 3

r−1

(n−3
r−2

)
Dr .

Finally, for any r � 3 we have:

I (n, 3, r) =|Br (σ ) ∩ Br (In)| =
r−3∑

t=0

(
n − 3

t

)
Dt + 3

r−2∑

t=1

(
n − 3

t − 1

)
Dt+

+ 3
r−1∑

t=2

(
n − 3

t − 2

)
Dt + 3

r − 1

(
n − 3

r − 2

)
Dr +

r∑

t=3

(
n − 3

t − 3

)
Dt

=
r−3∑

t=0

((
n − 3

t

)(
Dt + 3(Dt+1 + Dt+2) + Dt+3

)) + 3

r − 1

(
n − 3

r − 2

)
Dr .

��
In particular, by Theorem 2 and (3), we have:

I (n, 3, 2) =3 for any n � 3, (15)

I (n, 3, 3) =3(n − 1) for any n � 3, (16)

I (n, 3, 4) =9n2 − 27n + 12

2
for any n � 4. (17)

Now our goal is to find the exact value of I (n, 4, r) for any r � 2. Below we consider the
following two permutations:

α(1) = (1 2 3 4) = [2 3 4 1 5 . . . n] (18)

and

α(2) = (1 2)(3 4) = [2 1 4 3 5 . . . n] (19)

where α( j)(i) = i for any i such that 5 � i � n and for j = 1, 2.

Lemma 5 For any n � 4 and r � 2, we have:

I (n, 4, r) = max
j∈[2]{|Br (α

( j)) ∩ Br (In)|}, (20)

where α( j) are defined by (18) and (19).
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Proof Let σ ∈ Symn and d(σ, In) = 4. By Lemma 3, there exists a permutation α such that
I (n, 4, r) = |Br (σ )∩ Br (In)|, where σ(i) = i for any i � 5, and d(α, In) = 4. Since d = 4
then either disc(σ ) = [41] or [22]. By Lemma 2, we immediately obtain (20). ��

Let us put D−1 = 0 while getting results on Dr .

Lemma 6 For any r � 3, we have:

Dr = r · Dr−1 + (−1)r ,

and 2
r−1Dr − Dr−2 − Dr−3 > 0.

Proof By (3), we immediately get Dr = r Dr−1 + (−1)r . If r � 3 it is easily shown that
Dr � 2. Hence, we have Dr − Dr−1 � (r − 1)Dr−1 − 1 > 0 for any r � 3. Therefore, we
have:

2

r − 1
Dr − Dr−2 − Dr−3 � 2

r − 1
(r Dr−1 − 1) − Dr−2 − Dr−3

= (Dr−1 − Dr−2) + (Dr−1 − Dr−3) + 2

r − 1
(Dr−1 − 1)

> 0,

which completes the proof. ��
One more technical result is required to get I (n, 4, r). We consider the following set of

permutations:

A = {σ ∈ Symn | σ1 = 2, σ2 = 3, σ3 �= 1, σ4 = 4, d(σ, In) = r}.
Lemma 7 For any integer r such that 4 � r � n − 1, we have:

|A| =
(
n − 4

r − 3

)
Dr−2. (21)

Proof Let σ = [σ1 σ2 σ3 σ4 σ5 . . . σn] = [s1 s2], where s1 = [σ1 σ2 σ3 σ4], s2 = [σ5 . . . σ4],
and let In = [e1 e2], where e1 = [1 2 3 4], e2 = [5 . . . n]. Since σ ∈ A this means that
d(σ2, e2) = r − 3 and σ3 = i for some i ∈ [n]\[4]. Thus, considering the set {1, 2, 3, 4} as
an entity we get a derangement of order r − 2 and the equality (21). ��

Now let us give the exact values I (n, 4, r) for some n and r .

Lemma 8 For any n � 4, I (n, 4, 2) = 2, I (n, 4, 3) = 10, and I (n, 4, n) = n!.
Proof By Lemma 5, it follows that I (n, 4, r) = max j∈[2]{|Br (In) ∩ Br (α( j))|}, where the
permutations α( j) are given by (18) and (19). To get the sought results, we use the technique
from Theorem 1. Let σ = [s1 s2] ∈ Br (In), where s1 = [σ1 σ2 σ3 σ4] and s2 = [σ5 . . . σn].
In a similar way, we put In = [e1 e2] with e1 = [1 2 3 4] and e2 = [5 . . . n]. We also
put α(1) = [a(1)

1 a2] and α(2) = [a(2)
1 a2], where a(1)

1 = [2 3 4 1], a(2)
1 = [2 1 4 3], and

a2 = [5 . . . n] = e2.
Case1 (r = 2):Let us checkwhetherσ ∈ B2(α

(1)). If eitherd(e1, s1) = 0ord(e1, s1) = 1
then d(σ, α(1)) � d(s1, a

(1)
1 ) � 3.Hence,σ /∈ B2(α

(1)). If d(e1, s1) = 2 then d(s1, a
(1)
1 ) � 3

because no transpositions are appeared neither in In nor in α(1). Hence, |B2(In)∩B2(α
(1))| =

0. Similarly, we discuss whether σ ∈ B2(α
(2)). If either d(e1, s1) = 0 or d(e1, s1) = 1 then

d(σ, α(2)) � d(s1, a
(2)
1 ) � 3. If d(e1, s1) = 2 then s1 = [2 1 3 4] or s1 = [1 2 4 3] if and only
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if d(s1, a
(2)
1 ) = 2. Since σ ∈ B2(In) then s2 = e2. Thus, [2 1 3 4 e2], [1 2 4 3 e2] ∈ B2(α

(2)).
So, we prove that |B2(In) ∩ B2(α

(2))| = 2. Therefore, I (n, 4, 2) = 2.
Case 2 (r = 3): There exist two subcases.
First, we check whether σ ∈ B3(α

(1)). If σ ∈ B3(In) ∩ B3(α
(1)) then d(s2, e2) ∈

{0, 1, 2, 3}. If d(s2, e2) � 2 then d(s2, a2) = d(s2, e2) � 2 and d(s1, e1) � 1. Since
d(s1, e1) � 1 and d(a(1)

1 , e1) = 4 this means that d(s1, a
(1)
1 ) � 3 and, hence we have

d(σ, α(1)) � 5.
If d(s2, e2) = 1 then d(s2, a2) = d(s2, e2) = 1 and d(s1, e1) � 2. If d(s1, e1) � 1

then it is easy to see that d(s1, a
(1)
1 ) � 3 and d(σ, α(1)) � 4. If d(s1, e1) = 2 then since

d(s2, e2) = 1 it follows that s1(i) = j �= e1(i) for some i ∈ [4] and j � 5, and we have
s1(i) = j �= a(1)

1 (i) and d(s1, a
(1)
1 ) � 3 which again gives us d(σ, α(1)) � 4.

Thus, for any σ ∈ B3(In)∩B3(α
(1))we have d(s2, e2) = d(s2, a2) = 0. Nowwe consider

the set:

B
′
3(In) = {σ | σ ∈ B3(In) and σ(i) = i for any 5 � i � n},

for which by (3), we have |B ′
3(In)| = 24 − D4 = 15. Therefore, for any β ∈ B

′
3(In), we

have d(β, α(1)) � 4 and we consider one more set:

S
′
4(α

(1)) = {β| d(β, α(1)) = 4 and β(i) = i for any 5 � i � n},
for which by (3), |S′

4(α
(1))| = 9. It is easy to check that the set S

′
4(α

(1))

contains the following permutations: In, [1 4 3 2 e2], [1 4 2 3 e2], [3 4 1 2 e2], [3 2 1 4 e2],
[3 1 2 4 e2], [4 1 3 2 e2], [4 1 2 3 e2], [4 2 1 3 e2]. Thus, |S′

4(α
(1)) ∩ B

′
3(In)| = 7, and finally,

for the permutation α(1) we have |B3(In) ∩ B3(α
(1))| = |B ′

3(In)\ S
′
4(α

(1))| = |B ′
3(In)| −

|S′
4(α

(1)) ∩ B
′
3(In)| = 15 − 7 = 8.

Second, we check whether σ ∈ B3(α
(2)). If σ ∈ B3(In) ∩ B3(α

(2)) then d(s2, e2) ∈
{0, 1, 2, 3}. If d(s2, e2) � 2 then d(s2, a2) � 2 and d(s1, e1) � 1. Hence we have
d(σ, α(2)) � 5.

If d(s2, e2) = 1 then d(s2, a2) = 1 and d(s1, e1) � 2. If d(s1, e1) � 1 then d(s1, a
(2)
1 ) � 3

and d(σ, α(2)) � 4. If d(s1, e1) = 2 then since d(s2, e2) = 1 it follows that s1(i) = j �= e1(i)
for some i ∈ [4] and j � 5, and we have s1(i) = j �= a(2)

1 (i) and d(s1, a
(2)
1 ) � 3 which

again gives us d(σ, α(2)) � 4. Thus, for any σ ∈ B3(In) ∩ B3(α
(2)) we have d(s2, e2) =

d(s2, a2) = 0. We consider the following set:

S
′
4(α

(2)) = {β| d(β, α(2)) = 4 and β(i) = i for any 5 � i � n},
of cardinality |S′

4(α
(2))| = 9 which contains the following permutations:

In, [1 4 3 2 e2], [1 3 2 4 e2], [3 2 1 4 e2], [3 4 1 2 e2], [3 4 2 1 e2], [4 3 1 2 e2], [4 3 2 1 e2],
[4 2 3 1 e2]. Hence, |S′

4(α
(2)) ∩ B

′
3(In)| = 5 and |B3(In) ∩ B3(α

(2))| = |B ′
3(In)\S

′
4(α

(2))| =
|B ′

3(In)| − |S′
4(α

(2)) ∩ B
′
3(In)| = 15 − 5 = 10.

Thus, I (n, 4, 3) = max j∈[2]{|B3(In) ∩ B3(α
( j))|} = 10.

The case r = n is trivial so we immediately get the result as I (n, 4, n) = n! which
completes the proof. ��

Now we are ready to get the exact value I (n, 4, r) for any r � 4.

Theorem 3 For any r � 4, the following holds:

I (n, 4, r) =
r−4∑

t=0

((
n − 4

t

)(
Dt + 4Dt+1 + 6Dt+2 + 4Dt+3 + Dt+4

))
+ Δ, (22)
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where

Δ = 2 · max

{((
n − 4

r − 2

)
Dr−2 −

(
n − 4

r − 3

)
Dr−3

)
, 0

}

+
(
n − 4

r − 3

)
4

r − 2
Dr−1 + 4

(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)
.

Proof ByLemma 5, I (n, 4, r) = max j∈[2]{|Br (In)∩Br (α( j))|}, whereα( j) are given by (18)
and (19). Let σ = [s1 s2] ∈ Br (In), where s1 = [σ1 σ2 σ3 σ4], s2 = [σ5 . . . σn], and
In = [e1 e2] with e1 = [1 2 3 4], e2 = [5 . . . n]. Let α(1) = [a(1)

1 a2], α(2) = [a(2)
1 a2], where

a(1)
1 = [2 3 4 1], a(2)

1 = [2 1 4 3], a2 = e2.
Case 1: Let us compute |Br (In)∩ Br (α(1))|. Let σ ∈ Br (In)∩ Br (α(1)) and d(σ, In) = t .

If d(s1, e1) = 0 then d(s1, a
(1)
1 ) = 4 and d(σ, α(1)) = t + 4. Since d(σ, α(1)) � r it follows

that t � r − 4. Hence, we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 0}| =

r−4∑

t=0

(
n − 4

t

)
Dt . (23)

If d(s1, e1) = 1 then d(s1, a
(1)
1 ) = 4, d(s2, a2) = d(s2, e2) = t−1. Thus, d(σ, α(1)) = t+3

and we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 1}| = 4

r−3∑

t=1

(
n − 4

t − 1

)
Dt . (24)

Similarly, if d(s1, e1) = 4 we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 4}| =

r∑

t=4

(
n − 4

t − 4

)
Dt . (25)

If d(s1, e1) = 2 then either d(s1, a
(1)
1 ) = 4 or d(s1, a

(1)
1 ) = 3. Choosing any two distinct

elements from the set {1, 2, 3, 4} gives six choices to get s1 such that d(s1, e1) = 2. Without
loss of generality, let us take 1 and 2 such that σ1 �= 1 and σ2 �= 2. Hence, if σ1 �= 2
then d(s1, a

(1)
1 ) = 4 and we have d(σ, α(1)) = t + 2. If σ1 = 2 then d(s1, a

(1)
1 ) = 3 and

d(σ, α(1)) = t + 1. If t � r − 2 we always have d(σ, α(1)) � r . Thus, we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 2, σ (3) = 3, σ (4) = 4, d(σ, In) � r − 2}|

=
r−2∑

t=2

(
n − 4

t − 2

)
Dt .

If σ1 = 2 and t = r − 1 then d(σ, α(1)) = r and, by Lemma 4, we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 2, σ1 = 2, σ3 = 3, σ4 = 4, d(σ, In) = r − 1}|

= 1

r − 2

(
n − 4

r − 3

)
Dr−1.

Therefore, via choosing 1, 2 the number of permutations σ satisfying the above conditions is
r−2∑
t=2

(n−4
t−2

)
Dt + 1

r−2

(n−4
r−3

)
Dr−1. We get the same number if choosing 1, 4 or 2, 3 or 3, 4 since

in all these cases we have either d(s1, a
(1)
1 ) = 4 or d(s1, a

(1)
1 ) = 3. However, choosing 1, 3
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or 2, 4 we have d(s1, a
(1)
1 ) = 4. Hence, the number of sought permutations in these cases is

r−2∑
t=2

(n−4
t−2

)
Dt .

Thus, if d(s1, e1) = 2 then totally we have:

|{σ ∈ Br (In) ∩ Br (α
(1))|d(s1, e1) = 2}| = 6

r−2∑

t=2

(
n − 4

t − 2

)
Dt + 4

r − 2

(
n − 4

r − 3

)
Dr−1.

(26)

If d(s1, e1) = 3 then d(s1, a
(1)
1 ) ∈ {2, 3, 4}. Choosing any three elements from the set

{1, 2, 3, 4} gives four choices to get s1 with d(s1, e1) = 3. Without loss of generality, we
take 1, 2, 3 such that σi �= i , i ∈ [3], and compute the size of the set {σ | d(s1, e1) = 3, σ ∈
Br (In) ∩ Br (α(1))}. If σ1 �= 2 and σ2 �= 3 then d(s1, a

(1)
1 ) = 4 and d(σ, α(1)) = t + 1. If

σ1 = 2 or σ2 = 3 then either d(s1, a
(1)
1 ) = 3 or d(s1, a

(1)
1 ) = 2, and d(σ, α(1)) � t .

Thus, if d(s1, e1) = 3 and d(σ, In) � r − 1 then we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| σ4 = 4, d(s1, e1) = 3, d(σ, In) � r − 1}| =

r−1∑

t=3

(
n − 4

t − 3

)
Dt .

(27)

Moreover, by Lemmas 4 and 7, if d(s1, e1) = 3 and d(σ, In) = r then we have:

|{σ | σ1 = 2, σ4 = 4}| =
(
n − 4

r − 3

)
Dr

r − 1
,

|{σ | σ2 = 3, σ4 = 4}| =
(
n − 4

r − 3

)
Dr

r − 1
,

|{σ | σ3 = 1, σ1 = 2, σ2 = 3, σ4 = 4}| =
(
n − 4

r − 3

)
Dr−3,

and

|{σ | σ3 �= 1, σ1 = 2, σ2 = 3, σ4 = 4}| =
(
n − 4

r − 3

)
Dr−2,

which all together gives us:

|{σ ∈ Br (In) ∩ Br (α
(1))| σ1 = 2 or σ2 = 3, σ4 = 4, d(s1, e1) = 3, d(σ, In) = r}|

=
(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)
. (28)

Thus, if d(s1, e1) = 3 then by (27) and (28) totally we have:

|{σ ∈ Br (In) ∩ Br (α
(1))| d(s1, e1) = 3}| = 4

r−1∑

t=3

(
n − 4

t − 3

)
Dt

+ 4

(
n − 4

r − 3

)(
2

r − 1
Dr − Dr−2 − Dr−3

)
. (29)

From (23), (24), (25), (26), and (29) we finally have for α(1):

|Br (In) ∩ Br (α
(1))| =

r−4∑

t=0

((
n − 4

t

)(
Dt + 4Dt+1 + 6Dt+2 + 4Dt+3 + Dt+4

))
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+
(
n − 4

r − 3

)
4

r − 2
Dr−1 + 4

(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)
. (30)

Case 2: Let us compute |Br (In)∩Br (α(2))|, where α(2) is given by (19). Let σ ∈ Br (In)∩
Br (α(2)) and d(σ, In) = t . If d(s1, e1) = 0 or d(s1, e1) = 1 then d(s1, a

(2)
1 ) = 4. Thus, if

d(s1, e1) = 0 then t � r − 4; if d(s1, e1) = 1 then t � r − 3; if d(s1, e1) = 4 then t � r .
So if d(s1, e1) = i for any i ∈ {0, 1, 4} then the following equation holds:

|Br (In) ∩ Br (α
(2))| = |Br (In) ∩ Br (α

(1))|.
If d(s1, e1) = 3 and d(σ, In) � r −1 then we also have Eq. (27). Consider d(s1, e1) = 3 and
d(σ, In) = r . Without loss of generality, σ1 = 1. Then d(σ, α(2)) � r if and only if σ3 = 4
or σ4 = 3. By the above method, we also have the similar result:

|{σ ∈ Br (In) ∩ Br (α
(2))| σ3 = 4 or σ4 = 3, σ1 = 1, d(s1, e1) = 3, d(σ, In) = r}|

=
(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)
.

Therefore, if d(s1, e1) = 3 then we also obtain that

|Br (In) ∩ Br (α
(2))| = |Br (In) ∩ Br (α

(1))|.

If d(s1, e1) = 2 then d(s1, a
(2)
1 ) ∈ {2, 3, 4}. We choose 1, 2 from the set {1, 2, 3, 4} such

that σ1 �= 1, σ2 �= 2. If σ1 = 2 and σ2 = 1 then d(s1, a
(2)
1 ) = 2 and d(σ, α(2)) = t . If

σ1 = 2, σ2 �= 1 or σ1 �= 2, σ2 = 1 then d(s1, a
(2)
1 ) = 3 and d(σ, α(2)) = t + 1. If σ1 �= 2

and σ2 �= 1 then d(s1, a
(2)
1 ) = 4 and d(σ, α(2)) = t + 2. Hence, if 2 � t � r − 2 then

σ ∈ Br (In) ∩ Br (α(2)), and the number of such permutations σ is
r−2∑
t=2

(n−4
t−2

)
Dt .

If t = r − 1 and d(s1, a
(2)
1 ) � 3 then σ ∈ Br (In) ∩ Br (α(2)). The number of the

permutations σ in this case is
(n−4
r−3

)( 2
r−2Dr−1 − Dr−3

)
.

If t = r and d(s1, a
(2)
1 ) = 2 then σ ∈ Br (In) ∩ Br (α(2)), and the number of these

permutations σ is
(n−4
r−2

)
Dr−2.

Therefore, if we choose 1, 2 then the number of sought permutations σ is totally given as
follows:

r−2∑

t=2

(
n − 4

t − 2

)
Dt +

(
n − 4

r − 3

)( 2

r − 2
Dr−1 − Dr−3

)
+

(
n − 4

r − 2

)
Dr−2. (31)

Similarly, we get (31) if choosing 3, 4, and we have d(s1, a
(2)
1 ) = 4 while choosing 1, 3;

1, 4; 2, 3; or 2, 4.
Thus, if d(s1, e1) = 2 then by (31) totally we have:

|{σ ∈ Br (In) ∩ Br (α
(2))| d(s1, e1) = 2}| = 6

r−2∑

t=2

(
n − 4

t − 2

)
Dt + 4

r − 2

(
n − 4

r − 3

)
Dr−1

+ 2

((
n − 4

r − 2

)
Dr−2 −

(
n − 4

r − 3

)
Dr−3

)
. (32)
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Therefore, by (23), (24), (25), (29), and (32) we have for α(2):

|Br (In) ∩ Br (α
(2))| =

r−4∑

t=0

((
n − 4

t

)(
Dt + 4Dt+1 + 6Dt+2 + 4Dt+3 + Dt+4

))

+
(
n − 4

r − 3

)
4

r − 2
Dr−1 + 4

(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)

+ 2

((
n − 4

r − 2

)
Dr−2 −

(
n − 4

r − 3

)
Dr−3

)
. (33)

Finally, by (30), (33) and by Lemma 5 we have (22) which completes the proof of
Theorem 3. ��

For any n � 4, the following particular cases are obtained from Lemma 8 and Theorem 3:

I (n, 4, 2) =2, (34)

I (n, 4, 3) =10, (35)

I (n, 4, 4) =n2 + 15n − 52. (36)

4 Exact values N(n, r) for r = 2, 3, 4

In this section, we get the explicit formulas of N (n, r) for r = 2, 3, 4.

4.1 The values of N(n, 2) and N(n, 3)

Lemma 9 I (n, d, r) = 0, where 2r + 1 � d � n.

Proof For any two distinct permutations π, σ ∈ Symn at distance d(π, σ ) = d , if d � 2r+1
then Br (π) ∩ Br (σ ) = ∅. Hence, it follows that I (n, d, r) = 0 for n � d � 2r + 1. ��

If r = 2 then by (9), (15) and (34) we have I (n, 2, 2) = 2, I (n, 3, 2) = 3, I (n, 4, 2) = 2
and I (n, d, 2) = 0 for any d � 5. Since N (n, r) = maxd�1 I (n, d, r) we immediately have
the following result.

Theorem 4 For any n � 3 we have

N (n, 2) = max
π,σ∈Symn ,π �=σ

|B2(σ ) ∩ B2(π)| = 3.

Moreover, N (2, 2) = 2.

Now we describe an algorithm for reconstruction of an unknown permutation π ∈ Symn .
Whenever a set {π(1), π(2), π(3), π(4)} ⊆ B2(π) is known there are at most two errors
on each channel (i.e., r = 2). Next, we give a revised majority algorithm on each bit of
permutations to reconstruct the transmitted permutation in the following. Given a set A =
{π(1), π(2), π(3), π(4)} ⊆ B2(π) with π ∈ Symn and n � 3, we let the permutation π(l)

for l ∈ [4] as rows of a matrix B = (bi, j ) of size 4 × n, where bi, j = π(i)( j) for all
i ∈ [4], j ∈ [n]. We use a revised majority algorithm to obtain π̂ from A.

Revised Majority Algorithm: First, for each column Bj = (b1, j , b2, j , b3, j , b4, j )T of B
and j ∈ [n], we apply the majority algorithm on Bj to get a value c j . Specifically, if the value
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c is the uniquely most frequently occurring component in Bj then we obtain that c j = c;
otherwise we let c j = ∞. Therefore, we apply the majority algorithm on B to get a vector
(c1, ..., cn). Second, if c j �= ∞ then π̂( j) = c j ; otherwise we let π̂( j) = ĉ such that
π̂ ∈ Symn .

Lemma 10 Any π ∈ Symn, n � 3, can be reconstructed by the Revised Majority Algorithm
for a given A = {π(1), π(2), π(3), π(4)} ⊆ B2(π).

Proof Without loss of generality, let π = In . For any l ∈ [4], since π(l) ∈ B2(In) then
we have π(l) = In or π(l) = (i j) with i �= j , where i, j ∈ [n]. Next, we discuss the
components of Bk = (b1,k, b2,k, b3,k, b4,k)T for any k ∈ [n]. Assume we apply Revised
Majority Algorithm on Bk to get some value ck for any k ∈ [n]. Since π(l) is the identity
permutation or a transposition, then bl,k = j and j �= k if and only if π(l) = (k j) for some
j, k ∈ [n] and l ∈ [4]. Thus, for any j �= k and j ∈ [n], the components of Bk cannot
have at least two j because π(1), π(2), π(3), π(4) are pairwise distinct. So, by using Revised
Majority Algorithm on Bk we have ck = k or ck = ∞ for any k ∈ [n].

If there exist some ck = ∞ then the components of Bk are all different. For convenience,
let bl,k = jl for l ∈ [4]. Next we discuss the two cases based on whether k ∈ { jl |l ∈ [4]}
or not. When k /∈ { jl |l ∈ [4]}, we have π(l) = (k jl) for l ∈ [4]. Thus, the components
of Bi with i �= k have at least three i . So, by using Revised Majority Algorithm on Bi we
have ci = i for any i ∈ [n] and i �= k. Therefore, we can determine the value of ck because
[c1 c2 . . . cn] is a permutation. When k ∈ { jl |l ∈ [4]}, assume that j1 = k then π(1) = In
and π(l) = (k jl) for l ∈ {2, 3, 4}. Thus, the components of Bi with i �= k have at least three
i . Similarly, we also reconstruct In from A.

If there does not exist ck = ∞ then we have ck = k for any k ∈ [n]. Therefore, we
reconstruct In from A. ��

In what follows below we give one example to reconstruct π from A by using Revised
Majority Algorithm, where π ∈ Symn , A = {π(1), π(2), π(3), π(4)} ⊆ B2(π), and n � 3.

Example 1 Let n = 5 and π = I5 = [1 2 3 4 5]. Given a set A = {π(1), π(2), π(3), π(4)} =
{[2 1 3 4 5], [1 3 2 4 5], [3 2 1 4 5], [1 2 3 5 4]} ⊆ B2(I5) (in corresponding order), we use
Revised Majority Algorithm to reconstruct I5 from A. Consider the permutation π(i) for
i ∈ [4] as rows of a matrix B of size 4 × 5, then we have the following matrix B:

2 1 3 4 5

1 3 2 4 5

3 2 1 4 5

1 2 3 5 4.

For each column Bi of B and i ∈ [5], we use Revised Majority Algorithm to get the value
(that is, i) from Bi for any i ∈ [5]. Therefore, we can reconstruct I5 from A by using Revised
Majority Algorithm.

If r = 3 then by (10), (16), and Lemma 8 we have I (n, 2, 3) = 4n − 6 and I (n, 3, 3) =
3n − 3 for any n � 3, I (n, 4, 3) = 10 for any n � 4, and I (n, d, 3) = 0 for any d � 7. By
Theorems 1 and 2 from [24], we have the following results.

Lemma 11 I (n, 5, 3) = 5 for any n � 5, and I (n, 6, 3) = 2 for any n � 6.
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Thus, finally for r = 3 we have the following theorem.

Theorem 5 For any n � 3 we have

N (n, 3) = max
π,σ∈Symn ,π �=σ

|B3(π) ∩ B3(σ )| = 4n − 6.

4.2 The value of N(n, 4)

If r = 4 then by (11), (17), (36) we have I (n, 2, 4) = 7n2 − 31n + 36, I (n, 3, 4) =
9n2−27n+12

2 , I (n, 4, 4) = n2 + 15n − 52 for any n � 4, and I (n, d, 4) = 0 for any d � 9.
In what follows below, we obtain I (n, d, 4) for d = 5, 6, 7, 8. First, we determine I (n, 5, 4)
and I (n, 6, 4).

Let π ∈ Symn be a product of disjoint cycles which we call cycles of π . We denote
T s(π) = {i ∈ [n]|π(i) �= i} and T c(π) = {< i, π(i) > |π(i) �= i for i ∈ [n]}. For
example, if π = (1 2)(4 5 6) then T s(π) = {1, 2, 4, 5, 6}, T c(π) = {< 1, 2 >,< 2, 1 >,<

4, 5 >,< 5, 6 >,< 6, 4 >}.
In order to get I (n, d, 4) for d = 5, 6we need additional results. The next lemma describes

disc(π) for any π ∈ Symn with d(In, π) = 5, 6.

Lemma 12 Let π ∈ Symn. Then we have:

disc(π) =
{

[1n−52131], or [1n−551] if d(In, π) = 5,

[1n−623], [1n−632], [1n−62141], or [1n−661] if d(In, π) = 6.
(37)

Proof Let disc(π) = [1h12h2 . . . nhn ] with hi � 0 for any i ∈ [n]. We easily obtain that

d(In, π) =
n∑

i=2
ihi . If d(In, π) =5 then

n∑
i=2

ihi = 5 which gives us the following two cases:

either h1 = n − 5, h2 = 1, h3 = 1 or h1 = n − 5, h5 = 1. Hence, disc(π) is equal either
[1n−52131] or [1n−551] in this case. Similarly, we also obtain the above results of disc(π)

for d(In, π) =6. ��
For any two permutations π, τ ∈ Symn , it is easily verified that the following equality

holds:

d(π, τ ) = |T s(π) ∪ T s(τ )| − |T c(π) ∩ T c(τ )|. (38)

Lemma 13 I (n, 5, 4) = 6n + 14 for any n � 6, where I (5, 5, 4) = 45.

Proof By Lemmas 2 and 12, we have:

I (n, 5, 4) = max{|B4(π) ∩ B4(In)|, |B4(τ ) ∩ B4(In)|}, (39)

where d(In, π) = d(In, τ ) =5, π = (1 2)(3 4 5), and τ = (1 2 3 4 5).
First, we find |B4(π) ∩ B4(In)|. For any σ ∈ B4(π) ∩ B4(In), we have d(In, σ ) �4 and

d(σ, π) � 4 which immediately gives us:

|B4(π) ∩ B4(In)| =
4∑

y=0

|{σ |d(In, σ ) =y, d(σ, π) � 4}|.

It is clear that if y = 0 or y = 1 then |{σ |d(In, σ ) =y, d(σ, π) � 4}| = 0.

123



X. Wang et al.

If d(In, σ ) =2 then σ is given by one of the transpositions (i j) with i �= j , where
i, j ∈ [n]. Since T c(π) = {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >} then by (38)
we have:

d(σ,π) = |[5] ∪ {i, j}|−
|{< i, j >,< j, i >} ∩ {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >}|

Thus, if d(σ, π) � 4 with σ = (i j) then σ can be represented by (1 2), (3 4), (3 5), or (4 5).
Therefore, we have:

|{σ |d(In, σ ) =2, d(σ, π) � 4}| = 4.

If d(In, σ ) =3 then σ = (i j k) with i �= j �= k, where i, j, k ∈ [n]. If there exist at
least one element from the set {i, j, k} which are not in [5], by (38) we have d(σ, π) � 5.
Thus, we have i, j, k ∈ [5]. To satisfy the condition of d(σ, π) � 4, by (38) we have
{< i, j >,< j, k >,< k, i >} ∩ {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >} �= ∅.
Thus, we have the following five cases of σ : 1) σ = (1 2 t) or σ = (2 1 t) for t ∈ {3, 4, 5};
2) σ = (3 4 t) for t ∈ {1, 2, 5}; 3) σ = (4 5 t) for t ∈ [3]; 4) σ = (5 3 t) for t ∈ {1, 2, 4}.
Since (3 4 5) is counted in the cases of 2), 3) and 4), hence we have:

|{σ |d(In, σ ) = 3, d(σ, π) � 4}| = 3 × 5 − 2 = 13.

If d(In, σ ) =4 then either σ = (i j)(k l) or σ = (i j k l) with i �= j �= k �= l, where
i, j, k, l ∈ [n]. Let us consider σ = (i j)(k l). If there exist at least two elements from the set
{i, j, k, l} which are not in [5], by (38) we have d(σ, π) � 5. Thus there exists at most one
element from {i, j, k, l} which is not in [5]. Without loss of generality, we let i, j, k ∈ [5]
and l /∈ [5]. If (i j) �= (1 2) then d(σ, π) � 5. If (i j) = (1 2) then d(σ, π) = 4, where
k ∈ {3, 4, 5} and l ∈ [n]\[5]. Thus, we have:

|{σ |σ = (i j)(k l), i, j, k ∈ [5], l /∈ [5], d(In, σ ) =4, d(σ, π) � 4}| = 3n − 15.

When i, j, k, l ∈ [5], to satisfy the condition of d(σ, π) � 4, then by (38) we have {< i, j >

,< j, i >,< k, l >,< l, k >} ∩ {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >} �= ∅.
Thus, σ is represented by one of the following four permutations: 1) σ = (1 2)(k l) for
k, l ∈ {3, 4, 5}; 2) σ = (t 3)(4 5) for t ∈ [2]; 3) σ = (t 4)(3 5) for t ∈ [2]; 4) σ = (t 5)(3 4)
for t ∈ [2], and in this case we have:

|{σ |σ = (i j)(k l), i, j, k, l ∈ [5], d(In, σ ) =4, d(σ, π) � 4}| = 9.

Now let us consider σ = (i j k l). There exists at most one element from the set
{i, j, k, l} which is not in [5]. Without loss of generality, we let i, j, k ∈ [5]. When
l /∈ [5], to make d(σ, π) � 4, then by (38) we have |{< i, j >,< j, k >,< k, l >,<

l, i >} ∩ {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >}| � 2. Thus, we have
σ = (3 4 5 l), (4 5 3 l), or (5 3 4 l) such that d(σ, π) = 4 for any l ∈ [n]\[5]. When l ∈ [5],
to satisfy the condition of d(σ, π) � 4, then by (38) we have {< i, j >,< j, k >,< k, l >

,< l, i >} ∩ {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 3 >} �= ∅. Thus, we have 1)
σ = (1 2 k l) or σ = (2 1 k l) for any k, l ∈ {3, 4, 5}; 2) σ = (3 4 1 5), or σ = (3 4 5 1), or
σ = (3 4 2 5), or σ = (3 4 5 2), or σ = (4 5 3 1), or σ = (4 5 3 2). Therefore, we have:

|{σ |σ = (i j k l), i, j, k, l ∈ [n], d(In, σ ) =4, d(σ, π) � 4}| = 3(n − 5) + 18 = 3n + 3.

So, if d(In, σ ) =4 then totally we have:

|{σ |d(In, σ ) =4, d(σ, π) � 4}| = 3n − 15 + 9 + 3n + 3 = 6n − 3,
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and for π = (1 2)(3 4 5) finally we have:

|B4(π) ∩ B4(In)| = 4 + 13 + 6n − 3 = 6n + 14. (40)

Now we consider τ = (1 2 3 4 5) and compute |B4(τ ) ∩ B4(In)|, where

|B4(τ ) ∩ B4(In)| =
4∑

y=0

|{σ |d(In, σ ) =y, d(σ, τ ) � 4}|.

It is clear that if y = 0 or y = 1 then |{σ |d(In, σ ) =y, d(σ, τ ) � 4}| = 0.
When d(In, σ ) =2 then by (38) a permutation σ is represented by one of the transpositions

from the set {(1 2), (2 3), (3 4), (4 5), (5 1)}. Therefore, we have:
|{σ |d(In, σ ) =2, d(σ, τ ) � 4}| = 5.

When d(In, σ ) = 3, let σ = (i j k) for i, j, k ∈ [n]. If there exists one element from the
set {i, j, k} which is not in [5] then by (38) d(σ, τ ) � 5. Thus, we have i, j, k ∈ [5]. So, σ
is given by one of the permutations from the set

{(1 2 3), (1 2 4), (1 2 5), (1 3 4), (1 3 5), (1 4 5), (2 3 4), (2 3 5), (2 4 5), (3 4 5)}.
Therefore, we have:

|{σ |d(In, σ ) =3, d(σ, τ ) � 4}| = 10.

When d(In, σ ) =4 then σ = (i j)(k l) or σ = (i j k l) with i �= j �= k �= l, where
i, j, k, l ∈ [n]. If σ = (i j)(k l) then by (38) we have i, j, k, l ∈ [5] such that d(σ, τ ) � 4.
Thus, σ can be represented by one of the following permutations: 1) (1 2)(k l), where k, l ∈
{3, 4, 5}; 2) (2 3)(k l), where k, l ∈ {1, 4, 5}; 3) (3 4)(1 5), (3 4)(2 5), (4 5)(1 3), or (5 1)(2 4).
Thus, we have:

|{σ |σ = (i j)(k l), i, j, k, l ∈ [n], d(In, σ ) =4, d(σ, τ ) � 4}| = 10.

If σ = (i j k l) then by (38) there exists at most one element from {i, j, k, l} which is not
in [5]. When i, j, k, l ∈ [5], without loss of generality, we let i, j, k, l ∈ [4]. Then {< i, j >

,< j, k >,< k, l >,< l, i >} ∩ {< 1, 2 >,< 2, 3 >,< 3, 4 >,< 4, 5 >,< 5, 1 >} �= ∅.
Thus, σ ∈ {(1 2 3 4), (1 2 4 3), (1 3 4 2), (1 4 2 3)}, where i, j, k, l ∈ [4], and we have:

|{σ |σ = (i j k l), i, j, k, l ∈ [5], d(In, σ ) =4, d(σ, τ ) � 4}| = 4 × 5 = 20.

If i, j, k ∈ [5] and l /∈ [5] then |{< i, j >,< j, k >,< k, l >,< l, i >} ∩ {< 1, 2 >

,< 2, 3 >,< 3, 4 >,< 4, 5 >,< 5, 1 >}| � 2 such that d(σ, τ ) � 4. Thus, σ ∈
{(1 2 3 t), (2 3 4 t), (3 4 5 t), (4 5 1 t), (5 1 2 t)}, where t ∈ [n]\[5], and we have:

|{σ |σ = (i j k l), i, j, k ∈ [5], l /∈ [5], d(In, σ ) =4, d(σ, τ ) � 4}| = 5n − 25,

and totally for d(In, σ ) =4 we have:

|{σ |d(In, σ ) =4, d(σ, τ ) � 4}| = 5n − 25 + 20 + 10 = 5n + 5,

which together with results for d(In, σ ) =2 and d(In, σ ) =3 gives:

|B4(τ ) ∩ B4(In)| = 5 + 10 + 5n + 5 = 5n + 20, (41)

where τ = (1 2 3 4 5). Therefore, by (39)–(41), we have I (n, 5, 4) = 6n + 14 for any n � 6
and I (5, 5, 4) = 45. ��
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Lemma 14 I (n, 6, 4) = 38 for any n � 6.

Proof By Lemma 12 and (38), we have:

I (n, 6, 4) = max{|B4(πx ) ∩ B4(In)|, 1 � x � 4},
where d(In, πx ) = 6 for any x ∈ [4] with π1 = (1 2)(3 4)(5 6), π2 = (1 2 3)(4 5 6),
π3 = (1 2)(3 4 5 6), and π4 = (1 2 3 4 5 6). Moreover, for any x ∈ [4] we have:

|B4(πx ) ∩ B4(In)| =
4∑

y=0

|{σ |d(In, σ ) = y, d(σ, πx ) � 4}|.

Now let us check all possible cases.
If y = 0 or y = 1 then |{σ |d(In, σ ) = y, d(σ, πx ) � 4}| = 0 for any x ∈ [4].
If d(In, σ ) = 2 or d(In, σ ) = 3 then a permutation σ is represented as a transposition

σ = (i j) or as a 3-cycle σ = (i j k). If d(σ, πx ) � 4 for any x ∈ [4] then by (38) we have
i, j, k ∈ [6].

If d(In, σ ) = 4 then there are two possibilities for σ to be presented as a composition of
two 2-cycles σ = (i j)(k l) or as a 4-cycle σ = (i j k l). If d(σ, πx ) � 4 for any x ∈ [4]
then i, j, k, l ∈ [6].

First, let us find |B4(π1) ∩ B4(In)| for π1 = (1 2)(3 4)(5 6). Let σ ∈ B4(π1) ∩ B4(In). If
d(In, σ ) = 2 then σ = (i j), i, j ∈ [6]. Since

T c(π1) = {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 3 >,< 5, 6 >,< 6, 5 >}
then by (38) a permutation σ can be represented by one of the transpositions (1 2), (3 4), or
(5 6) such that d(σ, π1) � 4. Thus, we have:

|{σ |d(In, σ ) =2, d(σ, π1) � 4}| = 3.

Ifd(In, σ ) =3 thenσ = (i j k), where i, j, k ∈ [6]. By (38) there does not exist a permutation
σ ∈ Symn with d(In, σ ) =3 such that d(σ, π1) � 4, hence, we have:

|{σ |d(In, σ ) =3, d(σ, π1) � 4}| = 0.

If d(In, σ ) =4 then either σ = (i j)(k l) or σ = (i j k l), where i, j, k, l ∈ [6]. When
σ = (i j)(k l), by (38) we have |{< i, j >,< j, i >,< k, l >,< l, k >} ∩ T c(π1)| � 2
such that d(σ, π1) � 4. Thus, σ can be represented by one of the following permutations:
1) (1 2)(k l), where k, l ∈ {3, 4, 5, 6}; 2) (3 4)(k l), where k, l ∈ {1, 2, 5, 6}; 3) (5 6)(k l),
where k, l ∈ [4]. Since (1 2)(3 4), (1 2)(5 6), and (3 4)(5 6) appear twice, the total number
of permutations σ = (i j)(k l) is given by 3 · (4

2

) − 3. If σ = (i j k l) and d(σ, π1) � 4
then by (38) we have |{< i, j >,< j, k >,< k, l >,< l, i >} ∩ T c(π1)| � 2. Since
T c(π1) = {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 3 >,< 5, 6 >,< 6, 5 >}, and < a, b >,<

b, a > are not both in T c(σ ) simultaneously for some {a, b} = {1, 2}, {3, 4}, or {5, 6}, we
must choose i, j, k, l from the sets {1, 2, 3, 4}, {1, 2, 5, 6}, or {3, 4, 5, 6} such that |T c(σ ) ∩
T c(π1)| � 2. For eachof these cases,wehaveone and the same set of permutations as follows:
{(1 2 3 4), (1 2 4 3), (2 1 3 4), (2 1 4 3)}. Thus, the total number of permutations σ = (i j k l)
is equal to 12, and we have:

|{σ |d(In, σ ) =4, d(σ, π1) � 4}| = 3 ·
(
4

2

)
− 3 + 12 = 27.

Finally, for π1 = (1 2)(3 4)(5 6) we have:

|B4(π1) ∩ B4(In)| = 3 + 27 = 30. (42)
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Now let us find |B4(π2) ∩ B4(In)| for π2 = (1 2 3)(4 5 6). Let σ ∈ B4(π2) ∩ B4(In). If
d(In, σ ) =2 then by (38) we have d(σ, π2) = |T s(σ ) ∪ T s(π2)| − |T c(σ ) ∩ T c(π2)| �
6− 1 = 5, where T c(π2) = {< 1, 2 >,< 2, 3 >,< 3, 1 >,< 4, 5 >,< 5, 6 >,< 6, 4 >}.
Thus, we have:

|{σ |d(In, σ ) =2, d(σ, π2) � 4}| = 0.

If d(In, σ ) =3 then since σ can be represented by either (1 2 3) or (4 5 6), hence, we have:

|{σ |d(In, σ ) =3, d(σ, π2) � 4}| = 2.

Let d(In, σ ) =4. Then σ = (i j)(k l) or (i j k l) for i, j, k, l ∈ [n]. Moreover, by
(38) we have |T c(σ ) ∩ T c(π2)| � 2 and i, j, k, l ∈ [6] such that d(σ, π2) � 4. If
σ = (i j)(k l) with T c(σ ) = {< i, j >,< j, i >,< k, l >,< l, k >} then by
(38) we have (i j) ∈ {(1 2), (2 3), (3 1)} and (k l) ∈ {(4 5), (5 6), (6 4)}. If σ = (i j k l)
then there are a few possibilities for σ : either σ ∈ {(1 2 3 l), (2 3 1 l), (3 1 2 l)}, where
l ∈ {4, 5, 6}, or σ ∈ {(4 5 6 l), (5 6 4 l), (6 4 5 l)}, where l ∈ [3], or σ = (i j k l), where
(i, j) ∈ {(1, 2), (2, 3), (3, 1)} and (k, l) ∈ {(4, 5), (5, 6), (6, 4)}. Thus, in this case we have:

|{σ |d(In, σ ) =4, d(σ, π2) � 4}| = 36,

and finally for π2 = (1 2 3)(4 5 6) we have:

|B4(π2) ∩ B4(In)| = 2 + 36 = 38. (43)

Now let us find |B4(π3) ∩ B4(In)|, where π3 = (1 2)(3 4 5 6).
Let σ ∈ B4(π3) ∩ B4(In). If d(In, σ ) =2 then since

T c(π3) = {< 1, 2 >,< 2, 1 >,< 3, 4 >,< 4, 5 >,< 5, 6 >,< 6, 3 >}
by (38) we have σ = (1 2) which gives us:

|{σ |d(In, σ ) =2, d(σ, π3) � 4}| = 1.

If d(In, σ ) =3 then σ = (i j k), where i, j, k ∈ [6]. By (38) we have |T c(σ )∩ T c(π3)| � 2
such that d(σ, π3) � 4. Since T c(σ ) = {< i, j >,< j, k >,< k, i >} then < 1, 2 > and
< 2, 1 > are not in T c(σ ). Moreover, any two distinct elements in T c(σ ) can determine σ .
Thus, σ ∈ {(3 4 5), (4 5 6), (5 6 3), (6 3 4)} which gives:

|{σ |d(In, σ ) =3, d(σ, π3) � 4}| = 4.

If d(In, σ ) =4 then by (38) we have σ = (i j)(k l) or (i j k l) for i, j, k, l ∈ [6]. Moreover,
we have |T c(σ ) ∩ T c(π3)| � 2 such that d(σ, π3) � 4. First, we let σ = (i j)(k l).
When (i j) = (1 2), it is easily verified that d(σ, π3) � 4 for any k, l ∈ {3, 4, 5, 6}.
When (i j) ∈ {(1 j), (2 j)| j ∈ {3, 4, 5, 6}}, then |T c(σ ) ∩ T c(π3)| � 1 such that
d(σ, π3) � 5. Thus, σ can be given by one of the following permutations: 1) (1 2)(k l),
where k, l ∈ {3, 4, 5, 6}; 2) (3 4)(5 6) or (4 5)(6 3). Second, we let σ = (i j k l). When
< 1, 2 > or < 2, 1 >, and < k, l >∈ T c(σ ) ∩ T c(π3) for some k, l ∈ {3, 4, 5, 6} then
(k, l) ∈ {(3, 4), (4, 5), (5, 6), (6, 3)} such that d(σ, π3) � 4. When < 1, 2 > and < 2, 1 >

do not belong to T c(σ ), we can choose two elements from {(3, 4), (4, 5), (5, 6), (6, 3)}
to construct σ such that σ ∈ {(3 4 5 l), (4 5 6 l), (5 6 3 l), (6 3 4 l), (3 4 5 6)|l ∈ [2]}. Thus,
σ = (i j k l) can be represented by one of the following permutations: 1) either (1 2 k l) or
(2 1 k l), where (k, l) ∈ {(3, 4), (4, 5), (5, 6), (6, 3)}; 2) either (3 4 5 l) or (4 5 6 l) or (5 6 3 l)
or (6 3 4 l), where l ∈ [2]; 3) (3 4 5 6) which in this case gives us:

|{σ |d(In, σ ) = 4, d(σ, π3) � 4}| = 8 + 8 + 8 + 1 = 25,
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and totally for π3 = (1 2)(3 4 5 6) we have:

|B4(π3) ∩ B4(In)| = 1 + 4 + 25 = 30. (44)

Finally, we find |B4(π4) ∩ B4(In)|, where π4 = (1 2 3 4 5 6).
Let σ ∈ B4(π4) ∩ B4(In). If d(In, σ ) = 2 then since

T c(π4) = {< 1, 2 >,< 2, 3 >,< 3, 4 >,< 4, 5 >,< 5, 6 >,< 6, 1 >}
by (38) we have:

|{σ |d(In, σ ) = 2, d(σ, π4) � 4}| = 0.

If d(In, σ ) = 4 then by (38) we have σ = (i j)(k l) or σ = (i j k l), where
i, j, k, l ∈ [6]. When σ = (i j)(k l), we can choose two elements in T c(π4)

to construct σ , where i �= j �= k �= l. Thus, σ should belong to the
set {(1 2)(3 4), (1 2)(4 5), (1 2)(5 6), (2 3)(4 5), (2 3)(5 6), (2 3)(6 1), (3 4)(5 6), (3 4)(6 1),
(4 5)(6 1)}. When σ = (i j k l), then there may exist < i, j >,< j, k >∈ T c(π4), or
< i, j >,< k, l >∈ T c(π4) such that d(σ, π4) � 4. If < i, j > and < j, k >∈ T c(π4)

then σ = (1 2 3 l), (2 3 4 l), (3 4 5 l), (4 5 6 l), (5 6 1 l), (6 1 2 l) for some l ∈ [6]. If< i, j >,
< k, l >∈ T c(π4), and there does not exist three consecutive elements in {i, j, k, l} then
σ =(1 2 4 5),(2 3 5 6),(3 4 6 1). Thus, if σ = (i j k l) then there are the following possibil-
ities: 1) (1 2 3 l), l ∈ {4, 5, 6}; 2) (2 3 4 l), l ∈ {5, 6}; 3) (3 4 5 l), l ∈ {1, 6}; 4) (4 5 6 l),
l ∈ {1, 2}; 5) (5 6 1 l), l ∈ {2, 3}; 6) (6 1 2 4),(1 2 4 5),(2 3 5 6),(3 4 6 1) which gives us:

|{σ |d(In, σ ) = 4, d(σ, π4) � 4}| = 9 + 15 = 24,

and totally for π4 = (1 2 3 4 5 6) we have:

|B4(π4) ∩ B4(In)| = 6 + 24 = 30. (45)

Taking into account (42)–(45), for any n � 6 we finally obtain:

I (n, 6, 4) = max{|B4(πx ) ∩ B4(In)|, 1 � x � 4} = 38

which completes the proof. ��
The following result is a corollary from Theorem 1 and Example 2 in [24].

Lemma 15 For any n � d, we have:

I (n, d, 4) =
{
10 if d = 7,

6 if d = 8.

Theorem 6 For any n � 4 we have:

N (n, 4) = max
π,σ∈Symn ,π �=σ

|B4(π) ∩ B4(σ )| = 7n2 − 31n + 36.

Proof The result immediately follows from (11), (17), (36), and Lemmas 13, 15. ��
We say that a permutation π ∈ Symn is reconstructible from distinct permutations

σ1, σ2, . . . , σh ∈ Br (π) if there does not exist a permutation τ ∈ Symn, τ �= π , such that
σ1, σ2, . . . , σh ∈ Br (τ ). It is obvious, that if r = n then for any two distinct permutations
π, τ ∈ Symn theirmetric balls Br (π) and Br (τ ) coincidewith the symmetric groupSymn . So,
any permutation π is not reconstructible from distinct permutations σ1, σ2, . . . , σh ∈ Bn(π).
From this definition and by Theorems 4, 5, 6 we have the following result.
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Theorem 7 For any permutation π ∈ Symn, the following holds:

1. π is reconstructible from any 4 distinct permutations in B2(π) for any n � 3;
2. π is reconstructible from any 4n − 5 distinct permutations in B3(π) for any n � 4;
3. π is reconstructible from any 7n2 − 31n + 37 distinct permutations in B4(π) for any

n � 5.

Proof By Theorem 4 we have N (n, 2) = 3. Moreover, by (4) we have B2(n) = 1 + (n
2

) =
n2−n+2

2 for any n � 2. This gives us N (n, 2) � B2(n) − 1 for any n � 3. Hence, for any
n � 3 any permutation π ∈ Symn is reconstructible from any four distinct permutations in
B2(π).

If r = 3 then by Theorem 5 we have N (n, 3) = 4n − 6, and by (4) we have B3(n) =
1 + (n

2

) + 2
(n
3

) = 2n3−3n2+n+6
6 for any n � 3. Thus, N (n, 3) � B3(n) − 1 for any n � 4

which means that for any n � 4 any permutation π ∈ Symn is reconstructible from any
4n − 5 distinct permutations in B3(π).

In a similar way it is shown that any permutation π is reconstructible from any 7n2 −
31n + 37 distinct permutations in B4(π) for any n � 5. ��

5 An asymptotic behaviour of N(n, r)

In this section we study N (n, r) for any r � 2 and for sufficiently large n. Moreover, for
r = 2 we obtain a probability of the event that a permutation π ∈ Symn is reconstructible
from at most four distinct permutations in B2(π).

First, we get a lower bound on N (n, r).

Theorem 8 For r � 5, the following holds:

N (n, r) �
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
. (46)

Proof By Theorems 1, 2, 3 we have I (n, d, r) for d = 2, 3, 4 and for any r � 5. Now let us
compare I (n, 2, r), I (n, 3, r), and I (n, 4, r).

Let us prove that I (n, 2, r) > I (n, 3, r) for any r � 5. Indeed, from Theorems 1 and 2 it
follows that we have:

I (n, 2, r) =
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)

and

I (n, 3, r) =
r−3∑

t=0

((
n − 3

t

)(
Dt + 3Dt+1 + 3Dt+2 + Dt+3

)) + 3

r − 1

(
n − 3

r − 2

)
Dr .

Since
(n
k

) = (n−1
k

) + (n−1
k−1

)
then for any r � 5 we have:

I (n, 2, r) =
r−2∑

t=0

((
n − 3

t

)
+

(
n − 3

t − 1

))(
Dt + 2Dt+1 + Dt+2

)
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=
r−2∑

t=0

(
n − 3

t

)(
Dt + 2Dt+1 + Dt+2

)
+

r−2∑

t=0

(
n − 3

t − 1

)(
Dt + 2Dt+1 + Dt+2

)

=
r−3∑

t=0

(
n − 3

t

)(
Dt + 3Dt+1 + 3Dt+2 + Dt+3

)
+

(
n − 3

r − 2

)(
Dr−2 + 2Dr−1 + Dr

)

>

r−3∑

t=0

(
n − 3

t

)(
Dt + 3Dt+1 + 3Dt+2 + Dt+3

)
+ 3

r − 1

(
n − 3

r − 2

)
Dr = I (n, 3, r).

Now we prove that I (n, 2, r) > I (n, 4, r) for any r � 5. By Theorem 3, we have:

I (n, 4, r) =
r−4∑

t=0

((
n − 4

t

)
(Dt + 4Dt+1 + 6Dt+2 + 4Dt+3 + Dt+4)

)
+ Δ,

where

Δ =2 · max

{((
n − 4

r − 2

)
Dr−2 −

(
n − 4

r − 3

)
Dr−3

)
, 0

}
+

(
n − 4

r − 3

)
4

r − 2
Dr−1

+ 4

(
n − 4

r − 3

)( 2

r − 1
Dr − Dr−2 − Dr−3

)
.

Moreover, we also have:

I (n, 2, r) =
r−3∑

t=0

((
n − 4

t

)
+

(
n − 4

t − 1

))(
Dt + 3Dt+1 + 3Dt+2 + Dt+3

)

+
(
n − 3

r − 2

)(
Dr−2 + 2Dr−1 + Dr

)

=
r−4∑

t=0

(
n − 4

t

)(
Dt + 4Dt+1 + 6Dt+2 + 4Dt+3 + Dt+4

)
+ Δ1,

where

Δ1 =
(
n − 4

r − 3

)
Dr−3 +

(
3

(
n − 4

r − 3

)
+

(
n − 3

r − 2

))
Dr−2 +

(
3

(
n − 4

r − 3

)
+ 2

(
n − 3

r − 2

))
Dr−1

+
((

n − 4

r − 3

)
+

(
n − 3

r − 2

))
Dr .

Since r � 5 then we have 4
r−2 < 2 and 8

r−1 � 2. Therefore, we have:

Δ � 2

(
n − 4

r − 2

)
Dr−2 + 2

(
n − 4

r − 3

)
Dr−1 + 2

(
n − 4

r − 3

)
Dr < Δ1,

since Dr−2 < Dr−1 and
(n−4
r−3

)
�

(n−3
r−2

)
. So, it follows that for any r � 5 we have

I (n, 2, r) > I (n, 4, r). Moreover, by the definition N (n, r) we have N (n, r) � I (n, 2, r) =∑r−2
t=0

(n−2
t

)(
Dt + 2Dt+1 + Dt+2

)
for any r � 5. ��

Now let us consider a probability of reconstructing permutations from at most four distinct
permutations in B2(π). By Theorem 4 we have N (n, 2) = 3 for any n � 3. We denote by ti
the number of sets of i distinct permutations belonging to B2(π) from which π ∈ Symn is
reconstructible. Let us also denote

M = B2(n) = 1 +
(
n

2

)
= n2 − n + 2

2
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and consider the probability pi = ti
(Mi )

of the event that a permutation π ∈ Symn is recon-

structbile from i distinct permutations in B2(π) under the condition that these permutations
in B2(π) are uniformly distributed. Without loss of generality we let π = In . If we choose
an element π̂ ∈ B2(In) then π̂ = In or π̂ = (i j) with i �= j for some i, j ∈ [n]. Assume
we take an element π̂ from B2(π), regardless of whether π̂ = In or π̂ = (i j), we have
that {In, (i j)} ⊆ B2(In) ∩ B2((i j)). Therefore, we cannot use In or (i j) to distinguish
In and (i j). So, p1 = 0. Similarly, assume we choose two elements π(1), π(2) we prove
that p2 = 0. When π(1) = In or π(2) = In , then {π(1), π(2)} = {In, (i j)} with i �= j for
some i, j ∈ [n]. Since {In, (i j)} ⊆ B2(In) ∩ B2((i j)) then we cannot use {In, (i j)} to
distinguish In and (i j). When π(1) = (i j) and π(2) = ( j k) with i �= j �= k for some
i, j, k ∈ [n], then {(i j), ( j k)} ⊆ B2(In) ∩ B2((i j k)). Thus, we cannot use (i j) and ( j k)
to distinguish In and (i j k). When π(1) = (i j) and π(2) = (k l) with i �= j �= k �= l for
some i, j, k, l ∈ [n], then {(i j), (k l)} ⊆ B2(In) ∩ B2((i j)(k l)). Thus, we cannot use (i j)
and (k l) to distinguish In and (i j)(k l). So, p2 = 0. Therefore, we can never reconstruct
any permutation π ∈ Symn from a single permutation or from two distinct permutations in
B2(π). It is obvious that p4 = 1whichmeans that we can always reconstruct any permutation
π ∈ Symn from any four distinct permutations in B2(π).

Lemma 16 lim
n→∞ p3 = 1.

Proof By the definition, p3 = t3
(M3 )

, where t3 is the number of sets of three distinct permuta-

tions in B2(π) from which π ∈ Symn is reconstructible. Without loss of generality we use
In instead of π . By the proof of Theorem 2, we have B2(In) ∩ B2(σ ) = {(i j), (i k), ( j k)}
for any permutation σ = (i j k) ∈ S3(In) and for any three distinct integers i, j, k ∈ [n].
Moreover, |B2(In) ∩ B2(σ )| � 2 for any permutation σ /∈ S3(In) since I (n, 2, 2) = 2,
I (n, 4, 2) = 2, and I (n, d, 2) = 0 for any d � 5. This means that In is not reconstructible
only in the case if we take three permutations from the set {(i j), (i k), ( j k)} for any distinct
integers i, j, k ∈ [n]. Therefore, we have:

t3 =
(
M

3

)
−

(
n

3

)
= n6 − 3n5 + 3n4 − 9n3 + 20n2 − 12n

48
,

where
(M
3

) = n6−3n5+3n4−n3−4n2+4n
48 . This immediately gives us

lim
n→∞ p3 = lim

n→∞
t3(M
3

) = 1.

Hence, this completes the proof. ��
Now we determine N (n, r) for arbitrary r � 2 and sufficiently large n and give the

asymptotic property of N (n, r) for any r � 2.We startwith studying I (n, d, r) for sufficiently
large n. By the definition of Dr and Lemma 6 we have Dr = r · Dr−1 + (−1)r for any r � 1.
Combing with D1 = 0, D2 = 1, and D3 = 2, it is easily verified that Dr < r ! for any r � 1.

Lemma 17 For given integers r , d such that 5 � d � 2r and for sufficiently large n, the
following holds:

I (n, d, r) = Θ(nr−� d
2 �). (47)

Proof By Lemma 3 there exists a permutation σ ∈ Symn such that I (n, d, r) = |Br (In) ∩
Br (σ )| where d(In, σ ) = d and σ(i) = i for d + 1 � i � n.
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Let α ∈ Br (σ ) and let us check whether α ∈ Br (In). We put α =
[α1 . . . αd αd+1 . . . αn] = [a1 a2], where a1 = [α1 . . . αd ], a2 = [αn−d . . . αn]. In a simi-
lar way, we consider In = [e1 e2] and σ = [s1 s2], where e1 = [1 . . . d], s1 = [σ1 . . . σd ],
and e2 = [d + 1 . . . n] = s2.

Let us show that I (n, d, r) � O(nr−� d
2 �).We assume that d(a1, s1) = i and d(a2, s2) = j

for some 0 � i + j � r . By this assumption, we have d(α, σ ) = i + j and s2 = e2 which
gives us d(a2, e2) = j . Let k = � d

2 �. Due to the lemma conditions we have r � k. If
0 � j � r − k then we have:

|{α ∈ Br (σ )|d(a2, s2) = j}| =
r− j∑

i=0

(
d

i

)(
n − d

j

)
Di+ j . (48)

If r −k+1 � j � r then 0 � d(a1, s1) � k−1. Since d(s1, e1) = 2k−1 or d(s1, e1) = 2k
then we have d(a1, e1) � k. Thus, it follows:

d(α, In) = d(a1, e1) + d(a2, e2) � k + j � r + 1,

for some fixed j such that r − k + 1 � j � r . Hence, for any α ∈ Br (σ ) such that
d(a2, s2) = j and j � r − k + 1 we have α /∈ Br (In) ∩ Br (σ ). Then the following holds:

I (n, d, r) = |Br (In) ∩ Br (σ )| a
�

r−k∑

j=0

r− j∑

i=0

(
d

i

)(
n − d

j

)
Di+ j

b
�

r−k∑

j=0

r− j∑

i=0

(
d

i

)(
n − d

j

)
(i + j)!

c
� O(nr−k), (49)

where
a
� follows from (48),

b
� follows from the fact that Dr � r ! for any r � 1, and

c
�

follows from
(d
i

)(n−d
j

)
(i + j)! � O(n j ) and j � r − k.

Nowwe prove that I (n, d, r) � Ω(nr−� d
2 �) under the same conditions on d . If d = 2k−1

then k � 3. Let σ = (1 2 . . . k − 1)(k k + 1 . . . 2k − 1) and V = {α ∈ Symn | α1 =
(1 2 . . . k − 1), d(a2, s2) = r − k}.

For any α ∈ V , we have d(α, σ ) = d(a1, s1)+ d(a2, s2) = k + r − k = r and d(α, In) =
d(a1, e1) + d(a2, e2) = k − 1 + r − k = r − 1. This means that V ⊂ Br (In) ∩ Br (σ ) and
we have:

|V | =
(
n − 2k + 1

r − k

)
.

Therefore, if d = 2k − 1 and 5 � d � 2r we have:

I (n, d, r) � |Br (In) ∩ Br (σ )| � |V | = Ω(nr−k).

Similarly, if d = 2k then let us put σ = (1 2 . . . k)(k + 1 k + 2 . . . 2k) and let V1 =
{α ∈ Symn | a1 = (1 2 . . . k), d(a2, s2) = r − k}. Then for any α ∈ V1 we have d(α, σ ) =
d(a1, s1)+d(a2, s2) = k+r −k = r and d(α, In) = d(a1, e1)+d(a2, e2) = k+r −k = r .
Thus, V1 ⊂ Br (In) ∩ Br (σ ). Moreover, we have

|V1| =
(
n − 2k

r − k

)
.
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Therefore, if d = 2k and 5 � d � 2r we have:

I (n, d, r) � |Br (In) ∩ Br (σ )| � |V1| = Ω(nr−k).

Thus, taking into account the cases above we have I (n, d, r) � Ω(nr−� d
2 �) for any

5 � d � 2r which completes the proof. ��

Theorem 9 Let r � 3. Then for sufficiently large n we have:

N (n, r) =
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
.

Moreover, N (n, r) = Θ(nr−2).

Proof If r = 3, 4 then from (11),(12) and by Theorems 5,6 we have:

N (n, r) = I (n, 2, r) =
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
.

If r � 5 then by Lemma 17 we have I (n, d, r) = Θ(nr−� d
2 �) for any 5 � d � 2r which

means r − � d
2 � � r − 3 and I (n, d, r) = o(nr−2) in this case.

By Theorem 8, if 2 � d � 4 then I (n, 2, r) � max{I (n, 3, r), I (n, 4, r)}. Moreover, we
have I (n, 2, r) = Θ(nr−2). By the definition of N (n, r), we immediately have:

N (n, r) = max
l�1

I (n, l, r) = I (n, 2, r)

for any r � 5 and sufficiently large n.
Therefore, for any r � 3 and sufficiently large n, we have:

N (n, r) = I (n, 2, r) =
r−2∑

t=0

(
n − 2

t

)(
Dt + 2Dt+1 + Dt+2

)
.

Furthermore, we have N (n, r) = Θ(nr−2) for any r � 3. ��

6 Conclusion

In this paper, the sequence reconstruction problem is studied over permutations with the
Hamming metric for r = 2, 3, 4 or sufficiently large n. Since N (n, r) = I (n, 2, r) for
r = 3, 4, and for any r � 5 and sufficiently large n, there is the following conjecture.
Conjecture 1 N (n, r) = I (n, 2, r) for any r � 5 and n � r .

Furthermore, if the transmitted sequence is a codeword in Symn with Hamming distance
d and with at most r errors over each channel then the following sequence reconstruction
problem is stated.

Problem 1 Determine

N (n, d, r) = max
π,τ∈Symn ,d(π,τ )�d

|Br (π) ∩ Br (τ )| = max
l�d

I (n, l, r).
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