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Abstract
Let � be a graph with vertex set V . If a subset C of V is independent in � and every vertex
in V \ C is adjacent to exactly one vertex in C , then C is called a perfect code of �. Let
G be a finite group and let S be a square-free normal subset of G. The Cayley sum graph
of G with respect to S is a simple graph with vertex set G and two vertices x and y are
adjacent if xy ∈ S. A subset C of G is called a perfect code of G if there exists a Cayley
sum graph of G which admits C as a perfect code. In particular, if a subgroup of G is a
perfect code of G, then the subgroup is called a subgroup perfect code of G. In this paper,
we give a necessary and sufficient condition for a non-trivial subgroup of an abelian group
with non-trivial Sylow 2-subgroup to be a subgroup perfect code of the group. This reduces
the problem of determining when a given subgroup of an abelian group is a perfect code
to the case of abelian 2-groups. As an application, we classify the abelian groups whose
every non-trivial subgroup is a subgroup perfect code. Moreover, we determine all subgroup
perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
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1 Introduction

Throughout the paper, all graphs considered are finite and simple. For a graph � with vertex
set V , a subset C of V is called a perfect code [17] of � if C is an independent set such that
every vertex in V \ C is adjacent to exactly one vertex in C . In graph theory, a perfect code
of a graph is also called an efficient dominating set [6] or independent perfect dominating
set [18]. Since the beginning of coding theory in the late 1940s, perfect codes have been
important objects of study in information theory; see the surveys [12,23] on perfect codes
and related definitions in the classical setting. In [3], Biggs showed that the proper setting
for the perfect code problem is the class of distance-transitive graphs. Since the fundamental
work of Delsarte [7], a great amount of work on perfect codes in distance-regular graphs
and association schemes in general has been produced. Beginning with [17], perfect codes in
general graphs have also attracted considerable attention in the community of graph theory;
see [20,22,24] for example.

All groups considered in this paper are finite. Given a group G with identity element e
and an inverse-closed subset S of G with e /∈ S, the Cayley graph Cay(G, S) of G with
respect to the connection set S is defined to be the graph with vertex set G such that two
elements x, y are adjacent if yx−1 ∈ S, where the subset S of G is called inverse-closed if
S−1 := {s−1 : s ∈ S} = S. Some perfect codes in the classical setting are also perfect codes
in Cayley graphs. For example, the characterization of perfect code parameters in Hamming
graphs (prime power q) and in Doob graphs, the nonexistence of perfect codes in bilinear
form graphs (rank-metric codes) and the problem of existence of perfect codes in Hamming
graphs for non-prime-power q . In recent years, perfect codes in Cayley graphs have received
considerable attention, see, for example [8,10,13,18,25,26].

Let A be an abelian group and let T be a subset of A. The Cayley sum graph (also called
addition Cayley graph) of A with respect to the connecting set T , denoted by CayS(A, T ),
is a graph with vertex set A and two elements x and y are joined by an edge if xy ∈ T . In
1989, Chung [5] first introduced the Cayley sum graphs of abelian groups. As pointed out in
[11], the twins of the usual Cayley graphs, Cayley sum graphs are rather difficult to study, so
that they received much less attention in the literature. Most results on Cayley sum graphs
can be found in [1,4,9,16,19,21].

Let G be a group. An element x of G is called a square if x = y2 for some element
y ∈ G. A subset of G is called a square-free subset of G if it is a set without squares. A
subset S of G is called a normal subset if S is a union of some conjugacy classes of G or
equivalently, for every g ∈ G, g−1Sg := {g−1sg : s ∈ S} = S. Remark that any subset of an
abelian group is normal. One can generalize the concept of Cayley sum graphs over arbitrary
groups. Let S be a subset of G. The Cayley sum graph CayS(G, S) of G with respect to the
connecting set S is a directed graph whose vertex set is G and two vertices x and y are joined
by an arc if xy ∈ S. If S is a normal subset of G, then xy ∈ S if and only if yx ∈ S, and
so CayS(G, S) is an undirected graph. If there exists g ∈ G with g2 ∈ S, then {g, g} is a
semi-edge of CayS(G, S), where a semi-edge is an edge with one endpoint. A graph with no
multiple edges and semi-edges is called a simple graph.

Note that all graphs considered in this paper are simple. Thus, we always consider a
simple Cayley sum graph CayS(G, S), that is, the connecting set S needs to be normal and
square-free. More explicitly, for a square-free normal subset S of G, the Cayley sum graph
CayS(G, S) of G with respect to the connecting set S is a simple graph with vertex set G and
two vertices x and y are adjacent if xy ∈ S. It is easy to see that CayS(G, S) is |S|-regular.
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In 2016, Amooshahi and Taeri [2] first introduced the concept of the Cayley sum graph of a
non-abelian group, and studied some basic properties of the graph.

In [13], Huang et al. introduced the following concept: A subset C of a group G is called
a perfect code of G if there exists a Cayley graph Cay(G, S) of G which admits C as a
perfect code. In particular, a perfect code of G which is also a subgroup of G is called
a subgroup perfect code of G. In the same paper, Huang et al. obtained a necessary and
sufficient condition for a normal subgroup of a group G to be a subgroup perfect code of G,
and determined all subgroup perfect codes of dihedral groups and some abelian groups. As
explained in [13], in some sense subgroup perfect codes are an analogue of linear perfect
codes.

In this paper, we study perfect codes of Cayley sum graphs and define a subgroup perfect
code of a group by using Cayley sum graphs instead of Cayley graphs. More precisely, a
subgroup perfect code of a group G is a subgroup of G and a perfect code of some Cayley
sum graph of G. We give a necessary and sufficient condition for a non-trivial subgroup of
an abelian group with non-trivial Sylow 2-subgroup to be a subgroup perfect code of the
group (see Theorem 3.1). This reduces the problem of determining when a given subgroup
of an abelian group is a perfect code to the case of abelian 2-groups. As an application,
we classify the abelian groups whose every non-trivial subgroup is a subgroup perfect code
(see Theorem 3.5). Also, we determine all subgroup perfect codes of a cyclic group (see
Theorem 3.7), a dihedral group (see Theorem 4.1) and a generalized quaternion group (see
Theorem 5.1).

2 Preliminaries

This section contains some technical lemmas required for the proofs of our main results.
We always use G to denote a finite group having at least two elements, and let e denote its
identity element. The order of an element g of G is defined as the cardinality of the cyclic
subgroup 〈g〉, and is denoted by o(g). Let H be a subgroup of G. The index of H in G,
denoted by [G : H ], is the number of right (or left) cosets of H in G. A right transversal
of H in G is a subset of G which contains exactly one element from each right coset of H .
If G is abelian, since every right coset of H is a left coset, we use the term “transversal” to
refer to a right transversal. A subgroup K of G is called a Hall 2′-subgroup if [G : K ] is the
order of a Sylow 2-subgroup of G. Note that, for an abelian group G, the Sylow 2-subgroup
consists of the elements of G with order a power of 2, and the Hall 2′-subgroup consists of
the elements of G with odd order. For subsets S, T of G, write

S−1 = {s−1 : s ∈ S}, ST = {st : s ∈ S, t ∈ T }.
If S = {s}, then we denote ST and T S simply by sT and T s, respectively.

It is easy to see that every non-trivial element of a group is a non-square if and only if
the group is an elementary abelian 2-group. So a Cayley sum graph CayS(G, S) is complete
if and only if G is an elementary abelian 2-group and S = G \ e. This also means that the
trivial subgroup {e} of a group is a subgroup perfect code of the group if and only if the
group is an elementary abelian 2-group. Moreover, the whole groupG is a perfect code in the
empty Cayley sum graph CayS(G,∅). As a result, any group is a subgroup perfect code of
the group. Thus, in the following we always consider the non-trivial subgroup perfect codes
of a group.
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Lemma 2.1 Let S and H be a square-free normal subset and a subgroup of G, respectively.
The following are equivalent.

(i) H is a perfect code of CayS(G, S).
(ii) S ∪ {e} is a right transversal of H in G.
(iii) [G : H ] = |S| + 1 and H ∩ (S ∪ SS−1) = {e}.
Proof Assume (i), that is H is a perfect code of CayS(G, S). By the definitions of a perfect
code and a Cayley sum graph, it is easy to see that

⋃

s∈S∪{e}
Hs = G. (1)

Note that S is square-free inG. If h1 = h2s for two distinct h1, h2 ∈ H and some s ∈ S, then
h−1
2 	= h1 and h

−1
2 h1 ∈ S, and so h−1

2 and h1 are adjacent in CayS(G, S), which contradicts
that H is independent. We conclude that H ∩ HS = ∅. If h1s1 = h2s2 for two distinct
s1, s2 ∈ S and some h1, h2 ∈ H , then h1 	= h2, h

−1
1 	= h1s1 and h

−1
2 	= h2s1, which implies

that both h−1
1 and h−1

2 are adjacent to h1s1 in CayS(G, S), a contradiction. We deduce that
Hs1 ∩ Hs2 = ∅ for each two distinct s1, s2 ∈ S. It follows from (1) that (ii) holds. Also, by
the definition of a perfect code, it is easy to check that (ii) implies (i). It follows that (i) and
(ii) are equivalent.

In the followingwe show that (ii) and (iii) are equivalent. Suppose first that S∪{e} is a right
transversal of H in G. Note that e /∈ S. Then [G : H ] = |S|+1. Taking h ∈ H ∩ (S∪ SS−1),
we have h /∈ S. It follows that h ∈ SS−1. Therefore, there exist s1, s2 ∈ S such that
h = s1s

−1
2 , and so Hs2 = Hs1. This means that s1 = s2, and hence h = e. It follows that

H ∩ (S ∪ SS−1) = {e}, and so (iii) follows.
Suppose next that [G : H ] = |S| + 1 and H ∩ (S ∪ SS−1) = {e}. Let s1 and s2 be two

distinct elements of S. If there exist h1, h2 ∈ H such that h1s1 = h2s2, then s2s
−1
1 = h−1

2 h1 ∈
H∩(S∪SS−1), so s2s

−1
1 = e, and hence s1 = s2, a contradiction. It follows that Hs1 	= Hs2.

Also, if there exist h1, h2 ∈ H such that h1 = h2s1, then s1 = h−1
2 h1 ∈ H ∩ (S ∪ SS−1),

and hence s1 = e, a contradiction. We conclude that H 	= Hs1. Now [G : H ] = |S| + 1
implies that S ∪ {e} is a right transversal of H in G, and so (ii) follows. Thus, (ii) and (iii)
are equivalent. The proof is now complete. 
�
Lemma 2.2 If H is a subgroup perfect code of G, then for any g ∈ G \ H, Hg has at least
one non-square element in G.

Proof Suppose that H is a perfect code of CayS(G, S) for some square-free normal subset
S of G. For any g ∈ G \ H , by Lemma 2.1, there exists s ∈ S such that g ∈ Hs. Namely,
Hg = Hs, which implies that Hg has a non-square element s in G, as desired. 
�

For a subset S of G, write

S =
∑

g∈G
μS(g)g ∈ Z[G],

where Z[G] is the group ring of G over the ring of integers Z and

μS(g) =
{
1, if g ∈ S;
0, if g /∈ S.

The following result is immediate by Lemma 2.1.
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Lemma 2.3 Let CayS(G, S) be a Cayley sum graph of G, and let H be a subgroup of G.
Then H is a perfect code of CayS(G, S) if and only if H · S ∪ {e} = G.

The proof of the following result is straightforward.

Lemma 2.4 Let G1,G2, . . . ,Gn be n groups and let Hi be a subgroup of Gi for each 1 ≤
i ≤ n. Suppose that Ci is a right transversal of Hi in Gi for each 1 ≤ i ≤ n. Then
C1 × C2 × · · · × Cn is a right transversal of H1 × H2 × · · · × Hn in G1 × G2 × · · · × Gn.

Finally, we give a necessary condition for a normal subgroup of a group to be a perfect
code in some Cayley sum graph of the group.

Proposition 2.5 Let N be a normal subgroup of G. Suppose that N is a perfect code of some
Cayley sum graph CayS(G, S). Then for any g ∈ G \ (S ∪ N ), there exists n ∈ N \ {e} such
that gn = ng.

Proof By Lemma 2.1, S ∪ {e} is a right transversal of N in G. Since g /∈ N , it follows that
there exists an element s of S such that g ∈ Ns. Note that g /∈ S. Wemay assume that g = ns
for some n ∈ N \ {e}. Then Ng = Ns. Also, since N is normal, we have Ng−1 = Ns−1. It
follows that

Ng−1sg = (Ns−1)sg = Ng = Ns.

Since S is a normal subset, it follows that g−1sg ∈ S, and hence g−1sg = s. Note that
s = n−1g. We deduce gn = ng, as desired. 
�

3 Abelian groups

For any abelian group G of odd order, since {g2 : g ∈ G} = G, we have that G has no
non-square elements. Thus, in order to study the Cayley sum graph of an abelian group, we
always assume that the abelian group has even order.

In this section, we give a necessary and sufficient condition for a non-trivial subgroup
of an abelian group with non-trivial Sylow 2-subgroup to be a subgroup perfect code of the
group (see Theorem 3.1). This reduces the problem of determining when a given subgroup
of an abelian group is a perfect code to the case of abelian 2-groups. As an application,
we classify the abelian groups whose every non-trivial subgroup is a subgroup perfect code
(see Theorem 3.5). We also determine all subgroup perfect codes of a cyclic group (see
Theorem 3.7).

Theorem 3.1 Let G be an abelian group with non-trivial Sylow 2-subgroup P, and let H be
a non-trivial subgroup of G. Then H is a subgroup perfect code of G if and only if one of the
following occurs:

(i) P ⊆ H.
(ii) [G : H ] = |P| and P is elementary abelian.
(iii) H ∩ P is a non-trivial subgroup perfect code of P, and either [G : H ] is a power of 2

or H ∩ P has a non-square element in G.

Proof Let G = P × Q, where Q is the Hall 2′-subgroup of G and consists of the elements
of G with odd order. Clearly, H ∩ P is the Sylow 2-subgroup of H . Now let H = P1 × Q1,
where P1 = H ∩ P and Q1 consists of the elements of H with odd order. We have that Q1

is a subgroup of Q.
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We first prove the necessity. Suppose that H is a subgroup perfect code of G. Namely,
G has a square-free subset S such that H is a perfect code of CayS(G, S). Write S =
{(p1, q1), . . . , (ps , qs)}, which is a subset of P × Q. Lemma 2.1 implies that S ∪ {(e, e)} is
a transversal of H in G. Observe that an element (a, b) of P × Q is a non-square if and only
if a is a non-square in P .

Suppose that |H ∩ P| = 1, that is, H is of odd order. If H � {e}×Q, choose q ∈ Q \Q1,
it follows that every element of H(e, q) is a square, contrary to Lemma 2.2.We conclude that
H = {e}×Q. Now take x ∈ P \ {e}. Then each element of H(x, e) has form (x, q) for some
q ∈ Q. Note that H 	= H(x, e). It follows from Lemma 2.2 that x must be non-square in P .
As a result, every non-trivial element of P is non-square, it follows that P has no elements
of order 4, and hence we deduce that P is elementary abelian. So in this case (ii) occurs.

Suppose that |H ∩ P| 	= 1. In order to prove the necessity, it suffices to show that if
P1 � P , then (iii) occurs. So we now assume that P1 � P . Let S1 be the set consisting of
all elements in {p1, . . . , ps} satisfying that P1 	= P1 pi , P1 	= P1 p j and P1 pi 	= P1 p j for
each two distinct indices i, j ∈ {1, . . . , s}. Since S ∪ {(e, e)} is a transversal of H in G, we
deduce that S1 ∪ {e} is a transversal of P1 in P . It follows that S1 is a square-free subset of
P , and hence P1 is a subgroup perfect code of P by Lemma 2.1. Now suppose that [G : H ]
is not a power of 2. It suffices to prove that H ∩ P has a non-square element in G. Note
that Q1 � Q. Taking an element q ′ ∈ Q \ Q1, we have (e, q ′) /∈ P1 × Q1. It follows by
Lemma 2.2 that H(e, q ′) has a non-square element in G, and so P1 has a non-square element
in P , which implies that H ∩ P has a non-square element in G, as desired.

We next prove the sufficiency. Take a transversal S2 = {q0, q1, . . . , qt } of Q1 in Q, where
q0 = e. We consider the following cases.
Case 1. P ⊆ H , that is, P1 = P .

Taking an element p in P such that o(p) = max{o(g) : g ∈ P}, we see easily that p is
a non-square element of P . Then S = {(p, q1), . . . , (p, qt )} is a square-free subset of G.
Also, from Lemma 2.4, it follows that {(p, e)} ∪ S is a transversal H in G, and so H is a
perfect code of CayS(G, S), as required.
Case 2. [G : H ] = |P| and P is elementary abelian.

Let S = {(p, e) : p ∈ P \ {e}}. Since P is elementary abelian, we deduce that S is
square-free in G. Observe that {(e, e)} ∪ S is a transversal of H in G. So H is a perfect code
of CayS(G, S), as required.
Case 3. H ∩ P is non-trivial and is a perfect code of P , and either [G : H ] is a power of 2
or H ∩ P has a non-square element in G.

In this case, there exists a square-free subset S1 = {p1, . . . , pl} in P such that P1 is a
perfect code of CayS(P, S1). Note that P1 � P . Suppose that P1 has a non-square element
p in G. Lemma 2.1 implies p /∈ S1. By Lemma 2.4,

S = {(x, y) : x ∈ S1 ∪ {p}, y ∈ S2}
is a transversal of H in G. Observe that S is square-free in G. It follows that H is a perfect
code of CayS(G, S \ {(p, e)}), as required.

Suppose now that [G : H ] is a power of 2. Then Q1 = Q. It is readily seen that

S′ = {(x, e) : x ∈ S1 ∪ {e}}
is a transversal of H in G. Also, we have that S′ \ {(e, e)} is a square-free subset of G. We
conclude that H is a perfect code of CayS(G, S′ \ {(e, e)}). The proof is now complete. 
�

The following result is immediate by Theorem 3.1.
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Corollary 3.2 An abelian group has a subgroup perfect code of odd order if and only if the
Sylow 2-subgroup of the group is an elementary abelian 2-group and the subgroup perfect
code is the Hall 2′-subgroup of the group.

As an application of Theorem 3.1, we determine all subgroup perfect codes of the direct
product of an elementary abelian 2-group and an abelian group of odd order.

Corollary 3.3 Let G = Z
n
2 × Q, where n ≥ 1 and Q is a non-trivial abelian group of odd

order. Then a non-trivial subgroup of G is a subgroup perfect code of G if and only if the
subgroup is not a proper subgroup of Q.

Proof The necessity follows trivially fromTheorem 3.1.We now prove the sufficiency. Let H
be a non-trivial subgroup of G. Suppose that H is not a proper subgroup of Q. It is clear that
if H = Q, then by Theorem 3.1, H is a subgroup perfect code of G. Thus, in the following
we may assume that H = P1 × Q1, where P1 is the Sylow 2-subgroup of H and Q1 is the
Hall 2′-subgroup of H . Note that P1 	= {e} and Q1 ⊆ Q. Let P be the Sylow 2-subgroup
of G. Then P ∼= Z

n
2, P1 ⊆ P and H ∩ P = P1. If P1 = P , then P ⊆ H , and so H is a

subgroup perfect code of G by Theorem 3.1. We now assume that P1 � P . Notice that P
is elementary abelian. It follows that P1 is a non-trivial subgroup perfect code of P . Taking
a non-identity element x ∈ P1, we have that x is non-square in G, and so H is a subgroup
perfect code of G by Theorem 3.1. 
�

The following result determines a family of subgroup perfect codes of an abelian 2-group.

Lemma 3.4 Suppose that G1,G2, . . . ,Gn are n cyclic 2-groups. Let G = G1×G2×· · ·×Gn

and H = H1 × H2 × · · · × Hn is a non-trivial subgroup of G, where Hi is a subgroup of Gi

for all 1 ≤ i ≤ n. Then H is a subgroup perfect code of G if and only if either |Gi | = 2|Hi |
for all 1 ≤ i ≤ n or there exists j in {1, 2, . . . , n} such that Hj = G j .

Proof For every 1 ≤ i ≤ n, let Gi = 〈gi 〉 and Ci = {e, gi }. We first prove the sufficiency.
Suppose that |Gi | = 2|Hi | for each 1 ≤ i ≤ n. Clearly, Ci is a transversal of Hi in Gi . Let
C = C1×C2×· · ·×Cn . By Lemma 2.4,C is a transversal of H inG. Since gi is non-square
in Gi , it follows that C \ {(e, · · · , e)} is a square-free subset of G. By Lemma 2.1, it follows
that H is a perfect code of CayS(G,C \ {(e, · · · , e)}), as desired.

Now suppose that there exists j in {1, 2, . . . , n} such that Hj = G j . Without loss of
generality, we may assume j = 1. For every 2 ≤ t ≤ n, let Dt be a transversal of Ht in Gt

such that e ∈ Dt . Write D = {g1} × D2 × D3 × · · · × Dn . It follows from Lemma 2.4 that
D is a transversal of H in G. Observe that D is square-free in G. So H is a perfect code of
CayS(G, D \ {(g1, e, · · · , e)}) by Lemma 2.1, as required.

We next prove the necessity. Suppose that H is a perfect code of G. Assume that Hi � Gi

for each 1 ≤ i ≤ n. It suffices to prove that [Gi : Hi ] = 2 for each 1 ≤ i ≤ n. Assume,
to the contrary, that there exists j ∈ {1, 2, . . . , n} such that [G j : Hj ] 	= 2. Without loss
of generality, say j = 1. Then g21 /∈ H1, and so (g21, e, · · · , e) /∈ H . Note that for every
1 ≤ i ≤ n, every element of Hi is a square in Gi . It is easy to see that every element of
H(g21, e, · · · , e) is a square in G. Now from Lemma 2.2, it follows that H is not a perfect
code of G, a contradiction. 
�

As mentioned before, every non-trivial element of an elementary abelian 2-group Z
n
2 is a

non-square. Thus, for any non-trivial subgroup H of Z
n
2, we choose a transversal S ∪ {e} of

H in Z
n
2, Lemma 2.1 implies that H is a perfect code of CayS(G, S). This means that it may
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happen that every non-trivial subgroup of a given abelian group is a subgroup perfect code
of the group.

We now classify the abelian groupswhose every non-trivial subgroup is a subgroup perfect
code.

Theorem 3.5 Let G be an abelian group. Every non-trivial subgroup of G is a subgroup
perfect code of G if and only if G is isomorphic to one of the following groups:

(a) Z
n
2 , where n ≥ 2;

(b) Z
n
2 × Z4, where n ≥ 1;

(c) Z
n
2 × Zp, where n ≥ 1 and p is an odd prime.

Proof We first prove the sufficiency. We already know that every non-trivial subgroup of an
elementary abelian 2-group is a subgroup perfect code. Also, by Corollary 3.3, every non-
trivial subgroup of a group in (c) is a subgroup perfect code of the group. Now we suppose
that G ∼= Z

n
2 × Z4, where n ≥ 1. It follows that G has precisely one non-trivial square

element, say x . Then o(x) = 2. Let H be a non-trivial subgroup of G. Take a transversal S
of H in G such that e ∈ S. If x /∈ S, then S \ {e} is square-free, and so by Lemma 2.1, H
is a perfect code of CayS(G, S \ {e}), as desired. Assume now that x ∈ S. Then Hx 	= H .
Taking a non-identity element h ∈ H , we have that hx 	= x and hx ∈ Hx . It follows that
(S ∪ {hx}) \ {x} is a transversal S of H in G and is square-free, and so H is a perfect code
of CayS(G, (S ∪ {hx}) \ {e, x}), as required.

We now prove the necessity. Suppose that every non-trivial subgroup of G is a subgroup
perfect code of G. Suppose that G is not a 2-group. Then G has a non-trivial subgroup Q
of odd prime order, which is a subgroup perfect code of G. By Corollary 3.2, we have that
G ∼= Z

n
2 × Q ∼= Z

n
2 × Zp , where n ≥ 1 and p is an odd prime, as desired.

Suppose that G is a 2-group and has some elements of order 4. It is enough to show that
G is isomorphic to a group in (b). Note that G is abelian. Note that every finite abelian group
is a direct product of some cyclic groups. Thus, we may assume that

G ∼= Z
t1
2 × Z

t2
22

× · · · × Z
tk
2k

, (2)

where k ≥ 2, tk > 0 and ti ≥ 0 for all 1 ≤ i ≤ k − 1. Suppose for a contradiction that
k ≥ 3. Then we may say G ∼= G1 × G2 × · · · × Gn , where Gi is a cyclic 2-group for each
1 ≤ i ≤ n, and Gn ∼= Z2k . Let Hn be a subgroup of Gn of order 2. For each 1 ≤ j ≤ n,
let E j be the trivial subgroup of G j of order 1. Then H = E1 × E2 × · · · × En−1 × Hn

is a subgroup of G1 × G2 × · · · × Gn−1 × Gn . It follows from Lemma 3.4 that H is not a
subgroup perfect code of G, a contradiction.

We conclude that k = 2. Suppose for a contradiction that t2 ≥ 2. Then we may assume
that G ∼= G1 × G2 × · · · × Gn−2 × Gn−1 × Gn , where Gi is either a cyclic group of order
2 or a cyclic group of order 4 for each 1 ≤ i ≤ n − 2, and Gn−1 ∼= Gn ∼= Z4. Let Hn be
a subgroup of Gn of order 2. Then H = E1 × E2 × · · · × En−1 × Hn is a subgroup of
G1 × G2 × · · · × Gn−1 × Gn . From Lemma 3.4, it follows that H is not a subgroup perfect
code of G, a contradiction.

We conclude that k = 2 and t2 = 1 in (2), which implies that G is isomorphic to a group
in (b), as desired. 
�

The next result is obtained by applying Lemma 3.4 to a cyclic 2-group.

Lemma 3.6 Let G be a cyclic group of order 2k with k ≥ 2, and let H be a non-trivial
subgroup of G. Then H is a subgroup perfect code of G if and only if [G : H ] = 2.
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The following result determines all subgroup perfect codes of a cyclic group.

Theorem 3.7 Let G = 〈x〉 be the cyclic group of even order n, and let H = 〈xt 〉 be a non-
trivial subgroup of G with t dividing n. Then H is a subgroup perfect code of G if and only
if t is either an odd number or 2.

Proof We first prove the necessity. Suppose that H is a subgroup perfect code of G. Then
there exists a square-free subset S of G such that H is a perfect code of CayS(G, S). It
suffices to show that if t is even, then t = 2. Now Let t be even. Assume, to the contrary,
that t ≥ 4. By Lemma 2.1, S ∪ {e} is a transversal of H in G. Note that an element xl of G
is non-square if and only if l is odd. Since x2 /∈ H , we deduce x2 ∈ Hs for some s ∈ S. It
follows that x2 = hxl for some odd positive integer l and h ∈ H , which is impossible as t
is even. We conclude that t = 2, as desired.

We next prove the sufficiency. If G is a 2-group, then t = 2, and so H is a subgroup
perfect code of G by Lemma 3.6, as desired. Thus, in the following we may assume that
G ∼= Z2m × Zr , where m ≥ 1 and r is an odd number at least 3. Since H is a non-trivial
subgroup ofG, we have t 	= 1. Let P be the Sylow 2-subgroup ofG. If t is odd, then P ⊆ H ,
and so H is a subgroup perfect code of G by Theorem 3.1, as desired. Now suppose that
t = 2. If m = 1, then H is the Hall 2′-subgroup of G and P is elementary abelian, and
Theorem 3.1 implies that H is a subgroup perfect code of G. Thus, we may assume that
m ≥ 2. Then [P : H ∩ P] = 2 and [G : H ] is a power of 2. Combining Theorem 3.1 and
Lemma 3.6, we have that H is a subgroup perfect code of G, as desired. 
�

We conclude the section by the following example to illustrate Theorem 3.7.

Example 3.8 Let G = Z12. Then by Theorem 3.7, 〈3〉 and 〈2〉 are all non-trivial subgroup
perfect codes of G. In particular, 〈3〉 is a perfect code of CayS(G, {1, 5}), and 〈2〉 is a perfect
code of CayS(G, {1}).

4 Dihedral groups

The dihedral group D2n of order 2n is defined by

D2n = 〈a, b : an = b2 = e, bab = a−1〉, n ≥ 3. (3)

This section will determine all subgroup perfect codes of a dihedral group, the main result is
as follows.

Theorem 4.1 Let H be a non-trivial subgroup of D2n. Then H is a subgroup perfect code of
D2n if and only if one of the following holds:

(i) n
2 is odd and either H = 〈a n

2 〉 or H = 〈a2, asb〉 with 0 ≤ s ≤ 1.
(ii) n is even and H = 〈at , asb〉 with an odd integer t dividing n, t > 1 and 0 ≤ s ≤ t − 1.

In this section, the letters a, b and D2n are always as refer to (3). Remark that o(aib) = 2
for each 1 ≤ i ≤ n and

D2n = 〈a〉 ∪ {b, ab, a2b, . . . , an−1b}.
Furthermore, it is not hard to see that the subgroups of D2n are the cyclic subgroups 〈at 〉with
t dividing n, and the groups 〈at , asb〉 with t dividing n and 0 ≤ s ≤ t − 1, where 〈at , asb〉
is either an abelian group (isomorphic to Z2 or Z2 × Z2) or a dihedral group.
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Lemma 4.2 ([14, p. 108]) Suppose that n = 2m for some positive integer m at least 2. Then
D2n has m + 3 conjugacy classes as follows:

{e}, {am}, {ai−1, a−i+1}, [b] = {a2 j b : 0 ≤ j ≤ m − 1}, [ab] = {a2 j+1b : 0 ≤ j ≤ m − 1},
where 2 ≤ i ≤ m.

Lemma 4.3 Let n be an even integer at least 4, and let 〈at , asb〉 be a non-trivial subgroup
of D2n, where t divides n and 0 ≤ s ≤ t − 1. Then 〈at , asb〉 is a subgroup perfect code of
D2n if and only if either t is odd, or t = 2 and n

2 is odd.

Proof Write G = D2n and H = 〈at , asb〉. Let n = 2m for some m ≥ 2. Note that |H | = 2n
t

and [G : H ] = t .
Suppose first that t is an odd integer. Note that

H = (e + at + a2t + · · · + an−t )(e + asb).

Let S = {a, a−1, a3, a−3, . . . , at−2, a−(t−2)}. Observe that |S| = t−1 and S is a square-free
subset of G. Also, Lemma 4.2 implies that S is a normal subset of G. Furthermore, we have

H · S ∪ {e}
= (e + at + a2t + · · · + an−t )(e + asb)

×(e + a + a−1 + a3 + a−3 + · · · + at−2 + a2−t )

= (e + at + a2t + · · · + an−t )(e + a + a−1 + a3 + a−3 + · · · + at−2 + a2−t )

+(e + at + a2t + · · · + an−t )asb(e + a + a−1 + a3 + a−3 + · · · + at−2 + a2−t )

= (e + a + a2 + · · · + an−1) +
+as(e + at + a2t + · · · + an−t )(e + a + a−1 + a3 + a−3 + · · · + at−2 + a2−t )b

= (e + a + a2 + · · · + an−1) + as(e + a + a2 + · · · + an−1)b

= G.

It follows from Lemma 2.3 that H is a perfect code of CayS(G, S), as desired.
Suppose now that t = 2 and m is odd. Let S′ = {am}. Clearly, S′ is a square-free normal

subset of G. Moreover,

H · S′ ∪ {e}
= (e + a2 + a4 + · · · + an−2)(e + asb)(e + am)

= (e + a2 + a4 + · · · + an−2)(e + am) + (e + a2 + a4 + · · · + an−2)asb(e + am)

= (e + a + a2 + · · · + an−1) + as(e + a2 + a4 + · · · + an−2)(e + a−m)b

= (e + a + a2 + · · · + an−1) + as(e + a + a2 + · · · + an−1)b

= G.

By Lemma 2.3, we deduce that H is a perfect code of CayS(G, S′), as required.
For the converse, let S be a square-free normal subset of G such that H is a perfect code

of CayS(G, S). Suppose that t is an even integer. It suffices to show that t = 2 and m is odd.
Suppose that |H | = 2, that is, H = {e, asb}. Then |S| = 2m − 1. From Lemma 4.2, it

follows that m is odd, and so S is the union of

T = {ai : i 	= m, i = 2 j + 1, 0 ≤ j ≤ m − 1}
and one of [b] and [ab]. Note that as−l ∈ Halb for any 0 ≤ l ≤ n − 1. Assume that s is
even. Since S ∪ {e} is a right transversal of H in G by Lemma 2.1, we have asb /∈ S, and so
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[ab] ⊆ S. It follows that there exists an odd integer k ∈ {0, 1, . . . , n−1} such that as−k ∈ T ,
which implies that Hakb = Has−k . However, {as−k, akb} ⊆ S, contrary to Lemma 2.1 (ii).
Similarly, if s is odd, we obtain also a contradiction.

We conclude that |H | ≥ 4. It follows that

|S| + 1 = t = 4m

|H | ≤ m,

and so |S| is odd. Note that S is a square-free normal subset of G. By Lemma 4.2, we deduce

S ⊆ {ai : i = 2 j + 1, 0 ≤ j ≤ m − 1},

which implies that am ∈ S and so m is odd.
Now it is enough to prove t = 2. Assume, to the contrary, that t ≥ 4. Then |S| ≥ 3.

By Lemma 2.1, it is easy to see S ∪ {e} is a right transversal of 〈at 〉 in 〈a〉. It follows that
a2 ∈ 〈at 〉ai for some ai ∈ S. Consequently, we may assume that a2 = akt+i for some
1 ≤ k ≤ n

t − 1. Note that i is odd. Since t is even, we deduce that n does not divide
kt + i − 2, contrary to a2 = akt+i . Thus, we have t = 2, as desired. The proof is now
complete. 
�

Lemma 4.4 Let n be an even integer at least 4, and let 〈at 〉 be a non-trivial subgroup of D2n

with t dividing n. Then 〈at 〉 is a subgroup perfect code of D2n if and only if n = 2t and t is
odd.

Proof Let n = 2m for some m ≥ 2. Suppose that 〈at 〉 is a subgroup perfect code of D2n .
Then 〈at 〉 is a perfect code of CayS(D2n, S) for some square-free normal subset S of D2n .
By Lemmas 2.1 and 4.2, we deduce that only one of [ab] and [b] is contained in S. Set
S = T ∪ L , where T = [ab] or [b], and L ⊆ 〈a〉.

Suppose that T = [ab]. Then b ∈ G \ (S ∪ 〈at 〉). Note that 〈at 〉 is a normal subgroup
of D2n . By Proposition 2.5, we have that there exists art ∈ 〈at 〉 such that bart = art b,
where r is a positive integer with art 	= e. It follows that art = am ∈ 〈at 〉. If T = [b], then
ab ∈ G \ (S ∪ 〈at 〉), and similarly, we have also am ∈ 〈at 〉 by Proposition 2.5.

We conclude am ∈ 〈at 〉. Now Lemma 2.1 also implies that L ∪ {e} is a right transversal
of 〈at 〉 in 〈a〉, and so |L| = t − 1. Since [D2n : 〈at 〉] = 2t , we conclude that

|S| = m + t − 1 = 2t − 1.

Thismeansm = t , and so 〈at 〉 = {am, e}. Note that now 〈at 〉 is a subgroup perfect code of 〈a〉.
It follows from Theorem 3.7 thatm is odd orm = 2. Now it suffices to provem 	= 2. Suppose
for a contradiction that m = 2. Then n = 4, and so 〈a2〉 is a perfect code of CayS(G, S). If
[b] = {b, a2b} ⊆ S, then 〈a2〉b = 〈a2〉a2b, contrary to Lemma 2.1. Similarly, if [ab] ⊆ S,
we obtain also a contradiction.

Conversely, suppose that n = 2t and t is odd. Let

S = {a, a−1, a3, a−3, . . . , at−2, a−(t−2), b, a2b, . . . , an−2b}.
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Observe that |S| = 2t − 1 and S is a square-free subset of D2n . Also, Lemma 4.2 implies
that S is a normal subset of G. Since t is odd, we have

〈at 〉 · S ∪ {e}
= (e + at )(e + a + a−1 + a3 + a−3 + · · · + at−2 + a−(t−2) + b + a2b + · · · + an−2b)

= (e + at )(e + a + a−1 + a3 + a−3 + · · · + at−2 + a2−t )

+(e + at )(b + a2b + · · · + an−2b)

= (e + a + a2 + · · · + an−1) + e(b + a2b + · · · + an−2b) + at (b + a2b + · · · + an−2b)

= (e + a + a2 + · · · + an−1) + (b + a2b + · · · + an−2b) + (ab + a3b + · · · + an−1b)

= D2n .

It follows from Lemma 2.3 that 〈at 〉 is a perfect code of CayS(D2n, S), as desired. 
�
We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Combining Lemmas 4.3 and 4.4, we only need to show that if n is odd,
then D2n has no subgroup perfect codes. Now suppose that n = 2m + 1 for some positive
integer m. Then D2n has m + 2 conjugacy classes (cf. [14, p. 108]), as follows

{e}, {ai , a−i }, {a jb : 0 ≤ j ≤ 2m},
where 1 ≤ i ≤ m. It follows that if S is a square-free normal subset of D2n , then S = {a jb :
0 ≤ j ≤ 2m}. Suppose for a contradiction that H is a perfect code of CayS(D2n, S). Then
|S| = 2m + 1. Now Lemma 2.1 implies [D2n : H ] = |S| + 1. It follows that |H |(m + 1) =
2m + 1, which is impossible. 
�

We use the following example to illustrate Theorem 4.1.

Example 4.5 (i) Let G = D24. Then by Theorem 4.1, 〈a3, b〉, 〈a3, ab〉 and 〈a3, a2b〉 are all
non-trivial subgroup perfect codes of G. In particular, by the proof of Lemma 4.3, we
have that each of 〈a3, b〉, 〈a3, ab〉 and 〈a3, a2b〉 is a perfect code of CayS(G, {a, a11}).

(ii) Let G = D20. It follows from Theorem 4.1 that 〈a5〉, 〈a2, b〉, 〈a2, ab〉 and
〈a5, atb〉 (0 ≤ t ≤ 4) are all non-trivial subgroup perfect codes of G. Particu-
larly, by the proofs of Lemmas 4.3 and 4.4, we have that 〈a5〉 is a perfect code of
CayS(G, {a, a9, a3, a7, b, a2b, a4b, a6b, a8b}), each of 〈a2, b〉 and 〈a2, ab〉 is a per-
fect code of CayS(G, {a5}), and CayS(G, {a, a9, a3, a7}) admits 〈a5, atb〉 as a perfect
code for each 0 ≤ t ≤ 4.

5 Generalized quaternion groups

We use Q4n to denote the generalized quaternion group of order 4n, where n ≥ 2. It is well
known (see, for example, [15, pp. 44–45]) that

Q4n = 〈a, b : an = b2, a2n = 1, b−1ab = a−1〉, n ≥ 2. (4)

The main result of this section determines all subgroup perfect codes of Q4n .

Theorem 5.1 Let H be a non-trivial subgroup of Q4n. Then H is a subgroup perfect code of
Q4n if and only if one of the following holds:

(i) n is odd and H = 〈an〉.
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(ii) H = 〈at , asb〉 with an odd integer t dividing 2n, t > 1 and 0 ≤ s ≤ t − 1.

In this section, the letters a, b and Q4n are always as refer to (4). Remark that o(aib) = 4
for each i ∈ {1, . . . , 2n}, and Q4n has a unique involution an , and

Q4n = {e, a, . . . , a2n−1} ∪ ( n−1⋃

i=0

{aib, (aib)−1}).

It is not hard to see that the subgroups of Q4n are 〈at 〉with t dividing 2n, and 〈at , asb〉with t
dividing 2n and 0 ≤ s ≤ t −1, where 〈at , asb〉 is either the cyclic group 〈b〉 or a generalized
quaternion group.

Lemma 5.2 ([14, p. 420]) Q4n has n + 3 conjugacy classes as follows:

{e}, {an}, {ai , a−i }, [b] = {a2 j b : 0 ≤ j ≤ n − 1}, [ab] = {a2 j+1b : 0 ≤ j ≤ n − 1},
where 1 ≤ i ≤ n − 1.

Lemma 5.3 Let 〈at 〉 be a non-trivial subgroup of Q4n, where t divides 2n. Then 〈at 〉 is a
subgroup perfect code of Q4n if and only if n is odd and t = n.

Proof Let G = Q4n and H = 〈at 〉. Suppose that H is a subgroup perfect code of G. Let
S be a square-free normal subset of G such that H is a perfect code of CayS(G, S). By
Lemma 2.1, S ∪ {e} is a right transversal of H in G, and according to Lemma 5.2, we may
assume that

S = A ∪ B,

where A consists of some non-square elements of 〈a〉, and B is exactly one of [a] and [ab].
Thus, we have

|S| + 1 = n + |A| + 1 = [G : H ] = 2t . (5)

Moreover, it is easy to see that H is a perfect code of CayS(〈a〉, A). NowTheorem 3.7 implies
that t is either an odd integer or 2. If t = 2, then n = 2 and |A| = 1 by (5), and so A = {a2}
by Lemma 5.2, which is impossible since a2 is a square. We conclude that t is odd.

Suppose that B = [b]. If |H | ≥ 3, then b 	= a2t b and Ha2t b = Hb, which is impossible
since S ∪ {e} is a right transversal of H in G. It follows that |H | = 2. Similarly, if B = [ab],
we obtain also |H | = 2. As a result, we have t = n, as desired.

Conversely, suppose that n is odd and t = n. Then H = {an, e}. Let
K = [ab], L = {a2i+1 : 0 ≤ i ≤ n − 1} \ {an}.

Then L−1 = L . Note that (atb)−1 = an+t b for any 1 ≤ t ≤ 2n. It is easy to see that

an /∈ K L−1 ∪ LK−1 ∪ LL−1. (6)

Let i and j be two odd integers such that aib ∈ K and an+ j b ∈ K−1, respectively. We have
that aiban+ j b = aibba−n− j = ai− j , and so aiban+ j b 	= an since i − j is even. It follows
that

an /∈ KK−1. (7)

Now let S = K∪L . Observe that |S| = 2n−1 and H∩S = ∅. Furthermore, S is a square-free
normal subset of G by Lemma 5.2. Combining (6) and (7), we have H ∩ (S ∪ SS−1) = {e},
which implies that H is a perfect code of CayS(G, S) by Lemma 2.1, as desired. 
�
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Lemma 5.4 Let 〈at , asb〉 be a non-trivial subgroup of Q4n, where t divides 2n and 0 ≤ s ≤
t − 1. Then 〈at , asb〉 is a subgroup perfect code of Q4n if and only if t is an odd integer.

Proof Note that t is a divisor of 2n. Since 〈an, asb〉 = 〈a2n, asb〉 = 〈asb〉, we may assume
that t ≤ n. Write G = Q4n and H = 〈at , asb〉. Then |H | is even and [G : H ] = t .
Suppose that H is a subgroup perfect code of G. Then there exists a square-free normal
subset S in G such that H is a perfect code of CayS(G, S). It follows from Lemma 2.1 that
|S| = t − 1 ≤ n − 1, and so S ⊆ {a2i+1 : 0 ≤ i ≤ n − 1} by Lemma 5.2. Note that in this
case S ∪ {e} is a right transversal of H in G. We deduce that S ∪ {e} is a right transversal of
〈at 〉 in 〈a〉. By Theorem 3.7, t is either an odd integer or 2. Suppose for a contradiction that
t = 2. Since H is a proper subgroup of G, we have |H | = 2n, and so |S| = 1. It follows that
S = {an} by Lemma 5.2, which is impossible since an is a square. We conclude that t is an
odd integer.

For the converse, suppose that t is odd. By Theorem 3.7, there exists a square-free normal
subset S in 〈a〉 such that 〈at 〉 is a perfect code of CayS(〈a〉, S). Lemma 2.1 implies 〈at 〉 ∩
(S∪ SS−1) = {e}, and so H ∩ (S∪ SS−1) = {e}. Since t is odd and divides 2n, we have that
t divides n. This implies that an ∈ 〈at 〉, and so an /∈ S. Observe that |S| = t − 1 and S is a
square-free normal subset of G. In view of Lemma 2.1, H is a perfect code of CayS(G, S),
as desired. The proof is now complete. 
�

Combining Lemmas 5.3 and 5.4, we complete the proof of Theorem 5.1.
We conclude the paper by the following example to illustrate Theorem 5.1.

Example 5.5 Let G = Q20. By Theorem 5.1, 〈a5〉 and 〈a5, asb〉 (0 ≤ s ≤ 4) are
all non-trivial subgroup perfect codes of G. Also, it is easy to see that 〈a5〉 is a per-
fect code of CayS(G, {a, a9, a3, a7, b, a2b, a4b, a6b, a8b}), and CayS(G, {a, a9, a3, a7})
admits 〈a5, asb〉 as a perfect code for each 0 ≤ s ≤ 4.
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